arm_compute v19.05
diff --git a/examples/neon_convolution.cpp b/examples/neon_convolution.cpp
index 1a7e865..56b4ddc 100644
--- a/examples/neon_convolution.cpp
+++ b/examples/neon_convolution.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2016-2018 ARM Limited.
+ * Copyright (c) 2016-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -32,7 +32,7 @@
 
 /** Gaussian 3x3 matrix
  */
-const int16_t gaussian3x3[] =
+const std::array<int16_t, 9> gaussian3x3 =
 {
     1, 2, 1,
     2, 4, 2,
@@ -41,7 +41,7 @@
 
 /** Gaussian 5x5 matrix
  */
-const int16_t gaussian5x5[] =
+const std::array<int16_t, 25> gaussian5x5 =
 {
     1, 4, 6, 4, 1,
     4, 16, 24, 16, 4,
@@ -79,8 +79,8 @@
 
         // Apply a Gaussian 3x3 filter to the source image followed by a Gaussian 5x5:
         // The function will automatically update the padding information inside input and output to match its requirements
-        conv3x3.configure(&src, &tmp, gaussian3x3, 0 /* Let arm_compute calculate the scale */, BorderMode::UNDEFINED);
-        conv5x5.configure(&tmp, &dst, gaussian5x5, 0 /* Let arm_compute calculate the scale */, BorderMode::UNDEFINED);
+        conv3x3.configure(&src, &tmp, gaussian3x3.data(), 0 /* Let arm_compute calculate the scale */, BorderMode::UNDEFINED);
+        conv5x5.configure(&tmp, &dst, gaussian5x5.data(), 0 /* Let arm_compute calculate the scale */, BorderMode::UNDEFINED);
 
         // Now that the padding requirements are known we can allocate the images:
         src.allocator()->allocate();