arm_compute v19.02
Change-Id: I853a3ecf38f206da13c1b03640c8adf73c20477c
diff --git a/src/runtime/CPP/CPPScheduler.cpp b/src/runtime/CPP/CPPScheduler.cpp
index 2b179fd..5916bb4 100644
--- a/src/runtime/CPP/CPPScheduler.cpp
+++ b/src/runtime/CPP/CPPScheduler.cpp
@@ -190,15 +190,19 @@
return;
}
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
try
{
+#endif /* ARM_COMPUTE_EXCEPTIONS_ENABLED */
process_workloads(*_workloads, *_feeder, _info);
+
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
}
catch(...)
{
_current_exception = std::current_exception();
}
-
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
_job_complete = true;
lock.unlock();
_cv.notify_one();
@@ -250,18 +254,21 @@
info.thread_id = t;
process_workloads(workloads, feeder, info);
-
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
try
{
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
for(auto &thread : _threads)
{
thread.wait();
}
+#ifndef ARM_COMPUTE_EXCEPTIONS_DISABLED
}
catch(const std::system_error &e)
{
std::cerr << "Caught system_error with code " << e.code() << " meaning " << e.what() << '\n';
}
+#endif /* ARM_COMPUTE_EXCEPTIONS_DISABLED */
}
#endif /* DOXYGEN_SKIP_THIS */
diff --git a/src/runtime/CPP/functions/CPPDetectionOutputLayer.cpp b/src/runtime/CPP/functions/CPPDetectionOutputLayer.cpp
new file mode 100644
index 0000000..79e619c
--- /dev/null
+++ b/src/runtime/CPP/functions/CPPDetectionOutputLayer.cpp
@@ -0,0 +1,682 @@
+/*
+ * Copyright (c) 2018-2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/CPP/functions/CPPDetectionOutputLayer.h"
+
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Validate.h"
+#include "support/ToolchainSupport.h"
+
+#include <list>
+
+namespace arm_compute
+{
+namespace
+{
+Status detection_layer_validate_arguments(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input_loc, 1, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, input_conf, input_priorbox);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_loc->num_dimensions() > 2, "The location input tensor should be [C1, N].");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_conf->num_dimensions() > 2, "The location input tensor should be [C2, N].");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(input_priorbox->num_dimensions() > 3, "The priorbox input tensor should be [C3, 2, N].");
+
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(info.eta() <= 0.f && info.eta() > 1.f, "Eta should be between 0 and 1");
+
+ const int num_priors = input_priorbox->tensor_shape()[0] / 4;
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_loc_classes() * 4)) != input_loc->tensor_shape()[0], "Number of priors must match number of location predictions.");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(static_cast<size_t>((num_priors * info.num_classes())) != input_conf->tensor_shape()[0], "Number of priors must match number of confidence predictions.");
+
+ // Validate configured output
+ if(output->total_size() != 0)
+ {
+ const unsigned int max_size = info.keep_top_k() * (input_loc->num_dimensions() > 1 ? input_loc->dimension(1) : 1);
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DIMENSIONS(output->tensor_shape(), TensorShape(7U, max_size));
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input_loc, output);
+ }
+
+ return Status{};
+}
+
+/** Function used to sort pair<float, T> in descend order based on the score (first) value.
+ */
+template <typename T>
+bool SortScorePairDescend(const std::pair<float, T> &pair1,
+ const std::pair<float, T> &pair2)
+{
+ return pair1.first > pair2.first;
+}
+
+/** Get location predictions from input_loc.
+ *
+ * @param[in] input_loc The input location prediction.
+ * @param[in] num The number of images.
+ * @param[in] num_priors number of predictions per class.
+ * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
+ * and is equal to number of classes needed to predict otherwise.
+ * @param[in] share_location If true, all classes share the same location prediction.
+ * @param[out] all_location_predictions All the location predictions.
+ *
+ */
+void retrieve_all_loc_predictions(const ITensor *input_loc, const int num,
+ const int num_priors, const int num_loc_classes,
+ const bool share_location, std::vector<LabelBBox> &all_location_predictions)
+{
+ for(int i = 0; i < num; ++i)
+ {
+ for(int c = 0; c < num_loc_classes; ++c)
+ {
+ int label = share_location ? -1 : c;
+ if(all_location_predictions[i].find(label) == all_location_predictions[i].end())
+ {
+ all_location_predictions[i][label].resize(num_priors);
+ }
+ else
+ {
+ ARM_COMPUTE_ERROR_ON(all_location_predictions[i][label].size() != static_cast<size_t>(num_priors));
+ break;
+ }
+ }
+ }
+ for(int i = 0; i < num; ++i)
+ {
+ for(int p = 0; p < num_priors; ++p)
+ {
+ for(int c = 0; c < num_loc_classes; ++c)
+ {
+ const int label = share_location ? -1 : c;
+ const int base_ptr = i * num_priors * num_loc_classes * 4 + p * num_loc_classes * 4 + c * 4;
+ //xmin, ymin, xmax, ymax
+ all_location_predictions[i][label][p][0] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr)));
+ all_location_predictions[i][label][p][1] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 1)));
+ all_location_predictions[i][label][p][2] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 2)));
+ all_location_predictions[i][label][p][3] = *reinterpret_cast<float *>(input_loc->ptr_to_element(Coordinates(base_ptr + 3)));
+ }
+ }
+ }
+}
+
+/** Get confidence predictions from input_conf.
+ *
+ * @param[in] input_loc The input location prediction.
+ * @param[in] num The number of images.
+ * @param[in] num_priors Number of predictions per class.
+ * @param[in] num_loc_classes Number of location classes. It is 1 if share_location is true,
+ * and is equal to number of classes needed to predict otherwise.
+ * @param[out] all_location_predictions All the location predictions.
+ *
+ */
+void retrieve_all_conf_scores(const ITensor *input_conf, const int num,
+ const int num_priors, const int num_classes,
+ std::vector<std::map<int, std::vector<float>>> &all_confidence_scores)
+{
+ std::vector<float> tmp_buffer;
+ tmp_buffer.resize(num * num_priors * num_classes);
+ for(int i = 0; i < num; ++i)
+ {
+ for(int c = 0; c < num_classes; ++c)
+ {
+ for(int p = 0; p < num_priors; ++p)
+ {
+ tmp_buffer[i * num_classes * num_priors + c * num_priors + p] =
+ *reinterpret_cast<float *>(input_conf->ptr_to_element(Coordinates(i * num_classes * num_priors + p * num_classes + c)));
+ }
+ }
+ }
+ for(int i = 0; i < num; ++i)
+ {
+ for(int c = 0; c < num_classes; ++c)
+ {
+ all_confidence_scores[i][c].resize(num_priors);
+ all_confidence_scores[i][c].assign(&tmp_buffer[i * num_classes * num_priors + c * num_priors],
+ &tmp_buffer[i * num_classes * num_priors + c * num_priors + num_priors]);
+ }
+ }
+}
+
+/** Get prior boxes from input_priorbox.
+ *
+ * @param[in] input_priorbox The input location prediction.
+ * @param[in] num_priors Number of priors.
+ * @param[in] num_loc_classes number of location classes. It is 1 if share_location is true,
+ * and is equal to number of classes needed to predict otherwise.
+ * @param[out] all_prior_bboxes If true, all classes share the same location prediction.
+ * @param[out] all_location_predictions All the location predictions.
+ *
+ */
+void retrieve_all_priorbox(const ITensor *input_priorbox,
+ const int num_priors,
+ std::vector<NormalizedBBox> &all_prior_bboxes,
+ std::vector<std::array<float, 4>> &all_prior_variances)
+{
+ for(int i = 0; i < num_priors; ++i)
+ {
+ all_prior_bboxes[i] =
+ {
+ {
+ *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4))),
+ *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 1))),
+ *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 2))),
+ *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates(i * 4 + 3)))
+ }
+ };
+ }
+
+ std::array<float, 4> var({ { 0, 0, 0, 0 } });
+ for(int i = 0; i < num_priors; ++i)
+ {
+ for(int j = 0; j < 4; ++j)
+ {
+ var[j] = *reinterpret_cast<float *>(input_priorbox->ptr_to_element(Coordinates((num_priors + i) * 4 + j)));
+ }
+ all_prior_variances[i] = var;
+ }
+}
+
+/** Decode a bbox according to a prior bbox.
+ *
+ * @param[in] prior_bbox The input prior bounding boxes.
+ * @param[in] prior_variance The corresponding input variance.
+ * @param[in] code_type The detection output code type used to decode the results.
+ * @param[in] variance_encoded_in_target If true, the variance is encoded in target.
+ * @param[in] clip_bbox If true, the results should be between 0.f and 1.f.
+ * @param[in] bbox The input bbox to decode
+ * @param[out] decode_bbox The decoded bboxes.
+ *
+ */
+void DecodeBBox(const NormalizedBBox &prior_bbox, const std::array<float, 4> &prior_variance,
+ const DetectionOutputLayerCodeType code_type, const bool variance_encoded_in_target,
+ const bool clip_bbox, const NormalizedBBox &bbox, NormalizedBBox &decode_bbox)
+{
+ // if the variance is encoded in target, we simply need to add the offset predictions
+ // otherwise we need to scale the offset accordingly.
+ switch(code_type)
+ {
+ case DetectionOutputLayerCodeType::CORNER:
+ {
+ decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]);
+ decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]);
+ decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]);
+ decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]);
+
+ break;
+ }
+ case DetectionOutputLayerCodeType::CENTER_SIZE:
+ {
+ const float prior_width = prior_bbox[2] - prior_bbox[0];
+ const float prior_height = prior_bbox[3] - prior_bbox[1];
+
+ // Check if the prior width and height are right
+ ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
+ ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
+
+ const float prior_center_x = (prior_bbox[0] + prior_bbox[2]) / 2.;
+ const float prior_center_y = (prior_bbox[1] + prior_bbox[3]) / 2.;
+
+ const float decode_bbox_center_x = (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width + prior_center_x;
+ const float decode_bbox_center_y = (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height + prior_center_y;
+ const float decode_bbox_width = (variance_encoded_in_target ? std::exp(bbox[2]) : std::exp(prior_variance[2] * bbox[2])) * prior_width;
+ const float decode_bbox_height = (variance_encoded_in_target ? std::exp(bbox[3]) : std::exp(prior_variance[3] * bbox[3])) * prior_height;
+
+ decode_bbox[0] = (decode_bbox_center_x - decode_bbox_width / 2.f);
+ decode_bbox[1] = (decode_bbox_center_y - decode_bbox_height / 2.f);
+ decode_bbox[2] = (decode_bbox_center_x + decode_bbox_width / 2.f);
+ decode_bbox[3] = (decode_bbox_center_y + decode_bbox_height / 2.f);
+
+ break;
+ }
+ case DetectionOutputLayerCodeType::CORNER_SIZE:
+ {
+ const float prior_width = prior_bbox[2] - prior_bbox[0];
+ const float prior_height = prior_bbox[3] - prior_bbox[1];
+
+ // Check if the prior width and height are greater than 0
+ ARM_COMPUTE_ERROR_ON(prior_width <= 0.f);
+ ARM_COMPUTE_ERROR_ON(prior_height <= 0.f);
+
+ decode_bbox[0] = prior_bbox[0] + (variance_encoded_in_target ? bbox[0] : prior_variance[0] * bbox[0]) * prior_width;
+ decode_bbox[1] = prior_bbox[1] + (variance_encoded_in_target ? bbox[1] : prior_variance[1] * bbox[1]) * prior_height;
+ decode_bbox[2] = prior_bbox[2] + (variance_encoded_in_target ? bbox[2] : prior_variance[2] * bbox[2]) * prior_width;
+ decode_bbox[3] = prior_bbox[3] + (variance_encoded_in_target ? bbox[3] : prior_variance[3] * bbox[3]) * prior_height;
+
+ break;
+ }
+ default:
+ ARM_COMPUTE_ERROR("Unsupported Detection Output Code Type.");
+ }
+
+ if(clip_bbox)
+ {
+ for(auto &d_bbox : decode_bbox)
+ {
+ d_bbox = utility::clamp(d_bbox, 0.f, 1.f);
+ }
+ }
+}
+
+/** Do non maximum suppression given bboxes and scores.
+ *
+ * @param[in] bboxes The input bounding boxes.
+ * @param[in] scores The corresponding input confidence.
+ * @param[in] score_threshold The threshold used to filter detection results.
+ * @param[in] nms_threshold The threshold used in non maximum suppression.
+ * @param[in] eta Adaptation rate for nms threshold.
+ * @param[in] top_k If not -1, keep at most top_k picked indices.
+ * @param[out] indices The kept indices of bboxes after nms.
+ *
+ */
+void ApplyNMSFast(const std::vector<NormalizedBBox> &bboxes,
+ const std::vector<float> &scores, const float score_threshold,
+ const float nms_threshold, const float eta, const int top_k,
+ std::vector<int> &indices)
+{
+ ARM_COMPUTE_ERROR_ON_MSG(bboxes.size() != scores.size(), "bboxes and scores have different size.");
+
+ // Get top_k scores (with corresponding indices).
+ std::list<std::pair<float, int>> score_index_vec;
+
+ // Generate index score pairs.
+ for(size_t i = 0; i < scores.size(); ++i)
+ {
+ if(scores[i] > score_threshold)
+ {
+ score_index_vec.emplace_back(std::make_pair(scores[i], i));
+ }
+ }
+
+ // Sort the score pair according to the scores in descending order
+ score_index_vec.sort(SortScorePairDescend<int>);
+
+ // Keep top_k scores if needed.
+ const int score_index_vec_size = score_index_vec.size();
+ if(top_k > -1 && top_k < score_index_vec_size)
+ {
+ score_index_vec.resize(top_k);
+ }
+
+ // Do nms.
+ float adaptive_threshold = nms_threshold;
+ indices.clear();
+
+ while(!score_index_vec.empty())
+ {
+ const int idx = score_index_vec.front().second;
+ bool keep = true;
+ for(int kept_idx : indices)
+ {
+ if(keep)
+ {
+ // Compute the jaccard (intersection over union IoU) overlap between two bboxes.
+ NormalizedBBox intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
+ if(bboxes[kept_idx][0] > bboxes[idx][2] || bboxes[kept_idx][2] < bboxes[idx][0] || bboxes[kept_idx][1] > bboxes[idx][3] || bboxes[kept_idx][3] < bboxes[idx][1])
+ {
+ intersect_bbox = std::array<float, 4>({ { 0, 0, 0, 0 } });
+ }
+ else
+ {
+ intersect_bbox = std::array<float, 4>({ {
+ std::max(bboxes[idx][0], bboxes[kept_idx][0]),
+ std::max(bboxes[idx][1], bboxes[kept_idx][1]),
+ std::min(bboxes[idx][2], bboxes[kept_idx][2]),
+ std::min(bboxes[idx][3], bboxes[kept_idx][3])
+ }
+ });
+ }
+
+ float intersect_width = intersect_bbox[2] - intersect_bbox[0];
+ float intersect_height = intersect_bbox[3] - intersect_bbox[1];
+
+ float overlap = 0.f;
+ if(intersect_width > 0 && intersect_height > 0)
+ {
+ float intersect_size = intersect_width * intersect_height;
+ float bbox1_size = (bboxes[idx][2] < bboxes[idx][0]
+ || bboxes[idx][3] < bboxes[idx][1]) ?
+ 0.f :
+ (bboxes[idx][2] - bboxes[idx][0]) * (bboxes[idx][3] - bboxes[idx][1]); //BBoxSize(bboxes[idx]);
+ float bbox2_size = (bboxes[kept_idx][2] < bboxes[kept_idx][0]
+ || bboxes[kept_idx][3] < bboxes[kept_idx][1]) ?
+ 0.f :
+ (bboxes[kept_idx][2] - bboxes[kept_idx][0]) * (bboxes[kept_idx][3] - bboxes[kept_idx][1]); // BBoxSize(bboxes[kept_idx]);
+ overlap = intersect_size / (bbox1_size + bbox2_size - intersect_size);
+ }
+ keep = (overlap <= adaptive_threshold);
+ }
+ else
+ {
+ break;
+ }
+ }
+ if(keep)
+ {
+ indices.push_back(idx);
+ }
+ score_index_vec.erase(score_index_vec.begin());
+ if(keep && eta < 1.f && adaptive_threshold > 0.5f)
+ {
+ adaptive_threshold *= eta;
+ }
+ }
+}
+
+Status non_max_suppression_validate_arguments(const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *indices, unsigned int max_output_size,
+ const float score_threshold, const float nms_threshold)
+{
+ ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(bboxes, scores, indices);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bboxes, 1, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(scores, 1, DataType::F32);
+ ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(indices, 1, DataType::S32);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(bboxes->num_dimensions() > 2, "The bboxes tensor must be a 2-D float tensor of shape [4, num_boxes].");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "The scores tensor must be a 1-D float tensor of shape [num_boxes].");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(indices->num_dimensions() > 1, "The indices must be 1-D integer tensor of shape [M], where max_output_size <= M");
+ ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(bboxes, scores);
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(scores->num_dimensions() > 1, "Scores must be a 1D float tensor");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(indices->dimension(0) == 0, "Indices tensor must be bigger than 0");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(max_output_size == 0, "Max size cannot be 0");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(nms_threshold < 0.f || nms_threshold > 1.f, "Threshould must be in [0,1]");
+ ARM_COMPUTE_RETURN_ERROR_ON_MSG(score_threshold < 0.f || score_threshold > 1.f, "Threshould must be in [0,1]");
+
+ return Status{};
+}
+} // namespace
+
+CPPNonMaximumSuppression::CPPNonMaximumSuppression()
+ : _bboxes(nullptr), _scores(nullptr), _indices(nullptr), _max_output_size(0), _score_threshold(0.f), _nms_threshold(0.f)
+{
+}
+
+void CPPNonMaximumSuppression::configure(
+ const ITensor *bboxes, const ITensor *scores, ITensor *indices, unsigned int max_output_size,
+ const float score_threshold, const float nms_threshold)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(bboxes, scores, indices);
+ ARM_COMPUTE_ERROR_THROW_ON(non_max_suppression_validate_arguments(bboxes->info(), scores->info(), indices->info(), max_output_size, score_threshold, nms_threshold));
+
+ // copy scores also to a vector
+ _bboxes = bboxes;
+ _scores = scores;
+ _indices = indices;
+
+ _nms_threshold = nms_threshold;
+ _max_output_size = max_output_size;
+ _score_threshold = score_threshold;
+}
+
+Status CPPNonMaximumSuppression::validate(
+ const ITensorInfo *bboxes, const ITensorInfo *scores, const ITensorInfo *indices, unsigned int max_output_size,
+ const float score_threshold, const float nms_threshold)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(non_max_suppression_validate_arguments(bboxes, scores, indices, max_output_size, score_threshold, nms_threshold));
+ return Status{};
+}
+
+void extract_bounding_boxes_from_tensor(const ITensor *bboxes, std::vector<NormalizedBBox> &bboxes_vector)
+{
+ Window input_win;
+ input_win.use_tensor_dimensions(bboxes->info()->tensor_shape());
+ input_win.set_dimension_step(0U, 4U);
+ input_win.set_dimension_step(1U, 1U);
+ Iterator input(bboxes, input_win);
+ auto f = [&bboxes_vector, &input](const Coordinates &)
+ {
+ const auto input_ptr = reinterpret_cast<const float *>(input.ptr());
+ bboxes_vector.push_back(NormalizedBBox({ { *input_ptr, *(input_ptr + 1), *(2 + input_ptr), *(3 + input_ptr) } }));
+ };
+ execute_window_loop(input_win, f, input);
+}
+
+void extract_scores_from_tensor(const ITensor *scores, std::vector<float> &scores_vector)
+{
+ Window window;
+ window.use_tensor_dimensions(scores->info()->tensor_shape());
+ Iterator it(scores, window);
+ auto f = [&it, &scores_vector](const Coordinates &)
+ {
+ const auto input_ptr = reinterpret_cast<const float *>(it.ptr());
+ scores_vector.push_back(*input_ptr);
+ };
+ execute_window_loop(window, f, it);
+}
+
+void CPPNonMaximumSuppression::run()
+{
+ std::vector<NormalizedBBox> bboxes_vector;
+ std::vector<float> scores_vector;
+ std::vector<int> indices_vector;
+ extract_bounding_boxes_from_tensor(_bboxes, bboxes_vector);
+ extract_scores_from_tensor(_scores, scores_vector);
+ ApplyNMSFast(bboxes_vector, scores_vector, _score_threshold, _nms_threshold, 1, -1 /* disable top_k */, indices_vector);
+ std::copy_n(indices_vector.begin(), std::min(indices_vector.size(), _indices->info()->dimension(0)), reinterpret_cast<int *>(_indices->ptr_to_element(Coordinates(0))));
+}
+
+CPPDetectionOutputLayer::CPPDetectionOutputLayer()
+ : _input_loc(nullptr), _input_conf(nullptr), _input_priorbox(nullptr), _output(nullptr), _info(), _num_priors(), _num(), _all_location_predictions(), _all_confidence_scores(), _all_prior_bboxes(),
+ _all_prior_variances(), _all_decode_bboxes(), _all_indices()
+{
+}
+
+void CPPDetectionOutputLayer::configure(const ITensor *input_loc, const ITensor *input_conf, const ITensor *input_priorbox, ITensor *output, DetectionOutputLayerInfo info)
+{
+ ARM_COMPUTE_ERROR_ON_NULLPTR(input_loc, input_conf, input_priorbox, output);
+ // Output auto initialization if not yet initialized
+ // Since the number of bboxes to kept is unknown before nms, the shape is set to the maximum
+ // The maximum is keep_top_k * input_loc_size[1]
+ // Each row is a 7 dimension std::vector, which stores [image_id, label, confidence, xmin, ymin, xmax, ymax]
+ const unsigned int max_size = info.keep_top_k() * (input_loc->info()->num_dimensions() > 1 ? input_loc->info()->dimension(1) : 1);
+ auto_init_if_empty(*output->info(), input_loc->info()->clone()->set_tensor_shape(TensorShape(7U, max_size)));
+
+ // Perform validation step
+ ARM_COMPUTE_ERROR_THROW_ON(detection_layer_validate_arguments(input_loc->info(), input_conf->info(), input_priorbox->info(), output->info(), info));
+
+ _input_loc = input_loc;
+ _input_conf = input_conf;
+ _input_priorbox = input_priorbox;
+ _output = output;
+ _info = info;
+ _num_priors = input_priorbox->info()->dimension(0) / 4;
+ _num = (_input_loc->info()->num_dimensions() > 1 ? _input_loc->info()->dimension(1) : 1);
+
+ _all_location_predictions.resize(_num);
+ _all_confidence_scores.resize(_num);
+ _all_prior_bboxes.resize(_num_priors);
+ _all_prior_variances.resize(_num_priors);
+ _all_decode_bboxes.resize(_num);
+
+ for(int i = 0; i < _num; ++i)
+ {
+ for(int c = 0; c < _info.num_loc_classes(); ++c)
+ {
+ const int label = _info.share_location() ? -1 : c;
+ if(label == _info.background_label_id())
+ {
+ // Ignore background class.
+ continue;
+ }
+ _all_decode_bboxes[i][label].resize(_num_priors);
+ }
+ }
+ _all_indices.resize(_num);
+
+ Coordinates coord;
+ coord.set_num_dimensions(output->info()->num_dimensions());
+ output->info()->set_valid_region(ValidRegion(coord, output->info()->tensor_shape()));
+}
+
+Status CPPDetectionOutputLayer::validate(const ITensorInfo *input_loc, const ITensorInfo *input_conf, const ITensorInfo *input_priorbox, const ITensorInfo *output, DetectionOutputLayerInfo info)
+{
+ ARM_COMPUTE_RETURN_ON_ERROR(detection_layer_validate_arguments(input_loc, input_conf, input_priorbox, output, info));
+ return Status{};
+}
+
+void CPPDetectionOutputLayer::run()
+{
+ // Retrieve all location predictions.
+ retrieve_all_loc_predictions(_input_loc, _num, _num_priors, _info.num_loc_classes(), _info.share_location(), _all_location_predictions);
+
+ // Retrieve all confidences.
+ retrieve_all_conf_scores(_input_conf, _num, _num_priors, _info.num_classes(), _all_confidence_scores);
+
+ // Retrieve all prior bboxes.
+ retrieve_all_priorbox(_input_priorbox, _num_priors, _all_prior_bboxes, _all_prior_variances);
+
+ // Decode all loc predictions to bboxes
+ const bool clip_bbox = false;
+ for(int i = 0; i < _num; ++i)
+ {
+ for(int c = 0; c < _info.num_loc_classes(); ++c)
+ {
+ const int label = _info.share_location() ? -1 : c;
+ if(label == _info.background_label_id())
+ {
+ // Ignore background class.
+ continue;
+ }
+ ARM_COMPUTE_ERROR_ON_MSG(_all_location_predictions[i].find(label) == _all_location_predictions[i].end(), "Could not find location predictions for label %d.", label);
+
+ const std::vector<NormalizedBBox> &label_loc_preds = _all_location_predictions[i].find(label)->second;
+
+ const int num_bboxes = _all_prior_bboxes.size();
+ ARM_COMPUTE_ERROR_ON(_all_prior_variances[i].size() != 4);
+
+ for(int j = 0; j < num_bboxes; ++j)
+ {
+ DecodeBBox(_all_prior_bboxes[j], _all_prior_variances[j], _info.code_type(), _info.variance_encoded_in_target(), clip_bbox, label_loc_preds[j], _all_decode_bboxes[i][label][j]);
+ }
+ }
+ }
+
+ int num_kept = 0;
+
+ for(int i = 0; i < _num; ++i)
+ {
+ const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
+ const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
+
+ std::map<int, std::vector<int>> indices;
+ int num_det = 0;
+ for(int c = 0; c < _info.num_classes(); ++c)
+ {
+ if(c == _info.background_label_id())
+ {
+ // Ignore background class
+ continue;
+ }
+ const int label = _info.share_location() ? -1 : c;
+ if(conf_scores.find(c) == conf_scores.end() || decode_bboxes.find(label) == decode_bboxes.end())
+ {
+ ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label);
+ }
+ const std::vector<float> &scores = conf_scores.find(c)->second;
+ const std::vector<NormalizedBBox> &bboxes = decode_bboxes.find(label)->second;
+
+ ApplyNMSFast(bboxes, scores, _info.confidence_threshold(), _info.nms_threshold(), _info.eta(), _info.top_k(), indices[c]);
+
+ num_det += indices[c].size();
+ }
+
+ int num_to_add = 0;
+ if(_info.keep_top_k() > -1 && num_det > _info.keep_top_k())
+ {
+ std::vector<std::pair<float, std::pair<int, int>>> score_index_pairs;
+ for(auto it : indices)
+ {
+ const int label = it.first;
+ const std::vector<int> &label_indices = it.second;
+
+ if(conf_scores.find(label) == conf_scores.end())
+ {
+ ARM_COMPUTE_ERROR("Could not find predictions for label %d.", label);
+ }
+
+ const std::vector<float> &scores = conf_scores.find(label)->second;
+ for(auto idx : label_indices)
+ {
+ ARM_COMPUTE_ERROR_ON(idx > static_cast<int>(scores.size()));
+ score_index_pairs.push_back(std::make_pair(scores[idx], std::make_pair(label, idx)));
+ }
+ }
+
+ // Keep top k results per image.
+ std::sort(score_index_pairs.begin(), score_index_pairs.end(), SortScorePairDescend<std::pair<int, int>>);
+ score_index_pairs.resize(_info.keep_top_k());
+
+ // Store the new indices.
+
+ std::map<int, std::vector<int>> new_indices;
+ for(auto score_index_pair : score_index_pairs)
+ {
+ int label = score_index_pair.second.first;
+ int idx = score_index_pair.second.second;
+ new_indices[label].push_back(idx);
+ }
+ _all_indices[i] = new_indices;
+ num_to_add = _info.keep_top_k();
+ }
+ else
+ {
+ _all_indices[i] = indices;
+ num_to_add = num_det;
+ }
+ num_kept += num_to_add;
+ }
+
+ //Update the valid region of the ouput to mark the exact number of detection
+ _output->info()->set_valid_region(ValidRegion(Coordinates(0, 0), TensorShape(7, num_kept)));
+
+ int count = 0;
+ for(int i = 0; i < _num; ++i)
+ {
+ const std::map<int, std::vector<float>> &conf_scores = _all_confidence_scores[i];
+ const LabelBBox &decode_bboxes = _all_decode_bboxes[i];
+ for(auto &it : _all_indices[i])
+ {
+ const int label = it.first;
+ const std::vector<float> &scores = conf_scores.find(label)->second;
+ const int loc_label = _info.share_location() ? -1 : label;
+ if(conf_scores.find(label) == conf_scores.end() || decode_bboxes.find(loc_label) == decode_bboxes.end())
+ {
+ // Either if there are no confidence predictions
+ // or there are no location predictions for current label.
+ ARM_COMPUTE_ERROR("Could not find predictions for the label %d.", label);
+ }
+ const std::vector<NormalizedBBox> &bboxes = decode_bboxes.find(loc_label)->second;
+ const std::vector<int> &indices = it.second;
+
+ for(auto idx : indices)
+ {
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7)))) = i;
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 1)))) = label;
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 2)))) = scores[idx];
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 3)))) = bboxes[idx][0];
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 4)))) = bboxes[idx][1];
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 5)))) = bboxes[idx][2];
+ *(reinterpret_cast<float *>(_output->ptr_to_element(Coordinates(count * 7 + 6)))) = bboxes[idx][3];
+
+ ++count;
+ }
+ }
+ }
+}
+} // namespace arm_compute
diff --git a/src/runtime/CPP/functions/CPPTopKV.cpp b/src/runtime/CPP/functions/CPPTopKV.cpp
new file mode 100644
index 0000000..c4e1eab
--- /dev/null
+++ b/src/runtime/CPP/functions/CPPTopKV.cpp
@@ -0,0 +1,42 @@
+/*
+ * Copyright (c) 2019 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/CPP/functions/CPPTopKV.h"
+
+#include "arm_compute/core/CPP/kernels/CPPTopKVKernel.h"
+#include "support/ToolchainSupport.h"
+
+namespace arm_compute
+{
+void CPPTopKV::configure(const ITensor *predictions, const ITensor *targets, ITensor *output, const unsigned int k)
+{
+ auto kernel = arm_compute::support::cpp14::make_unique<CPPTopKVKernel>();
+ kernel->configure(predictions, targets, output, k);
+ _kernel = std::move(kernel);
+}
+
+Status CPPTopKV::validate(const ITensorInfo *predictions, const ITensorInfo *targets, ITensorInfo *output, const unsigned int k)
+{
+ return CPPTopKVKernel::validate(predictions, targets, output, k);
+}
+} // namespace arm_compute