arm_compute v19.02

Change-Id: I853a3ecf38f206da13c1b03640c8adf73c20477c
diff --git a/documentation/graph__yolov3_8cpp_source.xhtml b/documentation/graph__yolov3_8cpp_source.xhtml
index 6d5b494..a07e65a 100644
--- a/documentation/graph__yolov3_8cpp_source.xhtml
+++ b/documentation/graph__yolov3_8cpp_source.xhtml
@@ -1,10 +1,11 @@
-<!-- HTML header for doxygen 1.8.9.1-->
+<!-- HTML header for doxygen 1.8.15-->
+<!-- Remember to use version doxygen 1.8.15 +-->
 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
 <html xmlns="http://www.w3.org/1999/xhtml">
 <head>
 <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=9"/>
-<meta name="generator" content="Doxygen 1.8.13"/>
+<meta name="generator" content="Doxygen 1.8.15"/>
 <meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
 <title>Compute Library: examples/graph_yolov3.cpp Source File</title>
 <link href="tabs.css" rel="stylesheet" type="text/css"/>
@@ -15,8 +16,9 @@
 <script type="text/javascript" src="navtreedata.js"></script>
 <script type="text/javascript" src="navtree.js"></script>
 <script type="text/javascript">
+/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
   $(document).ready(initResizable);
-</script>
+/* @license-end */</script>
 <link href="search/search.css" rel="stylesheet" type="text/css"/>
 <script type="text/javascript" src="search/searchdata.js"></script>
 <script type="text/javascript" src="search/search.js"></script>
@@ -25,8 +27,9 @@
     extensions: ["tex2jax.js"],
     jax: ["input/TeX","output/HTML-CSS"],
 });
-</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
+</script><script type="text/javascript" async="async" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
 <link href="doxygen.css" rel="stylesheet" type="text/css" />
+<link href="stylesheet.css" rel="stylesheet" type="text/css"/>
 </head>
 <body>
 <div id="top"><!-- do not remove this div, it is closed by doxygen! -->
@@ -34,9 +37,10 @@
 <table cellspacing="0" cellpadding="0">
  <tbody>
  <tr style="height: 56px;">
+  <img alt="Compute Library" src="https://raw.githubusercontent.com/ARM-software/ComputeLibrary/gh-pages/ACL_logo.png" style="max-width: 100%;margin-top: 15px;margin-left: 10px"/>
   <td style="padding-left: 0.5em;">
-   <div id="projectname">Compute Library
-   &#160;<span id="projectnumber">18.11</span>
+   <div id="projectname">
+   &#160;<span id="projectnumber">19.02</span>
    </div>
   </td>
  </tr>
@@ -44,18 +48,21 @@
 </table>
 </div>
 <!-- end header part -->
-<!-- Generated by Doxygen 1.8.13 -->
+<!-- Generated by Doxygen 1.8.15 -->
 <script type="text/javascript">
+/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
 var searchBox = new SearchBox("searchBox", "search",false,'Search');
+/* @license-end */
 </script>
 <script type="text/javascript" src="menudata.js"></script>
 <script type="text/javascript" src="menu.js"></script>
 <script type="text/javascript">
+/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
 $(function() {
   initMenu('',true,false,'search.php','Search');
   $(document).ready(function() { init_search(); });
 });
-</script>
+/* @license-end */</script>
 <div id="main-nav"></div>
 </div><!-- top -->
 <div id="side-nav" class="ui-resizable side-nav-resizable">
@@ -69,7 +76,9 @@
   </div>
 </div>
 <script type="text/javascript">
+/* @license magnet:?xt=urn:btih:cf05388f2679ee054f2beb29a391d25f4e673ac3&amp;dn=gpl-2.0.txt GPL-v2 */
 $(document).ready(function(){initNavTree('graph__yolov3_8cpp_source.xhtml','');});
+/* @license-end */
 </script>
 <div id="doc-content">
 <!-- window showing the filter options -->
@@ -91,62 +100,62 @@
 <div class="title">graph_yolov3.cpp</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="graph__yolov3_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_graph_8h.xhtml">arm_compute/graph.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_toolchain_support_8h.xhtml">support/ToolchainSupport.h</a>&quot;</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_common_graph_options_8h.xhtml">utils/CommonGraphOptions.h</a>&quot;</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_graph_utils_8h.xhtml">utils/GraphUtils.h</a>&quot;</span></div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="utils_2_utils_8h.xhtml">utils/Utils.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1utils.xhtml">arm_compute::utils</a>;</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph_1_1frontend.xhtml">arm_compute::graph::frontend</a>;</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph__utils.xhtml">arm_compute::graph_utils</a>;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="keyword">class </span>GraphYOLOv3Example : <span class="keyword">public</span> <a class="code" href="classarm__compute_1_1utils_1_1_example.xhtml">Example</a></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;{</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="keyword">public</span>:</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;    GraphYOLOv3Example()</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;        : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, <span class="stringliteral">&quot;YOLOv3&quot;</span>)</div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;    {</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    }</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    <span class="keywordtype">bool</span> do_setup(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)<span class="keyword"> override</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;        <span class="comment">// Parse arguments</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;        cmd_parser.parse(argc, argv);</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        <span class="comment">// Consume common parameters</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;        common_params = <a class="code" href="namespacearm__compute_1_1utils.xhtml#a04125f2e4cecaffad8724cee7e1c19b0">consume_common_graph_parameters</a>(common_opts);</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="comment">// Return when help menu is requested</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        <span class="keywordflow">if</span>(common_params.help)</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        {</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;            cmd_parser.print_help(argv[0]);</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;            <span class="keywordflow">return</span> <span class="keyword">false</span>;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        }</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        <span class="comment">// Checks</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        <a class="code" href="_error_8h.xhtml#ad39a3601153da57978bb5124ace35d36">ARM_COMPUTE_EXIT_ON_MSG</a>(<a class="code" href="namespacearm__compute.xhtml#a14f46283f316e7f0fad301d5c1507e9f">arm_compute::is_data_type_quantized_asymmetric</a>(common_params.data_type), <span class="stringliteral">&quot;QASYMM8 not supported for this graph&quot;</span>);</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;        <span class="comment">// Print parameter values</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;        std::cout &lt;&lt; common_params &lt;&lt; std::endl;</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;        <span class="comment">// Get trainable parameters data path</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;        std::string data_path = common_params.data_path;</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;        <span class="comment">// Create a preprocessor object</span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;        std::unique_ptr&lt;IPreprocessor&gt; preprocessor = arm_compute::support::cpp14::make_unique&lt;TFPreproccessor&gt;(0.f);</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        <span class="comment">// Create input descriptor</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;        <span class="keyword">const</span> TensorShape tensor_shape     = <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ab3a897163a7fe23208f1d9c618062ee2">permute_shape</a>(TensorShape(608U, 608U, 3U, 1U), <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>, common_params.data_layout);</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;        <a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">TensorDescriptor</a>  input_descriptor = <a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">TensorDescriptor</a>(tensor_shape, common_params.data_type).<a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml#a2497d23622ec1343e507331ae1388f00">set_layout</a>(common_params.data_layout);</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        <span class="comment">// Set weights trained layout</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        <span class="keyword">const</span> <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout = <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>;</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        graph &lt;&lt; common_params.target</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;              &lt;&lt; common_params.fast_math_hint</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">InputLayer</a>(input_descriptor, <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ab14324184f90f342227699c161654b1b">get_input_accessor</a>(common_params, std::move(preprocessor), <span class="keyword">false</span>));</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        std::pair&lt;SubStream, SubStream&gt; intermediate_layers = darknet53(data_path, weights_layout);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_53_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53&quot;</span>)</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_mean.npy&quot;</span>),</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_var.npy&quot;</span>),</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_gamma.npy&quot;</span>),</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_beta.npy&quot;</span>),</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;                  0.000001f)</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53/BatchNorm&quot;</span>)</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_54_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54&quot;</span>)</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_mean.npy&quot;</span>),</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_var.npy&quot;</span>),</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_gamma.npy&quot;</span>),</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_beta.npy&quot;</span>),</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;                  0.000001f)</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54/BatchNorm&quot;</span>)</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_55_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55&quot;</span>)</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_mean.npy&quot;</span>),</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_var.npy&quot;</span>),</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_gamma.npy&quot;</span>),</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_beta.npy&quot;</span>),</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;                  0.000001f)</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55/BatchNorm&quot;</span>)</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_56_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56&quot;</span>)</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_mean.npy&quot;</span>),</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_var.npy&quot;</span>),</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_gamma.npy&quot;</span>),</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_beta.npy&quot;</span>),</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;                  0.000001f)</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56/BatchNorm&quot;</span>)</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_57_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57&quot;</span>)</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_mean.npy&quot;</span>),</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_var.npy&quot;</span>),</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_gamma.npy&quot;</span>),</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_beta.npy&quot;</span>),</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;                  0.000001f)</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57/BatchNorm&quot;</span>)</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> route_1(graph);</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_58_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58&quot;</span>)</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_mean.npy&quot;</span>),</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_var.npy&quot;</span>),</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_gamma.npy&quot;</span>),</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_beta.npy&quot;</span>),</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;                  0.000001f)</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58/BatchNorm&quot;</span>)</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;                  1U, 1U, 255U,</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_59_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_59_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59&quot;</span>)</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59/Linear&quot;</span>)</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80)</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;        route_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;                    1U, 1U, 256U,</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_60_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;                    std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;                    PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60&quot;</span>)</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_mean.npy&quot;</span>),</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_var.npy&quot;</span>),</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_gamma.npy&quot;</span>),</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_beta.npy&quot;</span>),</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;                    0.000001f)</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59/BatchNorm&quot;</span>)</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">UpsampleLayer</a>(Size2D(2, 2), <a class="code" href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">InterpolationPolicy::NEAREST_NEIGHBOR</a>).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Upsample_60&quot;</span>);</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> concat_1(route_1);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;        concat_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">ConcatLayer</a>(std::move(route_1), std::move(intermediate_layers.second))</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_61_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61&quot;</span>)</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_mean.npy&quot;</span>),</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_var.npy&quot;</span>),</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_gamma.npy&quot;</span>),</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_beta.npy&quot;</span>),</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;                     0.000001f)</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60/BatchNorm&quot;</span>)</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_62_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62&quot;</span>)</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_mean.npy&quot;</span>),</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_var.npy&quot;</span>),</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_gamma.npy&quot;</span>),</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_beta.npy&quot;</span>),</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;                     0.000001f)</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61/BatchNorm&quot;</span>)</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_63_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63&quot;</span>)</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_mean.npy&quot;</span>),</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_var.npy&quot;</span>),</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_gamma.npy&quot;</span>),</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_beta.npy&quot;</span>),</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;                     0.000001f)</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62/BatchNorm&quot;</span>)</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_64_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_64&quot;</span>)</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_mean.npy&quot;</span>),</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_var.npy&quot;</span>),</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_gamma.npy&quot;</span>),</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_beta.npy&quot;</span>),</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;                     0.000001f)</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63/BatchNorm&quot;</span>)</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_64/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_65_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65&quot;</span>)</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_mean.npy&quot;</span>),</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_var.npy&quot;</span>),</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_gamma.npy&quot;</span>),</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_beta.npy&quot;</span>),</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;                     0.000001f)</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/BatchNorm&quot;</span>)</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> route_2(concat_1);</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;        concat_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_66_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66&quot;</span>)</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_mean.npy&quot;</span>),</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_var.npy&quot;</span>),</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_gamma.npy&quot;</span>),</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_beta.npy&quot;</span>),</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;                     0.000001f)</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/BatchNorm&quot;</span>)</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;                     1U, 1U, 255U,</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_67_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_67_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67&quot;</span>)</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67/Linear&quot;</span>)</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80)</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;        route_2 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;                    1U, 1U, 128U,</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_68_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;                    std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;                    PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68&quot;</span>)</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_mean.npy&quot;</span>),</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_var.npy&quot;</span>),</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_gamma.npy&quot;</span>),</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_beta.npy&quot;</span>),</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;                    0.000001f)</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66/BatchNorm&quot;</span>)</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">UpsampleLayer</a>(Size2D(2, 2), <a class="code" href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">InterpolationPolicy::NEAREST_NEIGHBOR</a>).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Upsample_68&quot;</span>);</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> concat_2(route_2);</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        concat_2 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">ConcatLayer</a>(std::move(route_2), std::move(intermediate_layers.first))</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_69_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69&quot;</span>)</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_mean.npy&quot;</span>),</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_var.npy&quot;</span>),</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_gamma.npy&quot;</span>),</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_beta.npy&quot;</span>),</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;                     0.000001f)</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67/BatchNorm&quot;</span>)</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_70_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70&quot;</span>)</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_mean.npy&quot;</span>),</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_var.npy&quot;</span>),</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_gamma.npy&quot;</span>),</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_beta.npy&quot;</span>),</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;                     0.000001f)</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68/BatchNorm&quot;</span>)</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_71_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71&quot;</span>)</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_mean.npy&quot;</span>),</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_var.npy&quot;</span>),</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_gamma.npy&quot;</span>),</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_beta.npy&quot;</span>),</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;                     0.000001f)</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69/BatchNorm&quot;</span>)</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_72_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72&quot;</span>)</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_mean.npy&quot;</span>),</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_var.npy&quot;</span>),</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_gamma.npy&quot;</span>),</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_beta.npy&quot;</span>),</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;                     0.000001f)</div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70/BatchNorm&quot;</span>)</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_73_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_73&quot;</span>)</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_mean.npy&quot;</span>),</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_var.npy&quot;</span>),</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_gamma.npy&quot;</span>),</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_beta.npy&quot;</span>),</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;                     0.000001f)</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71/BatchNorm&quot;</span>)</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_73/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_74_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_74&quot;</span>)</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_mean.npy&quot;</span>),</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_var.npy&quot;</span>),</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_gamma.npy&quot;</span>),</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_beta.npy&quot;</span>),</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;                     0.000001f)</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72/BatchNorm&quot;</span>)</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_74/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;                     1U, 1U, 255U,</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_75_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_75_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_75&quot;</span>)</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_75/Linear&quot;</span>)</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80)</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;        <span class="comment">// Finalize graph</span></div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        <a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml">GraphConfig</a> config;</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a08963f7335eef295237ab460863bc3d5">num_threads</a> = common_params.threads;</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a9da74af255a3e6ea61180d4a03192a48">use_tuner</a>   = common_params.enable_tuner;</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a5cabfb35cd0014387f7ec2a0c362c20f">tuner_file</a>  = common_params.tuner_file;</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;        graph.finalize(common_params.target, config);</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;        <span class="keywordflow">return</span> <span class="keyword">true</span>;</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    }</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    <span class="keywordtype">void</span> do_run()<span class="keyword"> override</span></div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;        <span class="comment">// Run graph</span></div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;        graph.run();</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    }</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;<span class="keyword">private</span>:</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    <a class="code" href="classarm__compute_1_1utils_1_1_command_line_parser.xhtml">CommandLineParser</a>  cmd_parser;</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    <a class="code" href="classarm__compute_1_1utils_1_1_common_graph_options.xhtml">CommonGraphOptions</a> common_opts;</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    <a class="code" href="structarm__compute_1_1utils_1_1_common_graph_params.xhtml">CommonGraphParams</a>  common_params;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">Stream</a>             graph;</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;    std::pair&lt;SubStream, SubStream&gt; darknet53(<span class="keyword">const</span> std::string &amp;data_path, <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout)</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    {</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;                  3U, 3U, 32U,</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_1_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1&quot;</span>)</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_mean.npy&quot;</span>),</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_var.npy&quot;</span>),</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_gamma.npy&quot;</span>),</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_beta.npy&quot;</span>),</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;                  0.000001f)</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1/BatchNorm&quot;</span>)</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;                  3U, 3U, 64U,</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_2_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2&quot;</span>)</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_mean.npy&quot;</span>),</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_var.npy&quot;</span>),</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_gamma.npy&quot;</span>),</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_beta.npy&quot;</span>),</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;                  0.000001f)</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2/BatchNorm&quot;</span>)</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;3&quot;</span>, weights_layout, 32U);</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;                  3U, 3U, 128U,</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_5_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5&quot;</span>)</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_mean.npy&quot;</span>),</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_var.npy&quot;</span>),</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_gamma.npy&quot;</span>),</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_beta.npy&quot;</span>),</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;                  0.000001f)</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5/BatchNorm&quot;</span>)</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;6&quot;</span>, weights_layout, 64U);</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;8&quot;</span>, weights_layout, 64U);</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;                  3U, 3U, 256U,</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_10_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10&quot;</span>)</div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_mean.npy&quot;</span>),</div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_var.npy&quot;</span>),</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_gamma.npy&quot;</span>),</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_beta.npy&quot;</span>),</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;                  0.000001f)</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10/BatchNorm&quot;</span>)</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;11&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;13&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;15&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;17&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;19&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;21&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;23&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;25&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> layer_36(graph);</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;                  3U, 3U, 512U,</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_27_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27&quot;</span>)</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_mean.npy&quot;</span>),</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_var.npy&quot;</span>),</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_gamma.npy&quot;</span>),</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_beta.npy&quot;</span>),</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;                  0.000001f)</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27/BatchNorm&quot;</span>)</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;28&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;30&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;32&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;34&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;36&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;38&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;40&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;42&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> layer_61(graph);</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_44_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44&quot;</span>)</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_mean.npy&quot;</span>),</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_var.npy&quot;</span>),</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_gamma.npy&quot;</span>),</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_beta.npy&quot;</span>),</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;                  0.000001f)</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44/BatchNorm&quot;</span>)</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;45&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;47&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;49&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;51&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;        <span class="keywordflow">return</span> std::pair&lt;SubStream, SubStream&gt;(layer_36, layer_61);</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;    }</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;    <span class="keywordtype">void</span> darknet53_block(<span class="keyword">const</span> std::string &amp;data_path, std::string &amp;&amp;param_path, <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout,</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;                         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">filter_size</a>)</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;    {</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;        std::string total_path  = <span class="stringliteral">&quot;/cnn_data/yolov3_model/&quot;</span>;</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;        std::string param_path2 = <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#acc5dddee1cbe93a4eaf0a9f74ee96bb7">arm_compute::support::cpp11::to_string</a>(<a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#abdba606a789b8d664774f17d18f45cfe">arm_compute::support::cpp11::stoi</a>(param_path) + 1);</div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a>   i_a(graph);</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a>   i_b(graph);</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;        i_a &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;                1U, 1U, filter_size,</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;                std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;                PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_mean.npy&quot;</span>),</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_var.npy&quot;</span>),</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_gamma.npy&quot;</span>),</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_beta.npy&quot;</span>),</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;                0.000001f)</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;/BatchNorm&quot;</span>)</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d&quot;</span> + param_path + <span class="stringliteral">&quot;/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;                3U, 3U, filter_size * 2,</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;                std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;                PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_mean.npy&quot;</span>),</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_var.npy&quot;</span>),</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_gamma.npy&quot;</span>),</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_beta.npy&quot;</span>),</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;                0.000001f)</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;/BatchNorm&quot;</span>)</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer.xhtml">EltwiseLayer</a>(std::move(i_a), std::move(i_b), EltwiseOperation::Add);</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;    }</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;};</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;</div><div class="line"><a name="l00586"></a><span class="lineno"><a class="line" href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">  586</a></span>&#160;<span class="keywordtype">int</span> <a class="code" href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a>(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)</div><div class="line"><a name="l00587"></a><span class="lineno">  587</span>&#160;{</div><div class="line"><a name="l00588"></a><span class="lineno">  588</span>&#160;    <span class="keywordflow">return</span> arm_compute::utils::run_example&lt;GraphYOLOv3Example&gt;(argc, argv);</div><div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">arm_compute::graph::frontend::SubStream</a></div><div class="ttdoc">Sub stream class. </div><div class="ttdef"><b>Definition:</b> <a href="_sub_stream_8h_source.xhtml#l00047">SubStream.h:47</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml">arm_compute::graph::GraphConfig</a></div><div class="ttdoc">Graph configuration structure Device target types. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00075">Types.h:75</a></div></div>
+<a href="graph__yolov3_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2018-2019 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_graph_8h.xhtml">arm_compute/graph.h</a>&quot;</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_toolchain_support_8h.xhtml">support/ToolchainSupport.h</a>&quot;</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_common_graph_options_8h.xhtml">utils/CommonGraphOptions.h</a>&quot;</span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_graph_utils_8h.xhtml">utils/GraphUtils.h</a>&quot;</span></div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="utils_2_utils_8h.xhtml">utils/Utils.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;</div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1utils.xhtml">arm_compute::utils</a>;</div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph_1_1frontend.xhtml">arm_compute::graph::frontend</a>;</div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute_1_1graph__utils.xhtml">arm_compute::graph_utils</a>;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;<span class="keyword">class </span>GraphYOLOv3Example : <span class="keyword">public</span> <a class="code" href="classarm__compute_1_1utils_1_1_example.xhtml">Example</a></div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;{</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;<span class="keyword">public</span>:</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;    GraphYOLOv3Example()</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;        : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, <span class="stringliteral">&quot;YOLOv3&quot;</span>)</div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;    {</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    }</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    <span class="keywordtype">bool</span> do_setup(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)<span class="keyword"> override</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;        <span class="comment">// Parse arguments</span></div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;        cmd_parser.parse(argc, argv);</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        <span class="comment">// Consume common parameters</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;        common_params = <a class="code" href="namespacearm__compute_1_1utils.xhtml#a04125f2e4cecaffad8724cee7e1c19b0">consume_common_graph_parameters</a>(common_opts);</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="comment">// Return when help menu is requested</span></div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        <span class="keywordflow">if</span>(common_params.help)</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        {</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;            cmd_parser.print_help(argv[0]);</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;            <span class="keywordflow">return</span> <span class="keyword">false</span>;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        }</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        <span class="comment">// Checks</span></div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        <a class="code" href="_error_8h.xhtml#ad39a3601153da57978bb5124ace35d36">ARM_COMPUTE_EXIT_ON_MSG</a>(<a class="code" href="namespacearm__compute.xhtml#a14f46283f316e7f0fad301d5c1507e9f">arm_compute::is_data_type_quantized_asymmetric</a>(common_params.data_type), <span class="stringliteral">&quot;QASYMM8 not supported for this graph&quot;</span>);</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;        <span class="comment">// Print parameter values</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;        std::cout &lt;&lt; common_params &lt;&lt; std::endl;</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;        <span class="comment">// Get trainable parameters data path</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;        std::string data_path = common_params.data_path;</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;        <span class="comment">// Create a preprocessor object</span></div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;        std::unique_ptr&lt;IPreprocessor&gt; preprocessor = arm_compute::support::cpp14::make_unique&lt;TFPreproccessor&gt;(0.f);</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        <span class="comment">// Create input descriptor</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;        <span class="keyword">const</span> TensorShape tensor_shape     = <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ab3a897163a7fe23208f1d9c618062ee2">permute_shape</a>(TensorShape(608U, 608U, 3U, 1U), <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>, common_params.data_layout);</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;        <a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">TensorDescriptor</a>  input_descriptor = <a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">TensorDescriptor</a>(tensor_shape, common_params.data_type).<a class="code" href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml#a2497d23622ec1343e507331ae1388f00">set_layout</a>(common_params.data_layout);</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        <span class="comment">// Set weights trained layout</span></div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        <span class="keyword">const</span> <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout = <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">DataLayout::NCHW</a>;</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        graph &lt;&lt; common_params.target</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;              &lt;&lt; common_params.fast_math_hint</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">InputLayer</a>(input_descriptor, <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ab14324184f90f342227699c161654b1b">get_input_accessor</a>(common_params, std::move(preprocessor), <span class="keyword">false</span>));</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        std::pair&lt;SubStream, SubStream&gt; intermediate_layers = darknet53(data_path, weights_layout);</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_53_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53&quot;</span>)</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_mean.npy&quot;</span>),</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_var.npy&quot;</span>),</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_gamma.npy&quot;</span>),</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_53_beta.npy&quot;</span>),</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;                  0.000001f)</div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53/BatchNorm&quot;</span>)</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_53/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_54_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54&quot;</span>)</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_mean.npy&quot;</span>),</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_var.npy&quot;</span>),</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_gamma.npy&quot;</span>),</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_54_beta.npy&quot;</span>),</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;                  0.000001f)</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54/BatchNorm&quot;</span>)</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_54/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_55_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55&quot;</span>)</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_mean.npy&quot;</span>),</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_var.npy&quot;</span>),</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_gamma.npy&quot;</span>),</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_55_beta.npy&quot;</span>),</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;                  0.000001f)</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55/BatchNorm&quot;</span>)</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_55/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_56_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56&quot;</span>)</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_mean.npy&quot;</span>),</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_var.npy&quot;</span>),</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_gamma.npy&quot;</span>),</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_56_beta.npy&quot;</span>),</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;                  0.000001f)</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56/BatchNorm&quot;</span>)</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_56/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;                  1U, 1U, 512U,</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_57_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57&quot;</span>)</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_mean.npy&quot;</span>),</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_var.npy&quot;</span>),</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_gamma.npy&quot;</span>),</div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_57_beta.npy&quot;</span>),</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;                  0.000001f)</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57/BatchNorm&quot;</span>)</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_57/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> route_1(graph);</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_58_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58&quot;</span>)</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_mean.npy&quot;</span>),</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_var.npy&quot;</span>),</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_gamma.npy&quot;</span>),</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_58_beta.npy&quot;</span>),</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;                  0.000001f)</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58/BatchNorm&quot;</span>)</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_58/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;                  1U, 1U, 255U,</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_59_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_59_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;                  PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59&quot;</span>)</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59/Linear&quot;</span>)</div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Yolo1&quot;</span>)</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;        route_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;                    1U, 1U, 256U,</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_60_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;                    std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;                    PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60&quot;</span>)</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_mean.npy&quot;</span>),</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_var.npy&quot;</span>),</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_gamma.npy&quot;</span>),</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_59_beta.npy&quot;</span>),</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;                    0.000001f)</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_59/BatchNorm&quot;</span>)</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">UpsampleLayer</a>(Size2D(2, 2), <a class="code" href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">InterpolationPolicy::NEAREST_NEIGHBOR</a>).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Upsample_60&quot;</span>);</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> concat_1(route_1);</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;        concat_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">ConcatLayer</a>(std::move(route_1), std::move(intermediate_layers.second)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Route1&quot;</span>)</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_61_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61&quot;</span>)</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_mean.npy&quot;</span>),</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_var.npy&quot;</span>),</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_gamma.npy&quot;</span>),</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_60_beta.npy&quot;</span>),</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;                     0.000001f)</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_60/BatchNorm&quot;</span>)</div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_62_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62&quot;</span>)</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_mean.npy&quot;</span>),</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_var.npy&quot;</span>),</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_gamma.npy&quot;</span>),</div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_61_beta.npy&quot;</span>),</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;                     0.000001f)</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_61/BatchNorm&quot;</span>)</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00222"></a><span class="lineno">  222</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_63_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00223"></a><span class="lineno">  223</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00224"></a><span class="lineno">  224</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00225"></a><span class="lineno">  225</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63&quot;</span>)</div><div class="line"><a name="l00226"></a><span class="lineno">  226</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00227"></a><span class="lineno">  227</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_mean.npy&quot;</span>),</div><div class="line"><a name="l00228"></a><span class="lineno">  228</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_var.npy&quot;</span>),</div><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_gamma.npy&quot;</span>),</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_62_beta.npy&quot;</span>),</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;                     0.000001f)</div><div class="line"><a name="l00232"></a><span class="lineno">  232</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_62/BatchNorm&quot;</span>)</div><div class="line"><a name="l00233"></a><span class="lineno">  233</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00234"></a><span class="lineno">  234</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00235"></a><span class="lineno">  235</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00236"></a><span class="lineno">  236</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_64_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_64&quot;</span>)</div><div class="line"><a name="l00240"></a><span class="lineno">  240</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00241"></a><span class="lineno">  241</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_mean.npy&quot;</span>),</div><div class="line"><a name="l00242"></a><span class="lineno">  242</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_var.npy&quot;</span>),</div><div class="line"><a name="l00243"></a><span class="lineno">  243</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_gamma.npy&quot;</span>),</div><div class="line"><a name="l00244"></a><span class="lineno">  244</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_63_beta.npy&quot;</span>),</div><div class="line"><a name="l00245"></a><span class="lineno">  245</span>&#160;                     0.000001f)</div><div class="line"><a name="l00246"></a><span class="lineno">  246</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_63/BatchNorm&quot;</span>)</div><div class="line"><a name="l00247"></a><span class="lineno">  247</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_64/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00248"></a><span class="lineno">  248</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00249"></a><span class="lineno">  249</span>&#160;                     1U, 1U, 256U,</div><div class="line"><a name="l00250"></a><span class="lineno">  250</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_65_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00251"></a><span class="lineno">  251</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00252"></a><span class="lineno">  252</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00253"></a><span class="lineno">  253</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65&quot;</span>)</div><div class="line"><a name="l00254"></a><span class="lineno">  254</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00255"></a><span class="lineno">  255</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_mean.npy&quot;</span>),</div><div class="line"><a name="l00256"></a><span class="lineno">  256</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_var.npy&quot;</span>),</div><div class="line"><a name="l00257"></a><span class="lineno">  257</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_gamma.npy&quot;</span>),</div><div class="line"><a name="l00258"></a><span class="lineno">  258</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_64_beta.npy&quot;</span>),</div><div class="line"><a name="l00259"></a><span class="lineno">  259</span>&#160;                     0.000001f)</div><div class="line"><a name="l00260"></a><span class="lineno">  260</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/BatchNorm&quot;</span>)</div><div class="line"><a name="l00261"></a><span class="lineno">  261</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00262"></a><span class="lineno">  262</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> route_2(concat_1);</div><div class="line"><a name="l00263"></a><span class="lineno">  263</span>&#160;        concat_1 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00264"></a><span class="lineno">  264</span>&#160;                     3U, 3U, 512U,</div><div class="line"><a name="l00265"></a><span class="lineno">  265</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_66_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00266"></a><span class="lineno">  266</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00267"></a><span class="lineno">  267</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00268"></a><span class="lineno">  268</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66&quot;</span>)</div><div class="line"><a name="l00269"></a><span class="lineno">  269</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00270"></a><span class="lineno">  270</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_mean.npy&quot;</span>),</div><div class="line"><a name="l00271"></a><span class="lineno">  271</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_var.npy&quot;</span>),</div><div class="line"><a name="l00272"></a><span class="lineno">  272</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_gamma.npy&quot;</span>),</div><div class="line"><a name="l00273"></a><span class="lineno">  273</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_65_beta.npy&quot;</span>),</div><div class="line"><a name="l00274"></a><span class="lineno">  274</span>&#160;                     0.000001f)</div><div class="line"><a name="l00275"></a><span class="lineno">  275</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_65/BatchNorm&quot;</span>)</div><div class="line"><a name="l00276"></a><span class="lineno">  276</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00277"></a><span class="lineno">  277</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00278"></a><span class="lineno">  278</span>&#160;                     1U, 1U, 255U,</div><div class="line"><a name="l00279"></a><span class="lineno">  279</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_67_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00280"></a><span class="lineno">  280</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_67_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00281"></a><span class="lineno">  281</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00282"></a><span class="lineno">  282</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67&quot;</span>)</div><div class="line"><a name="l00283"></a><span class="lineno">  283</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67/Linear&quot;</span>)</div><div class="line"><a name="l00284"></a><span class="lineno">  284</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Yolo2&quot;</span>)</div><div class="line"><a name="l00285"></a><span class="lineno">  285</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00286"></a><span class="lineno">  286</span>&#160;        route_2 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00287"></a><span class="lineno">  287</span>&#160;                    1U, 1U, 128U,</div><div class="line"><a name="l00288"></a><span class="lineno">  288</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_68_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00289"></a><span class="lineno">  289</span>&#160;                    std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00290"></a><span class="lineno">  290</span>&#160;                    PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00291"></a><span class="lineno">  291</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68&quot;</span>)</div><div class="line"><a name="l00292"></a><span class="lineno">  292</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00293"></a><span class="lineno">  293</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_mean.npy&quot;</span>),</div><div class="line"><a name="l00294"></a><span class="lineno">  294</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_var.npy&quot;</span>),</div><div class="line"><a name="l00295"></a><span class="lineno">  295</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_gamma.npy&quot;</span>),</div><div class="line"><a name="l00296"></a><span class="lineno">  296</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_66_beta.npy&quot;</span>),</div><div class="line"><a name="l00297"></a><span class="lineno">  297</span>&#160;                    0.000001f)</div><div class="line"><a name="l00298"></a><span class="lineno">  298</span>&#160;                .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_66/BatchNorm&quot;</span>)</div><div class="line"><a name="l00299"></a><span class="lineno">  299</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00300"></a><span class="lineno">  300</span>&#160;                &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">UpsampleLayer</a>(Size2D(2, 2), <a class="code" href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">InterpolationPolicy::NEAREST_NEIGHBOR</a>).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Upsample_68&quot;</span>);</div><div class="line"><a name="l00301"></a><span class="lineno">  301</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> concat_2(route_2);</div><div class="line"><a name="l00302"></a><span class="lineno">  302</span>&#160;        concat_2 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">ConcatLayer</a>(std::move(route_2), std::move(intermediate_layers.first)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Route2&quot;</span>)</div><div class="line"><a name="l00303"></a><span class="lineno">  303</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00304"></a><span class="lineno">  304</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00305"></a><span class="lineno">  305</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_69_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00306"></a><span class="lineno">  306</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00307"></a><span class="lineno">  307</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00308"></a><span class="lineno">  308</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69&quot;</span>)</div><div class="line"><a name="l00309"></a><span class="lineno">  309</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00310"></a><span class="lineno">  310</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_mean.npy&quot;</span>),</div><div class="line"><a name="l00311"></a><span class="lineno">  311</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_var.npy&quot;</span>),</div><div class="line"><a name="l00312"></a><span class="lineno">  312</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_gamma.npy&quot;</span>),</div><div class="line"><a name="l00313"></a><span class="lineno">  313</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_67_beta.npy&quot;</span>),</div><div class="line"><a name="l00314"></a><span class="lineno">  314</span>&#160;                     0.000001f)</div><div class="line"><a name="l00315"></a><span class="lineno">  315</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_67/BatchNorm&quot;</span>)</div><div class="line"><a name="l00316"></a><span class="lineno">  316</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00317"></a><span class="lineno">  317</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00318"></a><span class="lineno">  318</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00319"></a><span class="lineno">  319</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_70_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00320"></a><span class="lineno">  320</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00321"></a><span class="lineno">  321</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00322"></a><span class="lineno">  322</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70&quot;</span>)</div><div class="line"><a name="l00323"></a><span class="lineno">  323</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00324"></a><span class="lineno">  324</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_mean.npy&quot;</span>),</div><div class="line"><a name="l00325"></a><span class="lineno">  325</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_var.npy&quot;</span>),</div><div class="line"><a name="l00326"></a><span class="lineno">  326</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_gamma.npy&quot;</span>),</div><div class="line"><a name="l00327"></a><span class="lineno">  327</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_68_beta.npy&quot;</span>),</div><div class="line"><a name="l00328"></a><span class="lineno">  328</span>&#160;                     0.000001f)</div><div class="line"><a name="l00329"></a><span class="lineno">  329</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_68/BatchNorm&quot;</span>)</div><div class="line"><a name="l00330"></a><span class="lineno">  330</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00331"></a><span class="lineno">  331</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00332"></a><span class="lineno">  332</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00333"></a><span class="lineno">  333</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_71_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00334"></a><span class="lineno">  334</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00335"></a><span class="lineno">  335</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00336"></a><span class="lineno">  336</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71&quot;</span>)</div><div class="line"><a name="l00337"></a><span class="lineno">  337</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00338"></a><span class="lineno">  338</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_mean.npy&quot;</span>),</div><div class="line"><a name="l00339"></a><span class="lineno">  339</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_var.npy&quot;</span>),</div><div class="line"><a name="l00340"></a><span class="lineno">  340</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_gamma.npy&quot;</span>),</div><div class="line"><a name="l00341"></a><span class="lineno">  341</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_69_beta.npy&quot;</span>),</div><div class="line"><a name="l00342"></a><span class="lineno">  342</span>&#160;                     0.000001f)</div><div class="line"><a name="l00343"></a><span class="lineno">  343</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_69/BatchNorm&quot;</span>)</div><div class="line"><a name="l00344"></a><span class="lineno">  344</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00345"></a><span class="lineno">  345</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00346"></a><span class="lineno">  346</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00347"></a><span class="lineno">  347</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_72_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00348"></a><span class="lineno">  348</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00349"></a><span class="lineno">  349</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00350"></a><span class="lineno">  350</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72&quot;</span>)</div><div class="line"><a name="l00351"></a><span class="lineno">  351</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00352"></a><span class="lineno">  352</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_mean.npy&quot;</span>),</div><div class="line"><a name="l00353"></a><span class="lineno">  353</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_var.npy&quot;</span>),</div><div class="line"><a name="l00354"></a><span class="lineno">  354</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_gamma.npy&quot;</span>),</div><div class="line"><a name="l00355"></a><span class="lineno">  355</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_70_beta.npy&quot;</span>),</div><div class="line"><a name="l00356"></a><span class="lineno">  356</span>&#160;                     0.000001f)</div><div class="line"><a name="l00357"></a><span class="lineno">  357</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_70/BatchNorm&quot;</span>)</div><div class="line"><a name="l00358"></a><span class="lineno">  358</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00359"></a><span class="lineno">  359</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00360"></a><span class="lineno">  360</span>&#160;                     1U, 1U, 128U,</div><div class="line"><a name="l00361"></a><span class="lineno">  361</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_73_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00362"></a><span class="lineno">  362</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00363"></a><span class="lineno">  363</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00364"></a><span class="lineno">  364</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_73&quot;</span>)</div><div class="line"><a name="l00365"></a><span class="lineno">  365</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00366"></a><span class="lineno">  366</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_mean.npy&quot;</span>),</div><div class="line"><a name="l00367"></a><span class="lineno">  367</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_var.npy&quot;</span>),</div><div class="line"><a name="l00368"></a><span class="lineno">  368</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_gamma.npy&quot;</span>),</div><div class="line"><a name="l00369"></a><span class="lineno">  369</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_71_beta.npy&quot;</span>),</div><div class="line"><a name="l00370"></a><span class="lineno">  370</span>&#160;                     0.000001f)</div><div class="line"><a name="l00371"></a><span class="lineno">  371</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_71/BatchNorm&quot;</span>)</div><div class="line"><a name="l00372"></a><span class="lineno">  372</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_73/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00373"></a><span class="lineno">  373</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00374"></a><span class="lineno">  374</span>&#160;                     3U, 3U, 256U,</div><div class="line"><a name="l00375"></a><span class="lineno">  375</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_74_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00376"></a><span class="lineno">  376</span>&#160;                     std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00377"></a><span class="lineno">  377</span>&#160;                     PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00378"></a><span class="lineno">  378</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_74&quot;</span>)</div><div class="line"><a name="l00379"></a><span class="lineno">  379</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00380"></a><span class="lineno">  380</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_mean.npy&quot;</span>),</div><div class="line"><a name="l00381"></a><span class="lineno">  381</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_var.npy&quot;</span>),</div><div class="line"><a name="l00382"></a><span class="lineno">  382</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_gamma.npy&quot;</span>),</div><div class="line"><a name="l00383"></a><span class="lineno">  383</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_72_beta.npy&quot;</span>),</div><div class="line"><a name="l00384"></a><span class="lineno">  384</span>&#160;                     0.000001f)</div><div class="line"><a name="l00385"></a><span class="lineno">  385</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_72/BatchNorm&quot;</span>)</div><div class="line"><a name="l00386"></a><span class="lineno">  386</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_74/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00387"></a><span class="lineno">  387</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00388"></a><span class="lineno">  388</span>&#160;                     1U, 1U, 255U,</div><div class="line"><a name="l00389"></a><span class="lineno">  389</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_75_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00390"></a><span class="lineno">  390</span>&#160;                     <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_75_b.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00391"></a><span class="lineno">  391</span>&#160;                     PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00392"></a><span class="lineno">  392</span>&#160;                 .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_75&quot;</span>)</div><div class="line"><a name="l00393"></a><span class="lineno">  393</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">ActivationLayerInfo::ActivationFunction::LINEAR</a>, 1.f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_75/Linear&quot;</span>)</div><div class="line"><a name="l00394"></a><span class="lineno">  394</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">YOLOLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">ActivationLayerInfo::ActivationFunction::LOGISTIC</a>, 0.1f), 80).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;Yolo3&quot;</span>)</div><div class="line"><a name="l00395"></a><span class="lineno">  395</span>&#160;                 &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">OutputLayer</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">get_output_accessor</a>(common_params, 5));</div><div class="line"><a name="l00396"></a><span class="lineno">  396</span>&#160;</div><div class="line"><a name="l00397"></a><span class="lineno">  397</span>&#160;        <span class="comment">// Finalize graph</span></div><div class="line"><a name="l00398"></a><span class="lineno">  398</span>&#160;        <a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml">GraphConfig</a> config;</div><div class="line"><a name="l00399"></a><span class="lineno">  399</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a08963f7335eef295237ab460863bc3d5">num_threads</a> = common_params.threads;</div><div class="line"><a name="l00400"></a><span class="lineno">  400</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a9da74af255a3e6ea61180d4a03192a48">use_tuner</a>   = common_params.enable_tuner;</div><div class="line"><a name="l00401"></a><span class="lineno">  401</span>&#160;        config.<a class="code" href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a5cabfb35cd0014387f7ec2a0c362c20f">tuner_file</a>  = common_params.tuner_file;</div><div class="line"><a name="l00402"></a><span class="lineno">  402</span>&#160;</div><div class="line"><a name="l00403"></a><span class="lineno">  403</span>&#160;        graph.finalize(common_params.target, config);</div><div class="line"><a name="l00404"></a><span class="lineno">  404</span>&#160;</div><div class="line"><a name="l00405"></a><span class="lineno">  405</span>&#160;        <span class="keywordflow">return</span> <span class="keyword">true</span>;</div><div class="line"><a name="l00406"></a><span class="lineno">  406</span>&#160;    }</div><div class="line"><a name="l00407"></a><span class="lineno">  407</span>&#160;    <span class="keywordtype">void</span> do_run()<span class="keyword"> override</span></div><div class="line"><a name="l00408"></a><span class="lineno">  408</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00409"></a><span class="lineno">  409</span>&#160;        <span class="comment">// Run graph</span></div><div class="line"><a name="l00410"></a><span class="lineno">  410</span>&#160;        graph.run();</div><div class="line"><a name="l00411"></a><span class="lineno">  411</span>&#160;    }</div><div class="line"><a name="l00412"></a><span class="lineno">  412</span>&#160;</div><div class="line"><a name="l00413"></a><span class="lineno">  413</span>&#160;<span class="keyword">private</span>:</div><div class="line"><a name="l00414"></a><span class="lineno">  414</span>&#160;    <a class="code" href="classarm__compute_1_1utils_1_1_command_line_parser.xhtml">CommandLineParser</a>  cmd_parser;</div><div class="line"><a name="l00415"></a><span class="lineno">  415</span>&#160;    <a class="code" href="classarm__compute_1_1utils_1_1_common_graph_options.xhtml">CommonGraphOptions</a> common_opts;</div><div class="line"><a name="l00416"></a><span class="lineno">  416</span>&#160;    <a class="code" href="structarm__compute_1_1utils_1_1_common_graph_params.xhtml">CommonGraphParams</a>  common_params;</div><div class="line"><a name="l00417"></a><span class="lineno">  417</span>&#160;    <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">Stream</a>             graph;</div><div class="line"><a name="l00418"></a><span class="lineno">  418</span>&#160;</div><div class="line"><a name="l00419"></a><span class="lineno">  419</span>&#160;    std::pair&lt;SubStream, SubStream&gt; darknet53(<span class="keyword">const</span> std::string &amp;data_path, <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout)</div><div class="line"><a name="l00420"></a><span class="lineno">  420</span>&#160;    {</div><div class="line"><a name="l00421"></a><span class="lineno">  421</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00422"></a><span class="lineno">  422</span>&#160;                  3U, 3U, 32U,</div><div class="line"><a name="l00423"></a><span class="lineno">  423</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_1_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00424"></a><span class="lineno">  424</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00425"></a><span class="lineno">  425</span>&#160;                  PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00426"></a><span class="lineno">  426</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1/Conv2D&quot;</span>)</div><div class="line"><a name="l00427"></a><span class="lineno">  427</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00428"></a><span class="lineno">  428</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_mean.npy&quot;</span>),</div><div class="line"><a name="l00429"></a><span class="lineno">  429</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_var.npy&quot;</span>),</div><div class="line"><a name="l00430"></a><span class="lineno">  430</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_gamma.npy&quot;</span>),</div><div class="line"><a name="l00431"></a><span class="lineno">  431</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_1_beta.npy&quot;</span>),</div><div class="line"><a name="l00432"></a><span class="lineno">  432</span>&#160;                  0.000001f)</div><div class="line"><a name="l00433"></a><span class="lineno">  433</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1/BatchNorm&quot;</span>)</div><div class="line"><a name="l00434"></a><span class="lineno">  434</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_1/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00435"></a><span class="lineno">  435</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00436"></a><span class="lineno">  436</span>&#160;                  3U, 3U, 64U,</div><div class="line"><a name="l00437"></a><span class="lineno">  437</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_2_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00438"></a><span class="lineno">  438</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00439"></a><span class="lineno">  439</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00440"></a><span class="lineno">  440</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2/Conv2D&quot;</span>)</div><div class="line"><a name="l00441"></a><span class="lineno">  441</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00442"></a><span class="lineno">  442</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_mean.npy&quot;</span>),</div><div class="line"><a name="l00443"></a><span class="lineno">  443</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_var.npy&quot;</span>),</div><div class="line"><a name="l00444"></a><span class="lineno">  444</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_gamma.npy&quot;</span>),</div><div class="line"><a name="l00445"></a><span class="lineno">  445</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_2_beta.npy&quot;</span>),</div><div class="line"><a name="l00446"></a><span class="lineno">  446</span>&#160;                  0.000001f)</div><div class="line"><a name="l00447"></a><span class="lineno">  447</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2/BatchNorm&quot;</span>)</div><div class="line"><a name="l00448"></a><span class="lineno">  448</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_2/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00449"></a><span class="lineno">  449</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;3&quot;</span>, weights_layout, 32U);</div><div class="line"><a name="l00450"></a><span class="lineno">  450</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00451"></a><span class="lineno">  451</span>&#160;                  3U, 3U, 128U,</div><div class="line"><a name="l00452"></a><span class="lineno">  452</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_5_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00453"></a><span class="lineno">  453</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00454"></a><span class="lineno">  454</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00455"></a><span class="lineno">  455</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5/Conv2D&quot;</span>)</div><div class="line"><a name="l00456"></a><span class="lineno">  456</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00457"></a><span class="lineno">  457</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_mean.npy&quot;</span>),</div><div class="line"><a name="l00458"></a><span class="lineno">  458</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_var.npy&quot;</span>),</div><div class="line"><a name="l00459"></a><span class="lineno">  459</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_gamma.npy&quot;</span>),</div><div class="line"><a name="l00460"></a><span class="lineno">  460</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_5_beta.npy&quot;</span>),</div><div class="line"><a name="l00461"></a><span class="lineno">  461</span>&#160;                  0.000001f)</div><div class="line"><a name="l00462"></a><span class="lineno">  462</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5/BatchNorm&quot;</span>)</div><div class="line"><a name="l00463"></a><span class="lineno">  463</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_5/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00464"></a><span class="lineno">  464</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;6&quot;</span>, weights_layout, 64U);</div><div class="line"><a name="l00465"></a><span class="lineno">  465</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;8&quot;</span>, weights_layout, 64U);</div><div class="line"><a name="l00466"></a><span class="lineno">  466</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00467"></a><span class="lineno">  467</span>&#160;                  3U, 3U, 256U,</div><div class="line"><a name="l00468"></a><span class="lineno">  468</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_10_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00469"></a><span class="lineno">  469</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00470"></a><span class="lineno">  470</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00471"></a><span class="lineno">  471</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10/Conv2D&quot;</span>)</div><div class="line"><a name="l00472"></a><span class="lineno">  472</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00473"></a><span class="lineno">  473</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_mean.npy&quot;</span>),</div><div class="line"><a name="l00474"></a><span class="lineno">  474</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_var.npy&quot;</span>),</div><div class="line"><a name="l00475"></a><span class="lineno">  475</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_gamma.npy&quot;</span>),</div><div class="line"><a name="l00476"></a><span class="lineno">  476</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_10_beta.npy&quot;</span>),</div><div class="line"><a name="l00477"></a><span class="lineno">  477</span>&#160;                  0.000001f)</div><div class="line"><a name="l00478"></a><span class="lineno">  478</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10/BatchNorm&quot;</span>)</div><div class="line"><a name="l00479"></a><span class="lineno">  479</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_10/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00480"></a><span class="lineno">  480</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;11&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00481"></a><span class="lineno">  481</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;13&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00482"></a><span class="lineno">  482</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;15&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00483"></a><span class="lineno">  483</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;17&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00484"></a><span class="lineno">  484</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;19&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00485"></a><span class="lineno">  485</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;21&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00486"></a><span class="lineno">  486</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;23&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00487"></a><span class="lineno">  487</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;25&quot;</span>, weights_layout, 128U);</div><div class="line"><a name="l00488"></a><span class="lineno">  488</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> layer_36(graph);</div><div class="line"><a name="l00489"></a><span class="lineno">  489</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00490"></a><span class="lineno">  490</span>&#160;                  3U, 3U, 512U,</div><div class="line"><a name="l00491"></a><span class="lineno">  491</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_27_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00492"></a><span class="lineno">  492</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00493"></a><span class="lineno">  493</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00494"></a><span class="lineno">  494</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27/Conv2D&quot;</span>)</div><div class="line"><a name="l00495"></a><span class="lineno">  495</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00496"></a><span class="lineno">  496</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_mean.npy&quot;</span>),</div><div class="line"><a name="l00497"></a><span class="lineno">  497</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_var.npy&quot;</span>),</div><div class="line"><a name="l00498"></a><span class="lineno">  498</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_gamma.npy&quot;</span>),</div><div class="line"><a name="l00499"></a><span class="lineno">  499</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_27_beta.npy&quot;</span>),</div><div class="line"><a name="l00500"></a><span class="lineno">  500</span>&#160;                  0.000001f)</div><div class="line"><a name="l00501"></a><span class="lineno">  501</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27/BatchNorm&quot;</span>)</div><div class="line"><a name="l00502"></a><span class="lineno">  502</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_27/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00503"></a><span class="lineno">  503</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;28&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00504"></a><span class="lineno">  504</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;30&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00505"></a><span class="lineno">  505</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;32&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00506"></a><span class="lineno">  506</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;34&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00507"></a><span class="lineno">  507</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;36&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00508"></a><span class="lineno">  508</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;38&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00509"></a><span class="lineno">  509</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;40&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00510"></a><span class="lineno">  510</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;42&quot;</span>, weights_layout, 256U);</div><div class="line"><a name="l00511"></a><span class="lineno">  511</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a> layer_61(graph);</div><div class="line"><a name="l00512"></a><span class="lineno">  512</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00513"></a><span class="lineno">  513</span>&#160;                  3U, 3U, 1024U,</div><div class="line"><a name="l00514"></a><span class="lineno">  514</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/conv2d_44_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00515"></a><span class="lineno">  515</span>&#160;                  std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00516"></a><span class="lineno">  516</span>&#160;                  PadStrideInfo(2, 2, 1, 1))</div><div class="line"><a name="l00517"></a><span class="lineno">  517</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44/Conv2D&quot;</span>)</div><div class="line"><a name="l00518"></a><span class="lineno">  518</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00519"></a><span class="lineno">  519</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_mean.npy&quot;</span>),</div><div class="line"><a name="l00520"></a><span class="lineno">  520</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_var.npy&quot;</span>),</div><div class="line"><a name="l00521"></a><span class="lineno">  521</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_gamma.npy&quot;</span>),</div><div class="line"><a name="l00522"></a><span class="lineno">  522</span>&#160;                  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/yolov3_model/batch_normalization_44_beta.npy&quot;</span>),</div><div class="line"><a name="l00523"></a><span class="lineno">  523</span>&#160;                  0.000001f)</div><div class="line"><a name="l00524"></a><span class="lineno">  524</span>&#160;              .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44/BatchNorm&quot;</span>)</div><div class="line"><a name="l00525"></a><span class="lineno">  525</span>&#160;              &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_44/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00526"></a><span class="lineno">  526</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;45&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00527"></a><span class="lineno">  527</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;47&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00528"></a><span class="lineno">  528</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;49&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00529"></a><span class="lineno">  529</span>&#160;        darknet53_block(data_path, <span class="stringliteral">&quot;51&quot;</span>, weights_layout, 512U);</div><div class="line"><a name="l00530"></a><span class="lineno">  530</span>&#160;</div><div class="line"><a name="l00531"></a><span class="lineno">  531</span>&#160;        <span class="keywordflow">return</span> std::pair&lt;SubStream, SubStream&gt;(layer_36, layer_61);</div><div class="line"><a name="l00532"></a><span class="lineno">  532</span>&#160;    }</div><div class="line"><a name="l00533"></a><span class="lineno">  533</span>&#160;</div><div class="line"><a name="l00534"></a><span class="lineno">  534</span>&#160;    <span class="keywordtype">void</span> darknet53_block(<span class="keyword">const</span> std::string &amp;data_path, std::string &amp;&amp;param_path, <a class="code" href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">DataLayout</a> weights_layout,</div><div class="line"><a name="l00535"></a><span class="lineno">  535</span>&#160;                         <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">filter_size</a>)</div><div class="line"><a name="l00536"></a><span class="lineno">  536</span>&#160;    {</div><div class="line"><a name="l00537"></a><span class="lineno">  537</span>&#160;        std::string total_path  = <span class="stringliteral">&quot;/cnn_data/yolov3_model/&quot;</span>;</div><div class="line"><a name="l00538"></a><span class="lineno">  538</span>&#160;        std::string param_path2 = <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#acc5dddee1cbe93a4eaf0a9f74ee96bb7">arm_compute::support::cpp11::to_string</a>(<a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#abdba606a789b8d664774f17d18f45cfe">arm_compute::support::cpp11::stoi</a>(param_path) + 1);</div><div class="line"><a name="l00539"></a><span class="lineno">  539</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a>   i_a(graph);</div><div class="line"><a name="l00540"></a><span class="lineno">  540</span>&#160;        <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">SubStream</a>   i_b(graph);</div><div class="line"><a name="l00541"></a><span class="lineno">  541</span>&#160;        i_a &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00542"></a><span class="lineno">  542</span>&#160;                1U, 1U, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">filter_size</a>,</div><div class="line"><a name="l00543"></a><span class="lineno">  543</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00544"></a><span class="lineno">  544</span>&#160;                std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00545"></a><span class="lineno">  545</span>&#160;                PadStrideInfo(1, 1, 0, 0))</div><div class="line"><a name="l00546"></a><span class="lineno">  546</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;/Conv2D&quot;</span>)</div><div class="line"><a name="l00547"></a><span class="lineno">  547</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00548"></a><span class="lineno">  548</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_mean.npy&quot;</span>),</div><div class="line"><a name="l00549"></a><span class="lineno">  549</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_var.npy&quot;</span>),</div><div class="line"><a name="l00550"></a><span class="lineno">  550</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_gamma.npy&quot;</span>),</div><div class="line"><a name="l00551"></a><span class="lineno">  551</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path + <span class="stringliteral">&quot;_beta.npy&quot;</span>),</div><div class="line"><a name="l00552"></a><span class="lineno">  552</span>&#160;                0.000001f)</div><div class="line"><a name="l00553"></a><span class="lineno">  553</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;/BatchNorm&quot;</span>)</div><div class="line"><a name="l00554"></a><span class="lineno">  554</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path + <span class="stringliteral">&quot;/LeakyRelu&quot;</span>)</div><div class="line"><a name="l00555"></a><span class="lineno">  555</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00556"></a><span class="lineno">  556</span>&#160;                3U, 3U, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">filter_size</a> * 2,</div><div class="line"><a name="l00557"></a><span class="lineno">  557</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_w.npy&quot;</span>, weights_layout),</div><div class="line"><a name="l00558"></a><span class="lineno">  558</span>&#160;                std::unique_ptr&lt;arm_compute::graph::ITensorAccessor&gt;(<span class="keyword">nullptr</span>),</div><div class="line"><a name="l00559"></a><span class="lineno">  559</span>&#160;                PadStrideInfo(1, 1, 1, 1))</div><div class="line"><a name="l00560"></a><span class="lineno">  560</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;/Conv2D&quot;</span>)</div><div class="line"><a name="l00561"></a><span class="lineno">  561</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">BatchNormalizationLayer</a>(</div><div class="line"><a name="l00562"></a><span class="lineno">  562</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_mean.npy&quot;</span>),</div><div class="line"><a name="l00563"></a><span class="lineno">  563</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_var.npy&quot;</span>),</div><div class="line"><a name="l00564"></a><span class="lineno">  564</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_gamma.npy&quot;</span>),</div><div class="line"><a name="l00565"></a><span class="lineno">  565</span>&#160;                <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">get_weights_accessor</a>(data_path, total_path + <span class="stringliteral">&quot;batch_normalization_&quot;</span> + param_path2 + <span class="stringliteral">&quot;_beta.npy&quot;</span>),</div><div class="line"><a name="l00566"></a><span class="lineno">  566</span>&#160;                0.000001f)</div><div class="line"><a name="l00567"></a><span class="lineno">  567</span>&#160;            .<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;/BatchNorm&quot;</span>)</div><div class="line"><a name="l00568"></a><span class="lineno">  568</span>&#160;            &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">ActivationLayer</a>(ActivationLayerInfo(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a>, 0.1f)).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;conv2d_&quot;</span> + param_path2 + <span class="stringliteral">&quot;/LeakyRelu&quot;</span>);</div><div class="line"><a name="l00569"></a><span class="lineno">  569</span>&#160;</div><div class="line"><a name="l00570"></a><span class="lineno">  570</span>&#160;        graph &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer.xhtml">EltwiseLayer</a>(std::move(i_a), std::move(i_b), EltwiseOperation::Add).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;&quot;</span>).<a class="code" href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">set_name</a>(<span class="stringliteral">&quot;add_&quot;</span> + param_path + <span class="stringliteral">&quot;_&quot;</span> + param_path2);</div><div class="line"><a name="l00571"></a><span class="lineno">  571</span>&#160;    }</div><div class="line"><a name="l00572"></a><span class="lineno">  572</span>&#160;};</div><div class="line"><a name="l00573"></a><span class="lineno">  573</span>&#160;</div><div class="line"><a name="l00588"></a><span class="lineno"><a class="line" href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">  588</a></span>&#160;<span class="keywordtype">int</span> <a class="code" href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a>(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)</div><div class="line"><a name="l00589"></a><span class="lineno">  589</span>&#160;{</div><div class="line"><a name="l00590"></a><span class="lineno">  590</span>&#160;    <span class="keywordflow">return</span> arm_compute::utils::run_example&lt;GraphYOLOv3Example&gt;(argc, argv);</div><div class="line"><a name="l00591"></a><span class="lineno">  591</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_sub_stream.xhtml">arm_compute::graph::frontend::SubStream</a></div><div class="ttdoc">Sub stream class.</div><div class="ttdef"><b>Definition:</b> <a href="_sub_stream_8h_source.xhtml#l00047">SubStream.h:47</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml">arm_compute::graph::GraphConfig</a></div><div class="ttdoc">Graph configuration structure Device target types.</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00076">Types.h:76</a></div></div>
 <div class="ttc" id="_toolchain_support_8h_xhtml"><div class="ttname"><a href="_toolchain_support_8h.xhtml">ToolchainSupport.h</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ab14324184f90f342227699c161654b1b"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ab14324184f90f342227699c161654b1b">arm_compute::graph_utils::get_input_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_input_accessor(const arm_compute::utils::CommonGraphParams &amp;graph_parameters, std::unique_ptr&lt; IPreprocessor &gt; preprocessor=nullptr, bool bgr=true)</div><div class="ttdoc">Generates appropriate input accessor according to the specified graph parameters. ...</div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00408">GraphUtils.h:408</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_tensor_descriptor_xhtml"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">arm_compute::graph::TensorDescriptor</a></div><div class="ttdoc">Tensor metadata class. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_descriptor_8h_source.xhtml#l00038">TensorDescriptor.h:38</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ab14324184f90f342227699c161654b1b"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ab14324184f90f342227699c161654b1b">arm_compute::graph_utils::get_input_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_input_accessor(const arm_compute::utils::CommonGraphParams &amp;graph_parameters, std::unique_ptr&lt; IPreprocessor &gt; preprocessor=nullptr, bool bgr=true)</div><div class="ttdoc">Generates appropriate input accessor according to the specified graph parameters.</div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00438">GraphUtils.h:438</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_tensor_descriptor_xhtml"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml">arm_compute::graph::TensorDescriptor</a></div><div class="ttdoc">Tensor metadata class.</div><div class="ttdef"><b>Definition:</b> <a href="_tensor_descriptor_8h_source.xhtml#l00038">TensorDescriptor.h:38</a></div></div>
 <div class="ttc" id="utils_2_utils_8h_xhtml"><div class="ttname"><a href="utils_2_utils_8h.xhtml">Utils.h</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_acc5dddee1cbe93a4eaf0a9f74ee96bb7"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#acc5dddee1cbe93a4eaf0a9f74ee96bb7">arm_compute::support::cpp11::to_string</a></div><div class="ttdeci">std::string to_string(T &amp;&amp;value)</div><div class="ttdoc">Convert integer and float values to string. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00210">ToolchainSupport.h:210</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_acc5dddee1cbe93a4eaf0a9f74ee96bb7"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#acc5dddee1cbe93a4eaf0a9f74ee96bb7">arm_compute::support::cpp11::to_string</a></div><div class="ttdeci">std::string to_string(T &amp;&amp;value)</div><div class="ttdoc">Convert integer and float values to string.</div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00210">ToolchainSupport.h:210</a></div></div>
 <div class="ttc" id="_graph_8h_xhtml"><div class="ttname"><a href="_graph_8h.xhtml">graph.h</a></div></div>
-<div class="ttc" id="classarm__compute_1_1utils_1_1_common_graph_options_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_common_graph_options.xhtml">arm_compute::utils::CommonGraphOptions</a></div><div class="ttdoc">Common command line options used to configure the graph examples. </div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8h_source.xhtml#l00125">CommonGraphOptions.h:125</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2"><div class="ttname"><a href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">arm_compute::InterpolationPolicy::NEAREST_NEIGHBOR</a></div><div class="ttdoc">Output values are defined to match the source pixel whose center is nearest to the sample position...</div></div>
-<div class="ttc" id="classarm__compute_1_1utils_1_1_command_line_parser_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_command_line_parser.xhtml">arm_compute::utils::CommandLineParser</a></div><div class="ttdoc">Class to parse command line arguments. </div><div class="ttdef"><b>Definition:</b> <a href="_command_line_parser_8h_source.xhtml#l00044">CommandLineParser.h:44</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a5cabfb35cd0014387f7ec2a0c362c20f"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a5cabfb35cd0014387f7ec2a0c362c20f">arm_compute::graph::GraphConfig::tuner_file</a></div><div class="ttdeci">std::string tuner_file</div><div class="ttdoc">File to load/store tuning values from. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00081">Types.h:81</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">arm_compute::graph::frontend::UpsampleLayer</a></div><div class="ttdoc">Upsample Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00958">Layers.h:958</a></div></div>
-<div class="ttc" id="_error_8h_xhtml_ad39a3601153da57978bb5124ace35d36"><div class="ttname"><a href="_error_8h.xhtml#ad39a3601153da57978bb5124ace35d36">ARM_COMPUTE_EXIT_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_EXIT_ON_MSG(cond,...)</div><div class="ttdoc">If the condition is true, the given message is printed and program exits. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00277">Error.h:277</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_input_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">arm_compute::graph::frontend::InputLayer</a></div><div class="ttdoc">Input Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00045">Layers.h:45</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">arm_compute::graph::frontend::YOLOLayer</a></div><div class="ttdoc">YOLO Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00984">Layers.h:984</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a2237230a1357685ba2472c2d6fca17fa"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">arm_compute::test::validation::filter_size</a></div><div class="ttdeci">filter_size</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_convolution_8cpp_source.xhtml#l00134">Convolution.cpp:134</a></div></div>
+<div class="ttc" id="classarm__compute_1_1utils_1_1_common_graph_options_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_common_graph_options.xhtml">arm_compute::utils::CommonGraphOptions</a></div><div class="ttdoc">Common command line options used to configure the graph examples.</div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8h_source.xhtml#l00125">CommonGraphOptions.h:125</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2"><div class="ttname"><a href="namespacearm__compute.xhtml#a966a9c417ce5e94dca08d9b5e745c0c9a7f5ccbc3d30c2cd3fd04d567946cbde2">arm_compute::InterpolationPolicy::NEAREST_NEIGHBOR</a></div><div class="ttdoc">Output values are defined to match the source pixel whose center is nearest to the sample position.</div></div>
+<div class="ttc" id="classarm__compute_1_1utils_1_1_command_line_parser_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_command_line_parser.xhtml">arm_compute::utils::CommandLineParser</a></div><div class="ttdoc">Class to parse command line arguments.</div><div class="ttdef"><b>Definition:</b> <a href="_command_line_parser_8h_source.xhtml#l00044">CommandLineParser.h:44</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a5cabfb35cd0014387f7ec2a0c362c20f"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a5cabfb35cd0014387f7ec2a0c362c20f">arm_compute::graph::GraphConfig::tuner_file</a></div><div class="ttdeci">std::string tuner_file</div><div class="ttdoc">File to load/store tuning values from.</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00082">Types.h:82</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_upsample_layer.xhtml">arm_compute::graph::frontend::UpsampleLayer</a></div><div class="ttdoc">Upsample Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00990">Layers.h:990</a></div></div>
+<div class="ttc" id="_error_8h_xhtml_ad39a3601153da57978bb5124ace35d36"><div class="ttname"><a href="_error_8h.xhtml#ad39a3601153da57978bb5124ace35d36">ARM_COMPUTE_EXIT_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_EXIT_ON_MSG(cond,...)</div><div class="ttdoc">If the condition is true, the given message is printed and program exits.</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00277">Error.h:277</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_input_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_input_layer.xhtml">arm_compute::graph::frontend::InputLayer</a></div><div class="ttdoc">Input Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00045">Layers.h:45</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_y_o_l_o_layer.xhtml">arm_compute::graph::frontend::YOLOLayer</a></div><div class="ttdoc">YOLO Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l01016">Layers.h:1016</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a2237230a1357685ba2472c2d6fca17fa"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a2237230a1357685ba2472c2d6fca17fa">arm_compute::test::validation::filter_size</a></div><div class="ttdeci">filter_size</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_convolution_8cpp_source.xhtml#l00119">Convolution.cpp:119</a></div></div>
 <div class="ttc" id="_graph_utils_8h_xhtml"><div class="ttname"><a href="_graph_utils_8h.xhtml">GraphUtils.h</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a04125f2e4cecaffad8724cee7e1c19b0"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a04125f2e4cecaffad8724cee7e1c19b0">arm_compute::utils::consume_common_graph_parameters</a></div><div class="ttdeci">CommonGraphParams consume_common_graph_parameters(CommonGraphOptions &amp;options)</div><div class="ttdoc">Consumes the common graph options and creates a structure containing any information. </div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8cpp_source.xhtml#l00169">CommonGraphOptions.cpp:169</a></div></div>
-<div class="ttc" id="classarm__compute_1_1utils_1_1_example_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_example.xhtml">arm_compute::utils::Example</a></div><div class="ttdoc">Abstract Example class. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8h_source.xhtml#l00070">Utils.h:70</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">arm_compute::graph::frontend::ActivationLayer</a></div><div class="ttdoc">Activation Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00094">Layers.h:94</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC</a></div><div class="ttdoc">Logistic (  ) </div></div>
-<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_abdba606a789b8d664774f17d18f45cfe"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#abdba606a789b8d664774f17d18f45cfe">arm_compute::support::cpp11::stoi</a></div><div class="ttdeci">int stoi(const std::string &amp;str, std::size_t *pos=0, NumericBase base=NumericBase::BASE_10)</div><div class="ttdoc">Convert string values to integer. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00063">ToolchainSupport.h:63</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f"><div class="ttname"><a href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">arm_compute::DataLayout::NCHW</a></div><div class="ttdoc">Num samples, channels, height, width. </div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">arm_compute::graph::frontend::ConvolutionLayer</a></div><div class="ttdoc">Convolution Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00303">Layers.h:303</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ab3a897163a7fe23208f1d9c618062ee2"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ab3a897163a7fe23208f1d9c618062ee2">arm_compute::graph_utils::permute_shape</a></div><div class="ttdeci">TensorShape permute_shape(TensorShape tensor_shape, DataLayout in_data_layout, DataLayout out_data_layout)</div><div class="ttdoc">Permutes a given tensor shape given the input and output data layout. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00506">GraphUtils.h:506</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a04125f2e4cecaffad8724cee7e1c19b0"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a04125f2e4cecaffad8724cee7e1c19b0">arm_compute::utils::consume_common_graph_parameters</a></div><div class="ttdeci">CommonGraphParams consume_common_graph_parameters(CommonGraphOptions &amp;options)</div><div class="ttdoc">Consumes the common graph options and creates a structure containing any information.</div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8cpp_source.xhtml#l00169">CommonGraphOptions.cpp:169</a></div></div>
+<div class="ttc" id="classarm__compute_1_1utils_1_1_example_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_example.xhtml">arm_compute::utils::Example</a></div><div class="ttdoc">Abstract Example class.</div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8h_source.xhtml#l00070">Utils.h:70</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_activation_layer.xhtml">arm_compute::graph::frontend::ActivationLayer</a></div><div class="ttdoc">Activation Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00094">Layers.h:94</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaa72ee60fba0509af07cbbd91398d8db9d">arm_compute::ActivationLayerInfo::ActivationFunction::LOGISTIC</a></div><div class="ttdoc">Logistic (  )</div></div>
+<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_abdba606a789b8d664774f17d18f45cfe"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#abdba606a789b8d664774f17d18f45cfe">arm_compute::support::cpp11::stoi</a></div><div class="ttdeci">int stoi(const std::string &amp;str, std::size_t *pos=0, NumericBase base=NumericBase::BASE_10)</div><div class="ttdoc">Convert string values to integer.</div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00063">ToolchainSupport.h:63</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f"><div class="ttname"><a href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0a6b99f356fe3b30a2a850b5ea897c289f">arm_compute::DataLayout::NCHW</a></div><div class="ttdoc">Num samples, channels, height, width.</div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_convolution_layer.xhtml">arm_compute::graph::frontend::ConvolutionLayer</a></div><div class="ttdoc">Convolution Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00303">Layers.h:303</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ab3a897163a7fe23208f1d9c618062ee2"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ab3a897163a7fe23208f1d9c618062ee2">arm_compute::graph_utils::permute_shape</a></div><div class="ttdeci">TensorShape permute_shape(TensorShape tensor_shape, DataLayout in_data_layout, DataLayout out_data_layout)</div><div class="ttdoc">Permutes a given tensor shape given the input and output data layout.</div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00569">GraphUtils.h:569</a></div></div>
 <div class="ttc" id="_common_graph_options_8h_xhtml"><div class="ttname"><a href="_common_graph_options_8h.xhtml">CommonGraphOptions.h</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_a14f46283f316e7f0fad301d5c1507e9f"><div class="ttname"><a href="namespacearm__compute.xhtml#a14f46283f316e7f0fad301d5c1507e9f">arm_compute::is_data_type_quantized_asymmetric</a></div><div class="ttdeci">bool is_data_type_quantized_asymmetric(DataType dt)</div><div class="ttdoc">Check if a given data type is of asymmetric quantized type. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_utils_8h_source.xhtml#l00996">Utils.h:996</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_tensor_descriptor_xhtml_a2497d23622ec1343e507331ae1388f00"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml#a2497d23622ec1343e507331ae1388f00">arm_compute::graph::TensorDescriptor::set_layout</a></div><div class="ttdeci">TensorDescriptor &amp; set_layout(DataLayout data_layout)</div><div class="ttdoc">Sets tensor descriptor data layout. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_descriptor_8h_source.xhtml#l00086">TensorDescriptor.h:86</a></div></div>
-<div class="ttc" id="structarm__compute_1_1utils_1_1_common_graph_params_xhtml"><div class="ttname"><a href="structarm__compute_1_1utils_1_1_common_graph_params.xhtml">arm_compute::utils::CommonGraphParams</a></div><div class="ttdoc">Structure holding all the common graph parameters. </div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8h_source.xhtml#l00088">CommonGraphOptions.h:88</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_a14f46283f316e7f0fad301d5c1507e9f"><div class="ttname"><a href="namespacearm__compute.xhtml#a14f46283f316e7f0fad301d5c1507e9f">arm_compute::is_data_type_quantized_asymmetric</a></div><div class="ttdeci">bool is_data_type_quantized_asymmetric(DataType dt)</div><div class="ttdoc">Check if a given data type is of asymmetric quantized type.</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_utils_8h_source.xhtml#l01014">Utils.h:1014</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_tensor_descriptor_xhtml_a2497d23622ec1343e507331ae1388f00"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_tensor_descriptor.xhtml#a2497d23622ec1343e507331ae1388f00">arm_compute::graph::TensorDescriptor::set_layout</a></div><div class="ttdeci">TensorDescriptor &amp; set_layout(DataLayout data_layout)</div><div class="ttdoc">Sets tensor descriptor data layout.</div><div class="ttdef"><b>Definition:</b> <a href="_tensor_descriptor_8h_source.xhtml#l00086">TensorDescriptor.h:86</a></div></div>
+<div class="ttc" id="structarm__compute_1_1utils_1_1_common_graph_params_xhtml"><div class="ttname"><a href="structarm__compute_1_1utils_1_1_common_graph_params.xhtml">arm_compute::utils::CommonGraphParams</a></div><div class="ttdoc">Structure holding all the common graph parameters.</div><div class="ttdef"><b>Definition:</b> <a href="_common_graph_options_8h_source.xhtml#l00088">CommonGraphOptions.h:88</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1utils_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml">arm_compute::utils</a></div><div class="ttdef"><b>Definition:</b> <a href="_cast_8h_source.xhtml#l00031">Cast.h:31</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml">arm_compute::graph_utils</a></div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00044">GraphUtils.h:44</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">arm_compute::ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a></div><div class="ttdoc">Leaky Rectifier (  ) </div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ae3d177d243f5fb34544105a4ee4e1f58"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">arm_compute::graph_utils::get_output_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_output_accessor(const arm_compute::utils::CommonGraphParams &amp;graph_parameters, size_t top_n=5, bool is_validation=false, std::ostream &amp;output_stream=std::cout)</div><div class="ttdoc">Generates appropriate output accessor according to the specified graph parameters. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00454">GraphUtils.h:454</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a9da74af255a3e6ea61180d4a03192a48"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a9da74af255a3e6ea61180d4a03192a48">arm_compute::graph::GraphConfig::use_tuner</a></div><div class="ttdeci">bool use_tuner</div><div class="ttdoc">Use a tuner in tunable backends. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00079">Types.h:79</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">arm_compute::ActivationLayerInfo::ActivationFunction::LINEAR</a></div><div class="ttdoc">Linear (  ) </div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_output_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">arm_compute::graph::frontend::OutputLayer</a></div><div class="ttdoc">Output Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00070">Layers.h:70</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a30bee0b52a919bbcb1dc48b1b6546a16"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">arm_compute::graph_utils::get_weights_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_weights_accessor(const std::string &amp;path, const std::string &amp;data_file, DataLayout file_layout=DataLayout::NCHW)</div><div class="ttdoc">Generates appropriate weights accessor according to the specified path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00386">GraphUtils.h:386</a></div></div>
-<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a08963f7335eef295237ab460863bc3d5"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a08963f7335eef295237ab460863bc3d5">arm_compute::graph::GraphConfig::num_threads</a></div><div class="ttdeci">int num_threads</div><div class="ttdoc">Number of threads to use (thread capable backends), if 0 the backend will auto-initialize, if -1 the backend will stay as it is. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00080">Types.h:80</a></div></div>
-<div class="ttc" id="graph__yolov3_8cpp_xhtml_a3c04138a5bfe5d72780bb7e82a18e627"><div class="ttname"><a href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a></div><div class="ttdeci">int main(int argc, char **argv)</div><div class="ttdoc">Main program for YOLOv3. </div><div class="ttdef"><b>Definition:</b> <a href="graph__yolov3_8cpp_source.xhtml#l00586">graph_yolov3.cpp:586</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_stream_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">arm_compute::graph::frontend::Stream</a></div><div class="ttdoc">Stream frontend class to construct simple graphs in a stream fashion. </div><div class="ttdef"><b>Definition:</b> <a href="_stream_8h_source.xhtml#l00045">Stream.h:45</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaac7e80a3de04936f4e423e1b564fdca10">arm_compute::ActivationLayerInfo::ActivationFunction::LEAKY_RELU</a></div><div class="ttdoc">Leaky Rectifier (  )</div></div>
+<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_ae3d177d243f5fb34544105a4ee4e1f58"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#ae3d177d243f5fb34544105a4ee4e1f58">arm_compute::graph_utils::get_output_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_output_accessor(const arm_compute::utils::CommonGraphParams &amp;graph_parameters, size_t top_n=5, bool is_validation=false, std::ostream &amp;output_stream=std::cout)</div><div class="ttdoc">Generates appropriate output accessor according to the specified graph parameters.</div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00484">GraphUtils.h:484</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a9da74af255a3e6ea61180d4a03192a48"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a9da74af255a3e6ea61180d4a03192a48">arm_compute::graph::GraphConfig::use_tuner</a></div><div class="ttdeci">bool use_tuner</div><div class="ttdoc">Use a tuner in tunable backends.</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00080">Types.h:80</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml_a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaaaac544aacc3615aada24897a215f5046">arm_compute::ActivationLayerInfo::ActivationFunction::LINEAR</a></div><div class="ttdoc">Linear (  )</div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_output_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_output_layer.xhtml">arm_compute::graph::frontend::OutputLayer</a></div><div class="ttdoc">Output Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00070">Layers.h:70</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a30bee0b52a919bbcb1dc48b1b6546a16"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a30bee0b52a919bbcb1dc48b1b6546a16">arm_compute::graph_utils::get_weights_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_weights_accessor(const std::string &amp;path, const std::string &amp;data_file, DataLayout file_layout=DataLayout::NCHW)</div><div class="ttdoc">Generates appropriate weights accessor according to the specified path.</div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00416">GraphUtils.h:416</a></div></div>
+<div class="ttc" id="structarm__compute_1_1graph_1_1_graph_config_xhtml_a08963f7335eef295237ab460863bc3d5"><div class="ttname"><a href="structarm__compute_1_1graph_1_1_graph_config.xhtml#a08963f7335eef295237ab460863bc3d5">arm_compute::graph::GraphConfig::num_threads</a></div><div class="ttdeci">int num_threads</div><div class="ttdoc">Number of threads to use (thread capable backends), if 0 the backend will auto-initialize,...</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00081">Types.h:81</a></div></div>
+<div class="ttc" id="graph__yolov3_8cpp_xhtml_a3c04138a5bfe5d72780bb7e82a18e627"><div class="ttname"><a href="graph__yolov3_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a></div><div class="ttdeci">int main(int argc, char **argv)</div><div class="ttdoc">Main program for YOLOv3.</div><div class="ttdef"><b>Definition:</b> <a href="graph__yolov3_8cpp_source.xhtml#l00588">graph_yolov3.cpp:588</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_stream_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_stream.xhtml">arm_compute::graph::frontend::Stream</a></div><div class="ttdoc">Stream frontend class to construct simple graphs in a stream fashion.</div><div class="ttdef"><b>Definition:</b> <a href="_stream_8h_source.xhtml#l00045">Stream.h:45</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1graph_1_1frontend_xhtml"><div class="ttname"><a href="namespacearm__compute_1_1graph_1_1frontend.xhtml">arm_compute::graph::frontend</a></div><div class="ttdef"><b>Definition:</b> <a href="_i_layer_8h_source.xhtml#l00031">ILayer.h:31</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">arm_compute::graph::frontend::BatchNormalizationLayer</a></div><div class="ttdoc">Batchnormalization Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00118">Layers.h:118</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer.xhtml">arm_compute::graph::frontend::EltwiseLayer</a></div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00482">Layers.h:482</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_ad1d5cce2d9e9a5d61c243e5c989112e0"><div class="ttname"><a href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">arm_compute::DataLayout</a></div><div class="ttdeci">DataLayout</div><div class="ttdoc">[DataLayout enum definition] </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00111">Types.h:111</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_i_layer_xhtml_af664a2598e05f8de28fb9f94e3902886"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">arm_compute::graph::frontend::ILayer::set_name</a></div><div class="ttdeci">ILayer &amp; set_name(std::string name)</div><div class="ttdoc">Sets the name of the layer. </div><div class="ttdef"><b>Definition:</b> <a href="_i_layer_8h_source.xhtml#l00055">ILayer.h:55</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">arm_compute::graph::frontend::ConcatLayer</a></div><div class="ttdoc">Concat Layer. </div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00217">Layers.h:217</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_batch_normalization_layer.xhtml">arm_compute::graph::frontend::BatchNormalizationLayer</a></div><div class="ttdoc">Batchnormalization Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00118">Layers.h:118</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_eltwise_layer.xhtml">arm_compute::graph::frontend::EltwiseLayer</a></div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00514">Layers.h:514</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_ad1d5cce2d9e9a5d61c243e5c989112e0"><div class="ttname"><a href="namespacearm__compute.xhtml#ad1d5cce2d9e9a5d61c243e5c989112e0">arm_compute::DataLayout</a></div><div class="ttdeci">DataLayout</div><div class="ttdoc">[DataLayout enum definition]</div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00111">Types.h:111</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_i_layer_xhtml_af664a2598e05f8de28fb9f94e3902886"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_i_layer.xhtml#af664a2598e05f8de28fb9f94e3902886">arm_compute::graph::frontend::ILayer::set_name</a></div><div class="ttdeci">ILayer &amp; set_name(std::string name)</div><div class="ttdoc">Sets the name of the layer.</div><div class="ttdef"><b>Definition:</b> <a href="_i_layer_8h_source.xhtml#l00055">ILayer.h:55</a></div></div>
+<div class="ttc" id="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1frontend_1_1_concat_layer.xhtml">arm_compute::graph::frontend::ConcatLayer</a></div><div class="ttdoc">Concat Layer.</div><div class="ttdef"><b>Definition:</b> <a href="_layers_8h_source.xhtml#l00217">Layers.h:217</a></div></div>
 </div><!-- fragment --></div><!-- contents -->
 </div><!-- doc-content -->
 <!-- start footer part -->
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="graph__yolov3_8cpp.xhtml">graph_yolov3.cpp</a></li>
-    <li class="footer">Generated on Thu Nov 22 2018 11:57:38 for Compute Library by
+    <li class="footer">Generated on Thu Feb 28 2019 12:24:49 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
-    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.15 </li>
   </ul>
 </div>
 </body>