arm_compute v19.05
diff --git a/src/graph/Graph.cpp b/src/graph/Graph.cpp
index 88e2682..9d437b1 100644
--- a/src/graph/Graph.cpp
+++ b/src/graph/Graph.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -152,7 +152,7 @@
     return true;
 }
 
-TensorID Graph::create_tensor(TensorDescriptor desc)
+TensorID Graph::create_tensor(const TensorDescriptor &desc)
 {
     TensorID tid    = _tensors.size();
     auto     tensor = support::cpp14::make_unique<Tensor>(tid, desc);
diff --git a/src/graph/GraphBuilder.cpp b/src/graph/GraphBuilder.cpp
index a944d2c..5db9540 100644
--- a/src/graph/GraphBuilder.cpp
+++ b/src/graph/GraphBuilder.cpp
@@ -30,15 +30,19 @@
 
 #include "support/ToolchainSupport.h"
 
-#define CHECK_NODEIDX_PAIR(pair, g) \
-    ARM_COMPUTE_ERROR_ON(((pair).node_id >= (g).nodes().size()) || ((g).node((pair).node_id) == nullptr) || ((pair).index >= (g).node((pair).node_id)->num_outputs()));
-
 namespace arm_compute
 {
 namespace graph
 {
 namespace
 {
+inline void check_nodeidx_pair(const NodeIdxPair &pair, const Graph &g)
+{
+    ARM_COMPUTE_UNUSED(pair);
+    ARM_COMPUTE_UNUSED(g);
+    ARM_COMPUTE_ERROR_ON((pair.node_id >= g.nodes().size()) || (g.node((pair).node_id) == nullptr) || (pair.index >= g.node(pair.node_id)->num_outputs()));
+}
+
 Status set_node_params(Graph &g, NodeID nid, NodeParams &params)
 {
     INode *node = g.node(nid);
@@ -62,10 +66,10 @@
     return Status{};
 }
 
-NodeID add_const_node_with_name(Graph &g, NodeParams params, const std::string &name, TensorDescriptor desc, ITensorAccessorUPtr accessor)
+NodeID add_const_node_with_name(Graph &g, NodeParams params, const std::string &name, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
 {
     params.name = params.name.empty() ? "" : params.name + name;
-    auto nid    = GraphBuilder::add_const_node(g, params, std::move(desc), std::move(accessor));
+    auto nid    = GraphBuilder::add_const_node(g, params, desc, std::move(accessor));
     set_node_params(g, nid, params);
     return nid;
 }
@@ -73,7 +77,7 @@
 template <typename NT, typename... Args>
 NodeID create_simple_single_input_output_node(Graph &g, NodeParams &params, NodeIdxPair input, Args &&... args)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
 
     NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
     g.add_connection(input.node_id, input.index, nid, 0);
@@ -81,9 +85,27 @@
 
     return nid;
 }
+
+template <typename NT, typename... Args>
+NodeID create_simple_multiple_input_single_output_node(Graph &g, NodeParams &params, const std::vector<NodeIdxPair> &inputs, Args &&... args)
+{
+    ARM_COMPUTE_ERROR_ON(inputs.size() == 0);
+
+    NodeID nid = g.add_node<NT>(std::forward<Args>(args)...);
+
+    unsigned int i = 0;
+    for(const auto &input : inputs)
+    {
+        check_nodeidx_pair(input, g);
+        g.add_connection(input.node_id, input.index, nid, i++);
+    }
+    set_node_params(g, nid, params);
+
+    return nid;
+}
 } // namespace
 
-NodeID GraphBuilder::add_const_node(Graph &g, NodeParams params, TensorDescriptor desc, ITensorAccessorUPtr accessor)
+NodeID GraphBuilder::add_const_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
 {
     auto nid = g.add_node<ConstNode>(desc);
     set_node_params(g, nid, params);
@@ -91,7 +113,7 @@
     return nid;
 }
 
-NodeID GraphBuilder::add_input_node(Graph &g, NodeParams params, TensorDescriptor desc, ITensorAccessorUPtr accessor)
+NodeID GraphBuilder::add_input_node(Graph &g, NodeParams params, const TensorDescriptor &desc, ITensorAccessorUPtr accessor)
 {
     auto nid = g.add_node<InputNode>(desc);
     set_node_params(g, nid, params);
@@ -101,7 +123,7 @@
 
 NodeID GraphBuilder::add_output_node(Graph &g, NodeParams params, NodeIdxPair input, ITensorAccessorUPtr accessor)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
 
     NodeID nid = g.add_node<OutputNode>();
     g.add_connection(input.node_id, input.index, nid, 0);
@@ -111,16 +133,17 @@
     return nid;
 }
 
-NodeID GraphBuilder::add_activation_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info)
+NodeID GraphBuilder::add_activation_node(Graph &g, NodeParams params, NodeIdxPair input, ActivationLayerInfo act_info,
+                                         const QuantizationInfo out_quant_info)
 {
-    return create_simple_single_input_output_node<ActivationLayerNode>(g, params, input, act_info);
+    return create_simple_single_input_output_node<ActivationLayerNode>(g, params, input, act_info, out_quant_info);
 }
 
 NodeID GraphBuilder::add_batch_normalization_node(Graph &g, NodeParams params, NodeIdxPair input, float epsilon,
                                                   ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr var_accessor,
                                                   ITensorAccessorUPtr beta_accessor, ITensorAccessorUPtr gamma_accessor)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
 
     bool has_beta  = (beta_accessor != nullptr);
     bool has_gamma = (gamma_accessor != nullptr);
@@ -170,8 +193,8 @@
 
 NodeID GraphBuilder::add_bounding_box_transform_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair deltas, BoundingBoxTransformInfo info)
 {
-    CHECK_NODEIDX_PAIR(input, g);
-    CHECK_NODEIDX_PAIR(deltas, g);
+    check_nodeidx_pair(input, g);
+    check_nodeidx_pair(deltas, g);
 
     NodeID nid = g.add_node<BoundingBoxTransformLayerNode>(info);
 
@@ -194,7 +217,7 @@
                                           const QuantizationInfo weights_quant_info,
                                           const QuantizationInfo out_quant_info)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
     ARM_COMPUTE_ERROR_ON(depth == 0);
     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
 
@@ -202,14 +225,15 @@
 
     // Get input tensor descriptor
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
+    const DataLayout       input_data_layout = input_tensor_desc.layout;
 
     // Create weights node
     TensorDescriptor w_desc = input_tensor_desc;
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL),
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) / num_groups);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::BATCHES), depth);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
     if(!weights_quant_info.empty())
     {
         w_desc.quant_info = weights_quant_info;
@@ -248,7 +272,7 @@
                                             Size2D inner_border, ITensorAccessorUPtr weights_accessor,
                                             ITensorAccessorUPtr bias_accessor)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
     ARM_COMPUTE_ERROR_ON(depth == 0);
     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
 
@@ -256,14 +280,15 @@
 
     // Get input tensor descriptor
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
+    const DataLayout       input_data_layout = input_tensor_desc.layout;
 
     // Create weights node
     TensorDescriptor w_desc = input_tensor_desc;
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL),
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL));
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::BATCHES), depth);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::BATCHES), depth);
 
     NodeID w_nid = add_const_node_with_name(g, params, "Weights", w_desc, std::move(weights_accessor));
 
@@ -293,40 +318,29 @@
     return deconv_nid;
 }
 
-NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, std::vector<NodeIdxPair> inputs, DataLayoutDimension axis)
+NodeID GraphBuilder::add_concatenate_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, descriptors::ConcatLayerDescriptor concat_descriptor)
 {
-    ARM_COMPUTE_ERROR_ON(inputs.size() == 0);
-
-    NodeID nid = g.add_node<ConcatenateLayerNode>(inputs.size(), axis);
-
-    unsigned int i = 0;
-    for(const auto &input : inputs)
-    {
-        CHECK_NODEIDX_PAIR(input, g);
-        g.add_connection(input.node_id, input.index, nid, i++);
-    }
-    set_node_params(g, nid, params);
-
-    return nid;
+    return create_simple_multiple_input_single_output_node<ConcatenateLayerNode>(g, params, inputs, inputs.size(), concat_descriptor);
 }
 
 NodeID GraphBuilder::add_depthwise_convolution_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D kernel_spatial_extend,
                                                     PadStrideInfo conv_info, int depth_multiplier, DepthwiseConvolutionMethod method,
-                                                    ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo quant_info)
+                                                    ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor, const QuantizationInfo quant_info, const QuantizationInfo out_quant_info)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
     ARM_COMPUTE_ERROR_ON((kernel_spatial_extend.width == 0) || (kernel_spatial_extend.height == 0));
 
     bool has_bias = (bias_accessor != nullptr);
 
     // Get input tensor descriptor
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
+    const DataLayout       input_data_layout = input_tensor_desc.layout;
 
     // Create weights node
     TensorDescriptor w_desc = input_tensor_desc;
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
-    w_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL),
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), kernel_spatial_extend.width);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), kernel_spatial_extend.height);
+    w_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL),
                      get_dimension_size(input_tensor_desc, DataLayoutDimension::CHANNEL) * depth_multiplier);
     if(!quant_info.empty())
     {
@@ -351,7 +365,7 @@
     }
 
     // Create convolution node and connect
-    NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method);
+    NodeID conv_nid = g.add_node<DepthwiseConvolutionLayerNode>(conv_info, depth_multiplier, method, out_quant_info);
     g.add_connection(input.node_id, input.index, conv_nid, 0);
     g.add_connection(w_nid, 0, conv_nid, 1);
     if(has_bias)
@@ -362,11 +376,11 @@
 
     return conv_nid;
 }
-NodeID GraphBuilder::add_detection_output_node(Graph &g, NodeParams params, NodeIdxPair input_loc, NodeIdxPair input_conf, NodeIdxPair input_priorbox, DetectionOutputLayerInfo detect_info)
+NodeID GraphBuilder::add_detection_output_node(Graph &g, NodeParams params, NodeIdxPair input_loc, NodeIdxPair input_conf, NodeIdxPair input_priorbox, const DetectionOutputLayerInfo &detect_info)
 {
-    CHECK_NODEIDX_PAIR(input_loc, g);
-    CHECK_NODEIDX_PAIR(input_conf, g);
-    CHECK_NODEIDX_PAIR(input_priorbox, g);
+    check_nodeidx_pair(input_loc, g);
+    check_nodeidx_pair(input_conf, g);
+    check_nodeidx_pair(input_priorbox, g);
 
     // Create detection_output node and connect
     NodeID detect_nid = g.add_node<DetectionOutputLayerNode>(detect_info);
@@ -386,8 +400,8 @@
 
 NodeID GraphBuilder::add_elementwise_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, EltwiseOperation operation)
 {
-    CHECK_NODEIDX_PAIR(input0, g);
-    CHECK_NODEIDX_PAIR(input1, g);
+    check_nodeidx_pair(input0, g);
+    check_nodeidx_pair(input1, g);
 
     NodeID nid = g.add_node<EltwiseLayerNode>(operation);
 
@@ -405,11 +419,38 @@
 }
 
 NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
+                                               NodeID weights_nid, NodeID bias_nid,
+                                               const FullyConnectedLayerInfo fc_info, const QuantizationInfo out_quant_info)
+{
+    check_nodeidx_pair(input, g);
+    ARM_COMPUTE_ERROR_ON(num_outputs == 0);
+    ARM_COMPUTE_ERROR_ON(weights_nid == EmptyNodeID);
+
+    const bool has_bias = (bias_nid != EmptyNodeID);
+
+    // Get input tensor descriptor
+    const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
+
+    // Create fully connected node and connect
+    NodeID fc_nid = g.add_node<FullyConnectedLayerNode>(num_outputs, out_quant_info, fc_info);
+    g.add_connection(input.node_id, input.index, fc_nid, 0);
+    g.add_connection(weights_nid, 0, fc_nid, 1);
+    if(has_bias)
+    {
+        g.add_connection(bias_nid, 0, fc_nid, 2);
+    }
+
+    set_node_params(g, fc_nid, params);
+
+    return fc_nid;
+}
+
+NodeID GraphBuilder::add_fully_connected_layer(Graph &g, NodeParams params, NodeIdxPair input, unsigned int num_outputs,
                                                ITensorAccessorUPtr weights_accessor, ITensorAccessorUPtr bias_accessor,
                                                const FullyConnectedLayerInfo fc_info,
                                                const QuantizationInfo weights_quant_info, const QuantizationInfo out_quant_info)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
     ARM_COMPUTE_ERROR_ON(num_outputs == 0);
 
     bool has_bias = (bias_accessor != nullptr);
@@ -450,9 +491,9 @@
 
 NodeID GraphBuilder::add_generate_proposals_node(Graph &g, NodeParams params, NodeIdxPair scores, NodeIdxPair deltas, NodeIdxPair anchors, GenerateProposalsInfo info)
 {
-    CHECK_NODEIDX_PAIR(scores, g);
-    CHECK_NODEIDX_PAIR(deltas, g);
-    CHECK_NODEIDX_PAIR(anchors, g);
+    check_nodeidx_pair(scores, g);
+    check_nodeidx_pair(deltas, g);
+    check_nodeidx_pair(anchors, g);
 
     NodeID nid = g.add_node<GenerateProposalsLayerNode>(info);
 
@@ -472,7 +513,7 @@
 NodeID GraphBuilder::add_normalize_planar_yuv_node(Graph &g, NodeParams params, NodeIdxPair input,
                                                    ITensorAccessorUPtr mean_accessor, ITensorAccessorUPtr std_accessor)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
 
     // Get input tensor descriptor
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
@@ -510,10 +551,10 @@
     return create_simple_single_input_output_node<PoolingLayerNode>(g, params, input, pool_info);
 }
 
-NodeID GraphBuilder::add_priorbox_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, PriorBoxLayerInfo prior_info)
+NodeID GraphBuilder::add_priorbox_node(Graph &g, NodeParams params, NodeIdxPair input0, NodeIdxPair input1, const PriorBoxLayerInfo &prior_info)
 {
-    CHECK_NODEIDX_PAIR(input0, g);
-    CHECK_NODEIDX_PAIR(input1, g);
+    check_nodeidx_pair(input0, g);
+    check_nodeidx_pair(input1, g);
 
     // Create priorbox node and connect
     NodeID prior_nid = g.add_node<PriorBoxLayerNode>(prior_info);
@@ -543,8 +584,8 @@
 
 NodeID GraphBuilder::add_roi_align_node(Graph &g, NodeParams params, NodeIdxPair input, NodeIdxPair rois, ROIPoolingLayerInfo pool_info)
 {
-    CHECK_NODEIDX_PAIR(input, g);
-    CHECK_NODEIDX_PAIR(rois, g);
+    check_nodeidx_pair(input, g);
+    check_nodeidx_pair(rois, g);
 
     NodeID nid = g.add_node<ROIAlignLayerNode>(pool_info);
 
@@ -557,17 +598,18 @@
 
 NodeID GraphBuilder::add_scale_layer(Graph &g, const NodeParams &params, NodeIdxPair input, ITensorAccessorUPtr mul_accessor, ITensorAccessorUPtr add_accessor)
 {
-    CHECK_NODEIDX_PAIR(input, g);
+    check_nodeidx_pair(input, g);
 
     // Get input tensor descriptor
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
+    const DataLayout       input_data_layout = input_tensor_desc.layout;
 
     // Create mul node
     TensorDescriptor mul_desc = input_tensor_desc;
-    const size_t     C        = input_tensor_desc.shape[get_dimension_idx(mul_desc, DataLayoutDimension::CHANNEL)];
-    mul_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::WIDTH), 1);
-    mul_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::HEIGHT), 1);
-    mul_desc.shape.set(get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL), C);
+    const size_t     C        = input_tensor_desc.shape[get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL)];
+    mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::WIDTH), 1);
+    mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::HEIGHT), 1);
+    mul_desc.shape.set(get_dimension_idx(input_data_layout, DataLayoutDimension::CHANNEL), C);
     NodeID      mul_const_nid   = add_const_node_with_name(g, params, "Mul", mul_desc, std::move(mul_accessor));
     NodeIdxPair mul_const_nidxp = { mul_const_nid, 0 };
 
@@ -599,6 +641,11 @@
     return create_simple_single_input_output_node<SplitLayerNode>(g, params, input, num_splits, axis);
 }
 
+NodeID GraphBuilder::add_stack_node(Graph &g, NodeParams params, const std::vector<NodeIdxPair> &inputs, int axis)
+{
+    return create_simple_multiple_input_single_output_node<StackLayerNode>(g, params, inputs, inputs.size(), axis);
+}
+
 NodeID GraphBuilder::add_upsample_node(Graph &g, NodeParams params, NodeIdxPair input, Size2D info, InterpolationPolicy upsampling_policy)
 {
     return create_simple_single_input_output_node<UpsampleLayerNode>(g, params, input, info, upsampling_policy);
diff --git a/src/graph/GraphManager.cpp b/src/graph/GraphManager.cpp
index 57c5f9d..4f942b9 100644
--- a/src/graph/GraphManager.cpp
+++ b/src/graph/GraphManager.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -45,9 +45,6 @@
 
 void GraphManager::finalize_graph(Graph &graph, GraphContext &ctx, PassManager &pm, Target target)
 {
-    // Setup graph context if not done manually
-    setup_default_graph_context(ctx);
-
     // Check if graph has been registered
     if(_workloads.find(graph.id()) != std::end(_workloads))
     {
@@ -55,7 +52,7 @@
     }
 
     // Force target to all graph construct
-    // TODO (geopin01) : Support heterogeneous execution
+    // TODO (COMPMID-2014) : Support heterogeneous execution
     Target forced_target = target;
     if(!is_target_supported(target))
     {
@@ -64,6 +61,10 @@
     }
     force_target_to_graph(graph, forced_target);
 
+    // Setup backend context
+    // TODO (COMPMID-2014) : Setup all backends needed by the graph
+    setup_requested_backend_context(ctx, forced_target);
+
     // Configure all tensors
     detail::configure_all_tensors(graph);
 
diff --git a/src/graph/Tensor.cpp b/src/graph/Tensor.cpp
index 9850128..205ef11 100644
--- a/src/graph/Tensor.cpp
+++ b/src/graph/Tensor.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -108,7 +108,7 @@
     _bound_edges.erase(eid);
 }
 
-const std::set<EdgeID> Tensor::bound_edges() const
+std::set<EdgeID> Tensor::bound_edges() const
 {
     return _bound_edges;
 }
diff --git a/src/graph/TypeLoader.cpp b/src/graph/TypeLoader.cpp
index e0ba7e2..b63672b 100644
--- a/src/graph/TypeLoader.cpp
+++ b/src/graph/TypeLoader.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -17,7 +17,7 @@
  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
- * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWNISE, ARISING FROM,
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
@@ -100,5 +100,55 @@
     }
 #endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
 }
+
+ConvolutionMethod Convolution_method_from_name(const std::string &name)
+{
+    static const std::map<std::string, ConvolutionMethod> methods =
+    {
+        { "default", ConvolutionMethod::Default },
+        { "direct", ConvolutionMethod::Direct },
+        { "gemm", ConvolutionMethod::GEMM },
+        { "winograd", ConvolutionMethod::Winograd },
+    };
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    try
+    {
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+        return methods.at(arm_compute::utility::tolower(name));
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    }
+    catch(const std::out_of_range &)
+    {
+        throw std::invalid_argument(name);
+    }
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+}
+
+DepthwiseConvolutionMethod depthwise_convolution_method_from_name(const std::string &name)
+{
+    static const std::map<std::string, DepthwiseConvolutionMethod> methods =
+    {
+        { "default", DepthwiseConvolutionMethod::Default },
+        { "gemv", DepthwiseConvolutionMethod::GEMV },
+        { "optimized3x3", DepthwiseConvolutionMethod::Optimized3x3 },
+    };
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    try
+    {
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+        return methods.at(arm_compute::utility::tolower(name));
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
+    }
+    catch(const std::out_of_range &)
+    {
+        throw std::invalid_argument(name);
+    }
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
+}
+
 } // namespace graph
 } // namespace arm_compute
diff --git a/src/graph/Utils.cpp b/src/graph/Utils.cpp
index 71ec548..4c34dd8 100644
--- a/src/graph/Utils.cpp
+++ b/src/graph/Utils.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -104,13 +104,14 @@
     }
 }
 
-void setup_default_graph_context(GraphContext &ctx)
+void setup_requested_backend_context(GraphContext &ctx, Target target)
 {
-    for(const auto &backend : backends::BackendRegistry::get().backends())
+    if(backends::BackendRegistry::get().contains(target))
     {
-        if(backend.second->is_backend_supported())
+        const auto &backend = backends::BackendRegistry::get().find_backend(target);
+        if(backend->is_backend_supported())
         {
-            backend.second->setup_backend_context(ctx);
+            backend->setup_backend_context(ctx);
         }
     }
 }
@@ -118,12 +119,12 @@
 size_t get_dimension_size(const TensorDescriptor &descriptor, const DataLayoutDimension data_layout_dimension)
 {
     ARM_COMPUTE_ERROR_ON_MSG(descriptor.layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
-    return descriptor.shape[get_dimension_idx(descriptor, data_layout_dimension)];
+    return descriptor.shape[get_dimension_idx(descriptor.layout, data_layout_dimension)];
 }
 
-size_t get_dimension_idx(const TensorDescriptor &descriptor, const DataLayoutDimension data_layout_dimension)
+size_t get_dimension_idx(DataLayout data_layout, const DataLayoutDimension data_layout_dimension)
 {
-    ARM_COMPUTE_ERROR_ON_MSG(descriptor.layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
+    ARM_COMPUTE_ERROR_ON_MSG(data_layout == DataLayout::UNKNOWN, "Cannot retrieve the dimension index for an unknown layout!");
 
     /* Return the index based on the data layout
      * [N C H W]
@@ -133,13 +134,13 @@
     switch(data_layout_dimension)
     {
         case DataLayoutDimension::CHANNEL:
-            return (descriptor.layout == DataLayout::NCHW) ? 2 : 0;
+            return (data_layout == DataLayout::NCHW) ? 2 : 0;
             break;
         case DataLayoutDimension::HEIGHT:
-            return (descriptor.layout == DataLayout::NCHW) ? 1 : 2;
+            return (data_layout == DataLayout::NCHW) ? 1 : 2;
             break;
         case DataLayoutDimension::WIDTH:
-            return (descriptor.layout == DataLayout::NCHW) ? 0 : 1;
+            return (data_layout == DataLayout::NCHW) ? 0 : 1;
             break;
         case DataLayoutDimension::BATCHES:
             return 3;
diff --git a/src/graph/backends/CL/CLDeviceBackend.cpp b/src/graph/backends/CL/CLDeviceBackend.cpp
index ae7f0a5..0666ec0 100644
--- a/src/graph/backends/CL/CLDeviceBackend.cpp
+++ b/src/graph/backends/CL/CLDeviceBackend.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -81,6 +81,11 @@
     _tuner.set_tune_new_kernels(enable_tuning);
 }
 
+void CLDeviceBackend::set_kernel_tuning_mode(CLTunerMode tuning_mode)
+{
+    _tuner.set_tuner_mode(tuning_mode);
+}
+
 void CLDeviceBackend::initialize_backend()
 {
     // Setup Scheduler
@@ -118,6 +123,7 @@
     }
 
     set_kernel_tuning(ctx.config().use_tuner);
+    set_kernel_tuning_mode(ctx.config().tuner_mode);
 
     // Setup a management backend
     if(ctx.memory_management_ctx(Target::CL) == nullptr)
diff --git a/src/graph/backends/CL/CLFunctionsFactory.cpp b/src/graph/backends/CL/CLFunctionsFactory.cpp
index b9e3ddc..90c1613 100644
--- a/src/graph/backends/CL/CLFunctionsFactory.cpp
+++ b/src/graph/backends/CL/CLFunctionsFactory.cpp
@@ -40,7 +40,8 @@
 /** Target specific information structure used to pass information to the layer templates */
 struct CLTargetInfo
 {
-    using TensorType = arm_compute::ICLTensor;
+    using TensorType         = arm_compute::ICLTensor;
+    using TensorConcreteType = CLTensor;
     static Target TargetType;
 };
 
@@ -69,6 +70,14 @@
     using Subtraction    = CLArithmeticSubtraction;
     using Multiplication = CLPixelWiseMultiplication;
 };
+
+/** Function and tensor types to be used inside a CL fused convolution/batch normalization layer */
+struct CLFusedLayerTypes
+{
+    using ConvolutionLayer       = CLConvolutionLayer;
+    using FuseBatchNormalization = CLFuseBatchNormalization;
+};
+
 // TODO (isagot01): Remove once we support heterogeneous scheduling at function level
 /** Wrapper for the CPP Function in the OpenCL backend **/
 class CPPWrapperFunction : public IFunction
@@ -192,6 +201,8 @@
             return detail::create_flatten_layer<CLFlattenLayer, CLTargetInfo>(*polymorphic_downcast<FlattenLayerNode *>(node));
         case NodeType::FullyConnectedLayer:
             return detail::create_fully_connected_layer<CLFullyConnectedLayer, CLTargetInfo>(*polymorphic_downcast<FullyConnectedLayerNode *>(node), ctx);
+        case NodeType::FusedConvolutionBatchNormalizationLayer:
+            return detail::create_fused_convolution_batch_normalization_layer<CLFusedLayerTypes, CLTargetInfo>(*polymorphic_downcast<FusedConvolutionBatchNormalizationNode *>(node));
         case NodeType::GenerateProposalsLayer:
             return detail::create_generate_proposals_layer<CLGenerateProposalsLayer, CLTargetInfo>(*polymorphic_downcast<GenerateProposalsLayerNode *>(node), ctx);
         case NodeType::NormalizationLayer:
@@ -218,6 +229,8 @@
             return detail::create_slice_layer<CLSlice, CLTargetInfo>(*polymorphic_downcast<SliceLayerNode *>(node));
         case NodeType::SoftmaxLayer:
             return detail::create_softmax_layer<CLSoftmaxLayer, CLTargetInfo>(*polymorphic_downcast<SoftmaxLayerNode *>(node), ctx);
+        case NodeType::StackLayer:
+            return detail::create_stack_layer<CLStackLayer, CLTargetInfo>(*polymorphic_downcast<StackLayerNode *>(node));
         case NodeType::UpsampleLayer:
             return detail::create_upsample_layer<CLUpsampleLayer, CLTargetInfo>(*polymorphic_downcast<UpsampleLayerNode *>(node), ctx);
         case NodeType::YOLOLayer:
diff --git a/src/graph/backends/CL/CLNodeValidator.cpp b/src/graph/backends/CL/CLNodeValidator.cpp
index 4b71837..cb8dc0a 100644
--- a/src/graph/backends/CL/CLNodeValidator.cpp
+++ b/src/graph/backends/CL/CLNodeValidator.cpp
@@ -74,6 +74,8 @@
             return detail::validate_priorbox_layer<CLPriorBoxLayer>(*polymorphic_downcast<PriorBoxLayerNode *>(node));
         case NodeType::ReorgLayer:
             return detail::validate_reorg_layer<CLReorgLayer>(*polymorphic_downcast<ReorgLayerNode *>(node));
+        case NodeType::ReshapeLayer:
+            return detail::validate_reshape_layer<CLReshapeLayer>(*polymorphic_downcast<ReshapeLayerNode *>(node));
         case NodeType::ROIAlignLayer:
             return detail::validate_roi_align_layer<CLROIAlignLayer>(*polymorphic_downcast<ROIAlignLayerNode *>(node));
         case NodeType::SliceLayer:
diff --git a/src/graph/backends/NEON/NEFunctionFactory.cpp b/src/graph/backends/NEON/NEFunctionFactory.cpp
index dc987dd..690a311 100644
--- a/src/graph/backends/NEON/NEFunctionFactory.cpp
+++ b/src/graph/backends/NEON/NEFunctionFactory.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -46,7 +46,8 @@
 /** Target specific information structure used to pass information to the layer templates */
 struct NETargetInfo
 {
-    using TensorType = arm_compute::ITensor;
+    using TensorType         = arm_compute::ITensor;
+    using TensorConcreteType = arm_compute::Tensor;
     static Target TargetType;
 };
 
@@ -76,6 +77,13 @@
     using Multiplication = NEPixelWiseMultiplication;
 };
 
+/** Function and tensor types to be used inside a NEON fused convolution/batch normalization layer */
+struct NEFusedLayerTypes
+{
+    using ConvolutionLayer       = NEConvolutionLayer;
+    using FuseBatchNormalization = NEFuseBatchNormalization;
+};
+
 namespace detail
 {
 // Specialized functions
@@ -135,8 +143,10 @@
             << " Weights QuantInfo: " << weights->info()->quantization_info()
             << " Output QuantInfo: " << output->info()->quantization_info();
     }
-    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated " << func_name
-                               << " Target " << NETargetInfo::TargetType
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiated "
+                               << node.name()
+                               << " Type: " << func_name
+                               << " Target: " << NETargetInfo::TargetType
                                << " Data Type: " << input->info()->data_type()
                                << qss.str()
                                << " Input shape: " << input->info()->tensor_shape()
@@ -210,6 +220,8 @@
             return detail::create_flatten_layer<NEFlattenLayer, NETargetInfo>(*polymorphic_downcast<FlattenLayerNode *>(node));
         case NodeType::FullyConnectedLayer:
             return detail::create_fully_connected_layer<NEFullyConnectedLayer, NETargetInfo>(*polymorphic_downcast<FullyConnectedLayerNode *>(node), ctx);
+        case NodeType::FusedConvolutionBatchNormalizationLayer:
+            return detail::create_fused_convolution_batch_normalization_layer<NEFusedLayerTypes, NETargetInfo>(*polymorphic_downcast<FusedConvolutionBatchNormalizationNode *>(node));
         case NodeType::NormalizationLayer:
             return detail::create_normalization_layer<NENormalizationLayer, NETargetInfo>(*polymorphic_downcast<NormalizationLayerNode *>(node), ctx);
         case NodeType::PermuteLayer:
@@ -226,6 +238,8 @@
             return detail::create_resize_layer<NEScale, NETargetInfo>(*polymorphic_downcast<ResizeLayerNode *>(node));
         case NodeType::SoftmaxLayer:
             return detail::create_softmax_layer<NESoftmaxLayer, NETargetInfo>(*polymorphic_downcast<SoftmaxLayerNode *>(node), ctx);
+        case NodeType::StackLayer:
+            return detail::create_stack_layer<NEStackLayer, NETargetInfo>(*polymorphic_downcast<StackLayerNode *>(node));
         case NodeType::UpsampleLayer:
             return detail::create_upsample_layer<NEUpsampleLayer, NETargetInfo>(*polymorphic_downcast<UpsampleLayerNode *>(node), ctx);
         case NodeType::YOLOLayer:
diff --git a/src/graph/backends/NEON/NENodeValidator.cpp b/src/graph/backends/NEON/NENodeValidator.cpp
index b0feec5..77f2e7f 100644
--- a/src/graph/backends/NEON/NENodeValidator.cpp
+++ b/src/graph/backends/NEON/NENodeValidator.cpp
@@ -74,6 +74,8 @@
             return detail::validate_priorbox_layer<NEPriorBoxLayer>(*polymorphic_downcast<PriorBoxLayerNode *>(node));
         case NodeType::ReorgLayer:
             return detail::validate_reorg_layer<NEReorgLayer>(*polymorphic_downcast<ReorgLayerNode *>(node));
+        case NodeType::ReshapeLayer:
+            return detail::validate_reshape_layer<NEReshapeLayer>(*polymorphic_downcast<ReshapeLayerNode *>(node));
         case NodeType::ROIAlignLayer:
             return ARM_COMPUTE_CREATE_ERROR(arm_compute::ErrorCode::RUNTIME_ERROR, "Unsupported operation : ROIAlignLayer");
         case NodeType::SliceLayer:
diff --git a/src/graph/detail/CrossLayerMemoryManagerHelpers.cpp b/src/graph/detail/CrossLayerMemoryManagerHelpers.cpp
index 7fc5ca0..5e31309 100644
--- a/src/graph/detail/CrossLayerMemoryManagerHelpers.cpp
+++ b/src/graph/detail/CrossLayerMemoryManagerHelpers.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -136,7 +136,7 @@
             // Then add it to the list of transition buffers
             ITensorHandle *tensor_handle = input_edge->tensor()->handle()->parent_handle();
             IMemoryGroup *mm_group      = get_memory_group_from_handle(ctx, tensor_handle);
-            transition_handles.input_handles.push_back(std::make_pair(tensor_handle, mm_group));
+            transition_handles.input_handles.emplace_back(std::make_pair(tensor_handle, mm_group));
         }
     }
 
@@ -149,7 +149,7 @@
         {
             ITensorHandle *tensor_handle = output_tensor->handle()->parent_handle();
             IMemoryGroup *mm_group      = get_memory_group_from_handle(ctx, tensor_handle);
-            transition_handles.output_handles.push_back(std::make_pair(tensor_handle, mm_group));
+            transition_handles.output_handles.emplace_back(std::make_pair(tensor_handle, mm_group));
         }
     }
 
diff --git a/src/graph/detail/ExecutionHelpers.cpp b/src/graph/detail/ExecutionHelpers.cpp
index 767154b..900be42 100644
--- a/src/graph/detail/ExecutionHelpers.cpp
+++ b/src/graph/detail/ExecutionHelpers.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -204,10 +204,13 @@
 
 bool call_all_input_node_accessors(ExecutionWorkload &workload)
 {
-    return !std::any_of(std::begin(workload.inputs), std::end(workload.inputs), [](Tensor * input_tensor)
+    bool is_valid = true;
+    std::for_each(std::begin(workload.inputs), std::end(workload.inputs), [&](Tensor * input_tensor)
     {
-        return (input_tensor == nullptr) || !input_tensor->call_accessor();
+        bool valid_input = (input_tensor != nullptr) && input_tensor->call_accessor();
+        is_valid         = is_valid && valid_input;
     });
+    return is_valid;
 }
 
 void prepare_all_tasks(ExecutionWorkload &workload)
diff --git a/src/graph/mutators/DepthConcatSubTensorMutator.cpp b/src/graph/mutators/DepthConcatSubTensorMutator.cpp
index a170c4d..7994541 100644
--- a/src/graph/mutators/DepthConcatSubTensorMutator.cpp
+++ b/src/graph/mutators/DepthConcatSubTensorMutator.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -62,18 +62,19 @@
             // Get output tensor
             auto output_tensor = node->output(0);
 
-            // Check concatenation axis (Sub-tensor optimization is support for concatenation axis >=2)
+            // Check concatenation axis (Sub-tensor optimization is supported for concatenation axis >=2)
             auto *concat_node = arm_compute::utils::cast::polymorphic_downcast<ConcatenateLayerNode *>(node);
-            if(output_tensor == nullptr || get_dimension_idx(output_tensor->desc(), concat_node->concatenation_axis()) < 2)
+            if(output_tensor == nullptr || get_dimension_idx(output_tensor->desc().layout, concat_node->concatenation_axis()) < 2)
             {
                 continue;
             }
 
-            // Check that all tensor have the same target and valid inputs
+            // Check that all tensor have the same target, valid inputs and same quantization info
             bool is_valid = std::all_of(node->input_edges().cbegin(), node->input_edges().cend(),
                                         [&](const EdgeID & eid)
             {
-                return (g.edge(eid) != nullptr) && (g.edge(eid)->tensor() != nullptr) && (g.edge(eid)->tensor()->desc().target == output_tensor->desc().target);
+                return (g.edge(eid) != nullptr) && (g.edge(eid)->tensor() != nullptr) && (g.edge(eid)->tensor()->desc().target == output_tensor->desc().target)
+                       && (g.edge(eid)->tensor()->desc().quant_info == output_tensor->desc().quant_info);
             });
 
             // Create subtensors
diff --git a/src/graph/mutators/GroupedConvolutionMutator.cpp b/src/graph/mutators/GroupedConvolutionMutator.cpp
index d69d2cd..3d53f49 100644
--- a/src/graph/mutators/GroupedConvolutionMutator.cpp
+++ b/src/graph/mutators/GroupedConvolutionMutator.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -47,12 +47,12 @@
 
     // Split input
     const TensorDescriptor input_tensor_desc = get_tensor_descriptor(g, g.node(input.node_id)->outputs()[0]);
-    const unsigned int     input_idx         = get_dimension_idx(input_tensor_desc, DataLayoutDimension::CHANNEL);
+    const unsigned int     input_idx         = get_dimension_idx(input_tensor_desc.layout, DataLayoutDimension::CHANNEL);
     NodeID                 input_split       = GraphBuilder::add_split_node(g, params, input, num_groups, input_idx);
 
     // Split weights
     const TensorDescriptor weights_tensor_desc = get_tensor_descriptor(g, g.node(weights)->outputs()[0]);
-    const unsigned int     batch_idx           = get_dimension_idx(weights_tensor_desc, DataLayoutDimension::BATCHES);
+    const unsigned int     batch_idx           = get_dimension_idx(weights_tensor_desc.layout, DataLayoutDimension::BATCHES);
     NodeID                 weights_split       = GraphBuilder::add_split_node(g, params, { weights, 0 }, num_groups, batch_idx);
 
     // Split bias
diff --git a/src/graph/mutators/InPlaceOperationMutator.cpp b/src/graph/mutators/InPlaceOperationMutator.cpp
index 31921b3..1c2985d 100644
--- a/src/graph/mutators/InPlaceOperationMutator.cpp
+++ b/src/graph/mutators/InPlaceOperationMutator.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -56,8 +56,8 @@
 
                 ARM_COMPUTE_ERROR_ON(current_output_tensor == nullptr || new_output_tensor == nullptr);
 
-                // Prevent in-place operation if there is an accessor bound to the in-place tensor
-                if(new_output_tensor->accessor() == nullptr)
+                // Prevent in-place operation if there is an accessor bound to the in-place tensor or quantization info are different
+                if(new_output_tensor->accessor() == nullptr || current_output_tensor->desc().quant_info == new_output_tensor->desc().quant_info)
                 {
                     ARM_COMPUTE_LOG_GRAPH_VERBOSE("Switching to in-place computation for the node with ID : "
                                                   << node->id() << " and name : " << node->name() << std::endl);
diff --git a/src/graph/mutators/NodeFusionMutator.cpp b/src/graph/mutators/NodeFusionMutator.cpp
index 9dc02d1..427d7b5 100644
--- a/src/graph/mutators/NodeFusionMutator.cpp
+++ b/src/graph/mutators/NodeFusionMutator.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -23,9 +23,11 @@
  */
 #include "arm_compute/graph/mutators/NodeFusionMutator.h"
 
-#include "arm_compute/graph/Graph.h"
+#include "arm_compute/graph/GraphBuilder.h"
 #include "arm_compute/graph/Logger.h"
 #include "arm_compute/graph/Utils.h"
+#include "arm_compute/graph/backends/BackendRegistry.h"
+#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationNode.h"
 #include "arm_compute/graph/nodes/Nodes.h"
 
 #include "arm_compute/core/utils/misc/Cast.h"
@@ -38,69 +40,156 @@
 {
 namespace detail
 {
+void fuse_convolution_with_batch_normalization(Graph &g, const Edge *output_edge)
+{
+    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
+
+    auto *conv_node = arm_compute::utils::cast::polymorphic_downcast<ConvolutionLayerNode *>(output_edge->producer());
+    auto *bn_node   = arm_compute::utils::cast::polymorphic_downcast<BatchNormalizationLayerNode *>(output_edge->consumer());
+
+    // Not fusing if number of groups is greater than 1
+    if(conv_node->num_groups() > 1)
+    {
+        return;
+    }
+
+    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing convolution node with ID : " << output_edge->producer_id()
+                                  << " with BatchNormalization Layer node with ID : " << output_edge->consumer_id() << std::endl);
+
+    // Prevent fusion if fused node has an output accessor
+    if(conv_node->output(0)->accessor() == nullptr)
+    {
+        const Target assigned_target = conv_node->assigned_target();
+
+        // Extract conv inputs
+        const auto   conv_input_id   = conv_node->input_edge(0)->producer_id();
+        const auto   conv_weights_id = conv_node->input_edge(1)->producer_id();
+        const auto   out_quant_info  = conv_node->output(0)->desc().quant_info;
+        const auto   conv_info       = conv_node->convolution_info();
+        const auto   conv_method     = conv_node->convolution_method();
+        const auto   num_groups      = conv_node->num_groups();
+        const auto   act_info        = bn_node->fused_activation();
+        FastMathHint fast_math_hint  = conv_node->fast_math_hint();
+
+        // Extract bn inputs
+        const auto bn_mean_id  = bn_node->input_edge(1)->producer_id();
+        const auto bn_var_id   = bn_node->input_edge(2)->producer_id();
+        const auto bn_beta_id  = bn_node->input_edge(3)->producer_id();
+        const auto bn_gamma_id = bn_node->input_edge(4)->producer_id();
+        const auto epsilon     = bn_node->epsilon();
+
+        // Create the fused node
+        const NodeID fused_id = g.add_node<FusedConvolutionBatchNormalizationNode>(epsilon, conv_info, num_groups, conv_method, fast_math_hint, out_quant_info, act_info);
+
+        if(conv_node->input_edge(2) != nullptr)
+        {
+            auto conv_bias_id = conv_node->input_edge(2)->producer_id();
+            g.add_connection(conv_bias_id, 0, fused_id, 2);
+        }
+
+        // Add connections from the conv/batch_norm inputs to the fused node
+        g.add_connection(conv_input_id, 0, fused_id, 0);
+        g.add_connection(conv_weights_id, 0, fused_id, 1);
+        g.add_connection(bn_mean_id, 0, fused_id, 3);
+        g.add_connection(bn_var_id, 0, fused_id, 4);
+        g.add_connection(bn_beta_id, 0, fused_id, 5);
+        g.add_connection(bn_gamma_id, 0, fused_id, 6);
+
+        auto                     fused_node       = g.node(fused_id);
+        std::vector<NodeIdxPair> bn_driving_nodes = get_driving_nodes(*bn_node);
+
+        // Extract batch normalization node accessor if any
+        auto bn_node_accessor = bn_node->output(0)->extract_accessor();
+        auto bn_node_name     = bn_node->name();
+
+        // Remove batch normalization node
+        g.remove_node(bn_node->id());
+
+        // Get driving nodes of batch normalization node
+        for(auto &driving_node : bn_driving_nodes)
+        {
+            g.add_connection(fused_id, 0, driving_node.node_id, driving_node.index);
+            configure_tensor(fused_node->output(0));
+        }
+        // Update fused node outputs
+        fused_node->output(0)->set_accessor(std::move(bn_node_accessor));
+        fused_node->set_assigned_target(assigned_target);
+        fused_node->set_common_node_parameters(NodeParams{ conv_node->name() + "+" + bn_node_name, assigned_target });
+
+        // Remove convolution node
+        g.remove_node(conv_node->id());
+    }
+    else
+    {
+        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of convolution with batch normalization due to the presence of an output accessor\n");
+    }
+}
+
 template <typename N>
-void fuse_node_with_activation(Graph                              &g,
-                               const std::set<Activation>         &supported_fused_activations,
-                               std::function<bool(INode &)> const &prec)
+void fuse_node_with_activation(Graph &g, const Edge *output_edge, const std::set<Activation> &supported_fused_activations)
+{
+    ARM_COMPUTE_ERROR_ON(output_edge == nullptr);
+
+    auto *n_node   = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
+    auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(output_edge->consumer());
+
+    ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr || n_node->output(0) == nullptr);
+
+    // Check if activation is supported for fusion
+    if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
+    {
+        return;
+    }
+
+    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing node with ID : " << output_edge->producer_id()
+                                  << " with Activation Layer node with ID : " << output_edge->consumer_id() << std::endl);
+
+    // Prevent fusion if fused node has an output accessor
+    if(n_node->output(0)->accessor() == nullptr)
+    {
+        // Get driving nodes of activation node
+        std::vector<NodeIdxPair> act_driving_nodes = get_driving_nodes(*act_node);
+
+        // Set activation info to fused node
+        n_node->set_fused_activation(act_node->activation_info());
+
+        // Extract activation node accessor if any
+        auto act_node_accessor = act_node->output(0)->extract_accessor();
+
+        // Remove activation node
+        g.remove_node(act_node->id());
+
+        // Update fused node outputs
+        for(auto &driving_node : act_driving_nodes)
+        {
+            g.add_connection(n_node->id(), 0, driving_node.node_id, driving_node.index);
+        }
+
+        // Update accessor to fused node
+        n_node->output(0)->set_accessor(std::move(act_node_accessor));
+    }
+    else
+    {
+        ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of node with activation due to the presence of an output accessor\n");
+    }
+}
+
+template <typename N1, typename N2, typename F, typename... Args>
+void fuse_layer(Graph &g, std::function<bool(INode &)> const &prec, const F fuse_fcn, Args &&... optional_arguments)
 {
     // Not interested in the order of nodes
     for(auto &node : g.nodes())
     {
         // Check if the node is of type N and not a branching node
-        if(node && node->type() == N::node_type && node->output_edges().size() == 1)
+        if(node && node->type() == N1::node_type && node->output_edges().size() == 1)
         {
-            auto output_edge_id = *node->output_edges().begin();
-            auto output_edge    = g.edge(output_edge_id);
+            const auto output_edge_id = *node->output_edges().begin();
+            const auto output_edge    = g.edge(output_edge_id);
+
             // Check if following node is an activation layer node
-            if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && (output_edge->consumer()->type() == NodeType::ActivationLayer))
+            if((output_edge != nullptr) && (output_edge->consumer() != nullptr) && (output_edge->consumer()->type() == N2::node_type) && prec(*output_edge->producer()))
             {
-                auto *n_node   = arm_compute::utils::cast::polymorphic_downcast<N *>(output_edge->producer());
-                auto *act_node = arm_compute::utils::cast::polymorphic_downcast<ActivationLayerNode *>(output_edge->consumer());
-
-                ARM_COMPUTE_ERROR_ON(act_node->output(0) == nullptr || n_node->output(0) == nullptr);
-
-                // Check given precondition
-                if(!prec(*n_node))
-                {
-                    continue;
-                }
-                // Check if activation is supported for fusion
-                if(supported_fused_activations.count(act_node->activation_info().activation()) == 0)
-                {
-                    continue;
-                }
-
-                ARM_COMPUTE_LOG_GRAPH_VERBOSE("Fusing node with ID : " << output_edge->producer_id()
-                                              << " with Activation Layer node with ID : " << output_edge->consumer_id() << std::endl);
-
-                // Prevent fusion if fused node has an output accessor
-                if(n_node->output(0)->accessor() == nullptr)
-                {
-                    // Get driving nodes of activation node
-                    std::vector<NodeIdxPair> act_driving_nodes = get_driving_nodes(*act_node);
-
-                    // Set activation info to fused node
-                    n_node->set_fused_activation(act_node->activation_info());
-
-                    // Extract activation node accessor if any
-                    auto act_node_accessor = act_node->output(0)->extract_accessor();
-
-                    // Remove activation node
-                    g.remove_node(act_node->id());
-
-                    // Update fused node outputs
-                    for(auto &driving_node : act_driving_nodes)
-                    {
-                        g.add_connection(n_node->id(), 0, driving_node.node_id, driving_node.index);
-                    }
-
-                    // Update accessor to fused node
-                    n_node->output(0)->set_accessor(std::move(act_node_accessor));
-                }
-                else
-                {
-                    ARM_COMPUTE_LOG_GRAPH_VERBOSE("Prevented fusion of node with activation due to the presence of an output accessor\n");
-                }
+                fuse_fcn(g, output_edge, optional_arguments...);
             }
         }
     }
@@ -118,20 +207,30 @@
     const std::set<Activation> supported_fused_activations = { Activation::RELU, Activation::BOUNDED_RELU, Activation::LU_BOUNDED_RELU };
 
     // Preconditions
-    auto empty_prec = [](INode & n)
+    auto empty_prec = [](INode &)
     {
         return true;
     };
-    auto qs8_prec = [](INode & n)
+    auto qs8_prec = [&g](INode & n)
     {
         ARM_COMPUTE_ERROR_ON(n.output(0) == nullptr);
-        return n.output(0)->desc().data_type == DataType::QASYMM8;
+
+        const auto output_edge_id = *n.output_edges().begin();
+        const auto output_edge    = g.edge(output_edge_id);
+        // To perform fusion the two nodes must have same output quantization information
+        const bool same_qinfo     = n.output(0)->desc().quant_info == output_edge->producer()->output(0)->desc().quant_info;
+        const bool output_qasymm8 = n.output(0)->desc().data_type == DataType::QASYMM8;
+
+        return (output_qasymm8 && same_qinfo) || !output_qasymm8;
     };
 
     // Fusion mutations
-    detail::fuse_node_with_activation<BatchNormalizationLayerNode>(g, supported_fused_activations, empty_prec);
-    detail::fuse_node_with_activation<ConvolutionLayerNode>(g, supported_fused_activations, empty_prec);
-    detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>(g, supported_fused_activations, qs8_prec);
+    detail::fuse_layer<BatchNormalizationLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<BatchNormalizationLayerNode>, supported_fused_activations);
+    detail::fuse_layer<ConvolutionLayerNode, ActivationLayerNode>(g, empty_prec, detail::fuse_node_with_activation<ConvolutionLayerNode>, supported_fused_activations);
+    detail::fuse_layer<DepthwiseConvolutionLayerNode, ActivationLayerNode>(g, qs8_prec, detail::fuse_node_with_activation<DepthwiseConvolutionLayerNode>, supported_fused_activations);
+
+    // TODO (COMPMID-2055): re-enable once we fuse bias and activations to convolution
+    // detail::fuse_layer<ConvolutionLayerNode, BatchNormalizationLayerNode>(g, empty_prec, detail::fuse_convolution_with_batch_normalization);
 }
 } // namespace graph
 } // namespace arm_compute
diff --git a/src/graph/nodes/ActivationLayerNode.cpp b/src/graph/nodes/ActivationLayerNode.cpp
index 414684c..ada6cf9 100644
--- a/src/graph/nodes/ActivationLayerNode.cpp
+++ b/src/graph/nodes/ActivationLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -30,8 +30,8 @@
 {
 namespace graph
 {
-ActivationLayerNode::ActivationLayerNode(ActivationLayerInfo info)
-    : _info(info)
+ActivationLayerNode::ActivationLayerNode(ActivationLayerInfo info, QuantizationInfo out_quant_info)
+    : _info(info), _out_quant_info(out_quant_info)
 {
     _input_edges.resize(1, EmptyEdgeID);
     _outputs.resize(1, NullTensorID);
@@ -62,12 +62,18 @@
     const Tensor *src = input(0);
     ARM_COMPUTE_ERROR_ON(src == nullptr);
 
-    return src->desc();
+    TensorDescriptor output_info = src->desc();
+    if(!_out_quant_info.empty())
+    {
+        output_info.quant_info = _out_quant_info;
+    }
+
+    return output_info;
 }
 
 NodeType ActivationLayerNode::type() const
 {
-    return NodeType::ActivationLayer;
+    return ActivationLayerNode::node_type;
 }
 
 void ActivationLayerNode::accept(INodeVisitor &v)
@@ -75,4 +81,4 @@
     v.visit(*this);
 }
 } // namespace graph
-} // namespace arm_compute
\ No newline at end of file
+} // namespace arm_compute
diff --git a/src/graph/nodes/ConcatenateLayerNode.cpp b/src/graph/nodes/ConcatenateLayerNode.cpp
index ade3f6e..5f13b90 100644
--- a/src/graph/nodes/ConcatenateLayerNode.cpp
+++ b/src/graph/nodes/ConcatenateLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -34,8 +34,8 @@
 {
 namespace graph
 {
-ConcatenateLayerNode::ConcatenateLayerNode(unsigned int total_nodes, DataLayoutDimension axis)
-    : _total_nodes(total_nodes), _axis(axis), _is_enabled(true)
+ConcatenateLayerNode::ConcatenateLayerNode(unsigned int total_nodes, descriptors::ConcatLayerDescriptor concat_descriptor)
+    : _total_nodes(total_nodes), _concat_descriptor(std::move(concat_descriptor)), _is_enabled(true)
 {
     _input_edges.resize(_total_nodes, EmptyEdgeID);
     _outputs.resize(1, NullTensorID);
@@ -53,7 +53,12 @@
 
 DataLayoutDimension ConcatenateLayerNode::concatenation_axis() const
 {
-    return _axis;
+    return _concat_descriptor.axis;
+}
+
+QuantizationInfo ConcatenateLayerNode::output_quantization_info() const
+{
+    return _concat_descriptor.output_qinfo;
 }
 
 TensorDescriptor ConcatenateLayerNode::compute_output_descriptor(const std::vector<TensorDescriptor> &input_descriptors,
@@ -62,28 +67,18 @@
     ARM_COMPUTE_ERROR_ON(input_descriptors.size() == 0);
 
     TensorDescriptor output_descriptor = input_descriptors[0];
-    const int        axis_idx          = get_dimension_idx(output_descriptor, axis);
+    const int        axis_idx          = get_dimension_idx(output_descriptor.layout, axis);
+    ARM_COMPUTE_ERROR_ON_MSG(axis_idx > 2, "Unsupported concatenation axis!");
 
     // Extract shapes
     std::vector<const TensorShape *> shapes;
+    shapes.reserve(input_descriptors.size());
     for(auto &input_descriptor : input_descriptors)
     {
         shapes.emplace_back(&input_descriptor.shape);
     }
 
-    // Calculate output shape
-    if(axis_idx == 0)
-    {
-        output_descriptor.shape = arm_compute::misc::shape_calculator::calculate_width_concatenate_shape(shapes);
-    }
-    else if(axis_idx == 2)
-    {
-        output_descriptor.shape = arm_compute::misc::shape_calculator::calculate_depth_concatenate_shape(shapes);
-    }
-    else
-    {
-        ARM_COMPUTE_ERROR("Unsupported concatenation axis!");
-    }
+    output_descriptor.shape = arm_compute::misc::shape_calculator::calculate_concatenate_shape(shapes, axis_idx);
 
     return output_descriptor;
 }
@@ -122,7 +117,11 @@
             ARM_COMPUTE_ERROR_ON(t == nullptr);
             inputs_descriptors.push_back(t->desc());
         }
-        output_info = compute_output_descriptor(inputs_descriptors, _axis);
+        output_info = compute_output_descriptor(inputs_descriptors, _concat_descriptor.axis);
+        if(!_concat_descriptor.output_qinfo.empty())
+        {
+            output_info.quant_info = _concat_descriptor.output_qinfo;
+        }
     }
 
     return output_info;
@@ -138,4 +137,4 @@
     v.visit(*this);
 }
 } // namespace graph
-} // namespace arm_compute
\ No newline at end of file
+} // namespace arm_compute
diff --git a/src/graph/nodes/ConvolutionLayerNode.cpp b/src/graph/nodes/ConvolutionLayerNode.cpp
index 15c7ff6..1c8dcae 100644
--- a/src/graph/nodes/ConvolutionLayerNode.cpp
+++ b/src/graph/nodes/ConvolutionLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -97,10 +97,11 @@
 
     std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, kernel_width, kernel_height, info);
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), output_width);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), output_height);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), weights_descriptor.shape[3]);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), output_width);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), output_height);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::CHANNEL), weights_descriptor.shape[3]);
 
     return output_descriptor;
 }
diff --git a/src/graph/nodes/DeconvolutionLayerNode.cpp b/src/graph/nodes/DeconvolutionLayerNode.cpp
index e7ccffd..b1a6db7 100644
--- a/src/graph/nodes/DeconvolutionLayerNode.cpp
+++ b/src/graph/nodes/DeconvolutionLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -66,10 +66,11 @@
                                                                             info.pad().first, info.pad().second,
                                                                             info.stride().first, info.stride().second);
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), output_width);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), output_height);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), weights_descriptor.shape[3]);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), output_width);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), output_height);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::CHANNEL), weights_descriptor.shape[3]);
 
     return output_descriptor;
 }
diff --git a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
index 75ca5f4..cdd9e7b 100644
--- a/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
+++ b/src/graph/nodes/DepthwiseConvolutionLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -32,8 +32,9 @@
 {
 namespace graph
 {
-DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, int depth_multiplier, DepthwiseConvolutionMethod method)
-    : _info(std::move(info)), _depth_multiplier(depth_multiplier), _method(method), _fused_activation()
+DepthwiseConvolutionLayerNode::DepthwiseConvolutionLayerNode(PadStrideInfo info, int depth_multiplier, DepthwiseConvolutionMethod method,
+                                                             QuantizationInfo out_quant_info)
+    : _info(std::move(info)), _depth_multiplier(depth_multiplier), _method(method), _out_quant_info(out_quant_info), _fused_activation()
 {
     _input_edges.resize(3, EmptyEdgeID);
     _outputs.resize(1, NullTensorID);
@@ -85,10 +86,11 @@
 
     std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, kernel_width, kernel_height, info);
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), output_width);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), output_height);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), input_channels * depth_multiplier);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), output_width);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), output_height);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::CHANNEL), input_channels * depth_multiplier);
 
     return output_descriptor;
 }
@@ -113,7 +115,13 @@
 
     ARM_COMPUTE_ERROR_ON(src == nullptr || weights == nullptr);
 
-    return compute_output_descriptor(src->desc(), weights->desc(), _info, _depth_multiplier);
+    TensorDescriptor output_info = compute_output_descriptor(src->desc(), weights->desc(), _info, _depth_multiplier);
+    if(!_out_quant_info.empty())
+    {
+        output_info.quant_info = _out_quant_info;
+    }
+
+    return output_info;
 }
 
 NodeType DepthwiseConvolutionLayerNode::type() const
diff --git a/src/graph/nodes/FusedConvolutionBatchNormalizationNode.cpp b/src/graph/nodes/FusedConvolutionBatchNormalizationNode.cpp
new file mode 100644
index 0000000..c304a6c
--- /dev/null
+++ b/src/graph/nodes/FusedConvolutionBatchNormalizationNode.cpp
@@ -0,0 +1,153 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph/nodes/FusedConvolutionBatchNormalizationNode.h"
+
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/graph/Graph.h"
+#include "arm_compute/graph/INodeVisitor.h"
+#include "arm_compute/graph/Utils.h"
+
+namespace arm_compute
+{
+namespace graph
+{
+FusedConvolutionBatchNormalizationNode::FusedConvolutionBatchNormalizationNode(float epsilon, PadStrideInfo info,
+                                                                               unsigned int      num_groups,
+                                                                               ConvolutionMethod method,
+                                                                               FastMathHint      fast_math_hint,
+                                                                               QuantizationInfo out_quant_info, ActivationLayerInfo fused_activation)
+    : _epsilon(epsilon), _info(std::move(info)), _num_groups(num_groups), _method(method), _fast_math_hint(fast_math_hint), _out_quant_info(out_quant_info), _fused_activation(fused_activation)
+{
+    _input_edges.resize(7, EmptyEdgeID);
+    _outputs.resize(1, NullTensorID);
+}
+
+void FusedConvolutionBatchNormalizationNode::set_convolution_method(ConvolutionMethod method)
+{
+    _method = method;
+}
+
+float FusedConvolutionBatchNormalizationNode::epsilon() const
+{
+    return _epsilon;
+}
+
+ConvolutionMethod FusedConvolutionBatchNormalizationNode::convolution_method() const
+{
+    return _method;
+}
+
+void FusedConvolutionBatchNormalizationNode::set_fast_math_hint(FastMathHint hint)
+{
+    _fast_math_hint = hint;
+}
+
+FastMathHint FusedConvolutionBatchNormalizationNode::fast_math_hint() const
+{
+    return _fast_math_hint;
+}
+
+PadStrideInfo FusedConvolutionBatchNormalizationNode::convolution_info() const
+{
+    return _info;
+}
+
+unsigned int FusedConvolutionBatchNormalizationNode::num_groups() const
+{
+    return _num_groups;
+}
+
+ActivationLayerInfo FusedConvolutionBatchNormalizationNode::fused_activation() const
+{
+    return _fused_activation;
+}
+
+void FusedConvolutionBatchNormalizationNode::set_fused_activation(ActivationLayerInfo fused_activation)
+{
+    _fused_activation = fused_activation;
+}
+
+TensorDescriptor FusedConvolutionBatchNormalizationNode::compute_output_descriptor(const TensorDescriptor &input_descriptor,
+                                                                                   const TensorDescriptor &weights_descriptor,
+                                                                                   const PadStrideInfo    &info)
+{
+    unsigned int output_width  = 0;
+    unsigned int output_height = 0;
+
+    const unsigned int input_width   = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH);
+    const unsigned int input_height  = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT);
+    const unsigned int kernel_width  = get_dimension_size(weights_descriptor, DataLayoutDimension::WIDTH);
+    const unsigned int kernel_height = get_dimension_size(weights_descriptor, DataLayoutDimension::HEIGHT);
+
+    std::tie(output_width, output_height) = scaled_dimensions(input_width, input_height, kernel_width, kernel_height, info);
+
+    const DataLayout data_layout       = input_descriptor.layout;
+    TensorDescriptor output_descriptor = input_descriptor;
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), output_width);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), output_height);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::CHANNEL), weights_descriptor.shape[3]);
+
+    return output_descriptor;
+}
+
+bool FusedConvolutionBatchNormalizationNode::forward_descriptors()
+{
+    if((input_id(0) != NullTensorID) && (input_id(1) != NullTensorID) && (output_id(0) != NullTensorID))
+    {
+        Tensor *dst = output(0);
+        ARM_COMPUTE_ERROR_ON(dst == nullptr);
+        dst->desc() = configure_output(0);
+        return true;
+    }
+    return false;
+}
+
+TensorDescriptor FusedConvolutionBatchNormalizationNode::configure_output(size_t idx) const
+{
+    ARM_COMPUTE_UNUSED(idx);
+    const Tensor *src     = input(0);
+    const Tensor *weights = input(1);
+
+    ARM_COMPUTE_ERROR_ON(src == nullptr || weights == nullptr);
+
+    TensorDescriptor output_info = compute_output_descriptor(src->desc(), weights->desc(), _info);
+    if(!_out_quant_info.empty())
+    {
+        output_info.quant_info = _out_quant_info;
+    }
+
+    return output_info;
+}
+
+NodeType FusedConvolutionBatchNormalizationNode::type() const
+{
+    return FusedConvolutionBatchNormalizationNode::node_type;
+}
+
+void FusedConvolutionBatchNormalizationNode::accept(INodeVisitor &v)
+{
+    v.visit(*this);
+}
+} // namespace graph
+} // namespace arm_compute
diff --git a/src/graph/nodes/PoolingLayerNode.cpp b/src/graph/nodes/PoolingLayerNode.cpp
index 26c145a..48b93c9 100644
--- a/src/graph/nodes/PoolingLayerNode.cpp
+++ b/src/graph/nodes/PoolingLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -57,9 +57,10 @@
 
     std::tie(pooled_width, pooled_height) = scaled_dimensions(input_width, input_height, pool_size_x, pool_size_y, info.pad_stride_info());
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), pooled_width);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), pooled_height);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), pooled_width);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), pooled_height);
 
     return output_descriptor;
 }
diff --git a/src/graph/nodes/ReorgLayerNode.cpp b/src/graph/nodes/ReorgLayerNode.cpp
index 6b83f6b..21ad451 100644
--- a/src/graph/nodes/ReorgLayerNode.cpp
+++ b/src/graph/nodes/ReorgLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -53,10 +53,11 @@
     ARM_COMPUTE_ERROR_ON_MSG((input_width % stride != 0), "The width of the input tensor must be a multiple of stride");
     ARM_COMPUTE_ERROR_ON_MSG((input_height % stride != 0), "The height of the input tensor must be a multiple of stride");
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), input_width / stride);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), input_height / stride);
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::CHANNEL), input_channel * stride * stride);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), input_width / stride);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), input_height / stride);
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::CHANNEL), input_channel * stride * stride);
 
     return output_descriptor;
 }
diff --git a/src/graph/nodes/ResizeLayerNode.cpp b/src/graph/nodes/ResizeLayerNode.cpp
index a6aa7bf..a399229 100644
--- a/src/graph/nodes/ResizeLayerNode.cpp
+++ b/src/graph/nodes/ResizeLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -68,9 +68,10 @@
     const Tensor *src = input(0);
     ARM_COMPUTE_ERROR_ON(src == nullptr);
 
+    const DataLayout data_layout = src->desc().layout;
     TensorDescriptor output_desc = src->desc();
-    size_t           width_idx   = get_dimension_idx(output_desc, DataLayoutDimension::WIDTH);
-    size_t           height_idx  = get_dimension_idx(output_desc, DataLayoutDimension::HEIGHT);
+    size_t           width_idx   = get_dimension_idx(data_layout, DataLayoutDimension::WIDTH);
+    size_t           height_idx  = get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT);
     output_desc.shape.set(width_idx, static_cast<int>(output_desc.shape[width_idx] * _scale_width));
     output_desc.shape.set(height_idx, static_cast<int>(output_desc.shape[height_idx] * _scale_height));
 
diff --git a/src/graph/nodes/StackLayerNode.cpp b/src/graph/nodes/StackLayerNode.cpp
new file mode 100644
index 0000000..d26498a
--- /dev/null
+++ b/src/graph/nodes/StackLayerNode.cpp
@@ -0,0 +1,115 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph/nodes/StackLayerNode.h"
+
+#include "arm_compute/core/TensorInfo.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/graph/Graph.h"
+#include "arm_compute/graph/INodeVisitor.h"
+#include "arm_compute/graph/Utils.h"
+
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+
+namespace arm_compute
+{
+namespace graph
+{
+StackLayerNode::StackLayerNode(unsigned int total_nodes, int axis)
+    : _total_nodes(total_nodes), _axis(axis)
+{
+    _input_edges.resize(_total_nodes, EmptyEdgeID);
+    _outputs.resize(1, NullTensorID);
+}
+
+int StackLayerNode::axis() const
+{
+    return _axis;
+}
+
+TensorDescriptor StackLayerNode::compute_output_descriptor(const std::vector<TensorDescriptor> &input_descriptors,
+                                                           int                                  axis)
+{
+    ARM_COMPUTE_ERROR_ON(input_descriptors.size() == 0);
+
+    TensorDescriptor output_descriptor = input_descriptors[0];
+
+    const TensorInfo   input_info(input_descriptors[0].shape, 1, input_descriptors[0].data_type);
+    const unsigned int num_tensors = input_descriptors.size();
+
+    output_descriptor.shape = arm_compute::misc::shape_calculator::compute_stack_shape(input_info, axis, num_tensors);
+
+    return output_descriptor;
+}
+
+bool StackLayerNode::forward_descriptors()
+{
+    if(_outputs[0] != NullTensorID)
+    {
+        Tensor *dst = output(0);
+        ARM_COMPUTE_ERROR_ON(dst == nullptr);
+        dst->desc() = configure_output(0);
+        return true;
+    }
+    return false;
+}
+
+TensorDescriptor StackLayerNode::configure_output(size_t idx) const
+{
+    ARM_COMPUTE_UNUSED(idx);
+    ARM_COMPUTE_ERROR_ON(idx >= _outputs.size());
+
+    // Check if all input tensors are set
+    bool are_all_inputs_set = std::all_of(std::begin(_input_edges), std::end(_input_edges), [](const EdgeID & eid)
+    {
+        return eid != EmptyEdgeID;
+    });
+
+    TensorDescriptor output_info = {};
+
+    if(are_all_inputs_set)
+    {
+        std::vector<TensorDescriptor> inputs_descriptors;
+        for(unsigned int i = 0; i < _input_edges.size(); ++i)
+        {
+            const Tensor *t = _graph->tensor(input_id(i));
+            ARM_COMPUTE_ERROR_ON(t == nullptr);
+            inputs_descriptors.push_back(t->desc());
+        }
+        output_info = compute_output_descriptor(inputs_descriptors, _axis);
+    }
+
+    return output_info;
+}
+
+NodeType StackLayerNode::type() const
+{
+    return NodeType::StackLayer;
+}
+
+void StackLayerNode::accept(INodeVisitor &v)
+{
+    v.visit(*this);
+}
+} // namespace graph
+} // namespace arm_compute
diff --git a/src/graph/nodes/UpsampleLayerNode.cpp b/src/graph/nodes/UpsampleLayerNode.cpp
index bdd39e8..88af122 100644
--- a/src/graph/nodes/UpsampleLayerNode.cpp
+++ b/src/graph/nodes/UpsampleLayerNode.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -54,9 +54,10 @@
     const unsigned int input_width  = get_dimension_size(input_descriptor, DataLayoutDimension::WIDTH);
     const unsigned int input_height = get_dimension_size(input_descriptor, DataLayoutDimension::HEIGHT);
 
+    const DataLayout data_layout       = input_descriptor.layout;
     TensorDescriptor output_descriptor = input_descriptor;
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::WIDTH), input_width * info.x());
-    output_descriptor.shape.set(get_dimension_idx(output_descriptor, DataLayoutDimension::HEIGHT), input_height * info.y());
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::WIDTH), input_width * info.x());
+    output_descriptor.shape.set(get_dimension_idx(data_layout, DataLayoutDimension::HEIGHT), input_height * info.y());
 
     return output_descriptor;
 }
diff --git a/src/graph/printers/DotGraphPrinter.cpp b/src/graph/printers/DotGraphPrinter.cpp
index ef156ea..c939de1 100644
--- a/src/graph/printers/DotGraphPrinter.cpp
+++ b/src/graph/printers/DotGraphPrinter.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2018 ARM Limited.
+ * Copyright (c) 2018-2019 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -77,6 +77,14 @@
     _info = ss.str();
 }
 
+void DotGraphVisitor::visit(FusedConvolutionBatchNormalizationNode &n)
+{
+    ARM_COMPUTE_UNUSED(n);
+    std::stringstream ss;
+    ss << "FusedConvolutionBatchNormalizationNode";
+    _info = ss.str();
+}
+
 void DotGraphVisitor::visit(NormalizationLayerNode &n)
 {
     std::stringstream ss;