arm_compute v18.08
diff --git a/examples/graph_googlenet.cpp b/examples/graph_googlenet.cpp
index 2dba67f..cdbb8d8 100644
--- a/examples/graph_googlenet.cpp
+++ b/examples/graph_googlenet.cpp
@@ -23,12 +23,10 @@
  */
 #include "arm_compute/graph.h"
 #include "support/ToolchainSupport.h"
+#include "utils/CommonGraphOptions.h"
 #include "utils/GraphUtils.h"
 #include "utils/Utils.h"
 
-#include <cstdlib>
-#include <tuple>
-
 using namespace arm_compute::utils;
 using namespace arm_compute::graph::frontend;
 using namespace arm_compute::graph_utils;
@@ -36,74 +34,57 @@
 /** Example demonstrating how to implement Googlenet's network using the Compute Library's graph API
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
+ * @param[in] argv Arguments
  */
 class GraphGooglenetExample : public Example
 {
 public:
-    void do_setup(int argc, char **argv) override
+    GraphGooglenetExample()
+        : cmd_parser(), common_opts(cmd_parser), common_params(), graph(0, "GoogleNet")
     {
-        std::string data_path; /* Path to the trainable data */
-        std::string image;     /* Image data */
-        std::string label;     /* Label data */
+    }
+    bool do_setup(int argc, char **argv) override
+    {
+        // Parse arguments
+        cmd_parser.parse(argc, argv);
+
+        // Consume common parameters
+        common_params = consume_common_graph_parameters(common_opts);
+
+        // Return when help menu is requested
+        if(common_params.help)
+        {
+            cmd_parser.print_help(argv[0]);
+            return false;
+        }
+
+        // Checks
+        ARM_COMPUTE_EXIT_ON_MSG(arm_compute::is_data_type_quantized_asymmetric(common_params.data_type), "QASYMM8 not supported for this graph");
+        ARM_COMPUTE_EXIT_ON_MSG(common_params.data_type == DataType::F16 && common_params.target == Target::NEON, "F16 NEON not supported for this graph");
+
+        // Print parameter values
+        std::cout << common_params << std::endl;
+
+        // Get trainable parameters data path
+        std::string data_path = common_params.data_path;
 
         // Create a preprocessor object
         const std::array<float, 3> mean_rgb{ { 122.68f, 116.67f, 104.01f } };
         std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
 
-        // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
-        const int    target         = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
-        Target       target_hint    = set_target_hint(target);
-        FastMathHint fast_math_hint = FastMathHint::DISABLED;
+        // Create input descriptor
+        const TensorShape tensor_shape     = permute_shape(TensorShape(224U, 224U, 3U, 1U), DataLayout::NCHW, common_params.data_layout);
+        TensorDescriptor  input_descriptor = TensorDescriptor(tensor_shape, common_params.data_type).set_layout(common_params.data_layout);
 
-        // Parse arguments
-        if(argc < 2)
-        {
-            // Print help
-            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels] [fast_math_hint]\n\n";
-            std::cout << "No data folder provided: using random values\n\n";
-        }
-        else if(argc == 2)
-        {
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels] [fast_math_hint]\n\n";
-            std::cout << "No data folder provided: using random values\n\n";
-        }
-        else if(argc == 3)
-        {
-            data_path = argv[2];
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels] [fast_math_hint]\n\n";
-            std::cout << "No image provided: using random values\n\n";
-        }
-        else if(argc == 4)
-        {
-            data_path = argv[2];
-            image     = argv[3];
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels] [fast_math_hint]\n\n";
-            std::cout << "No text file with labels provided: skipping output accessor\n\n";
-        }
-        else if(argc == 5)
-        {
-            data_path = argv[2];
-            image     = argv[3];
-            label     = argv[4];
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " " << argv[4] << " [fast_math_hint]\n\n";
-            std::cout << "No fast math info provided: disabling fast math\n\n";
-        }
-        else
-        {
-            data_path      = argv[2];
-            image          = argv[3];
-            label          = argv[4];
-            fast_math_hint = (std::strtol(argv[5], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
-        }
+        // Set weights trained layout
+        const DataLayout weights_layout = DataLayout::NCHW;
 
-        graph << target_hint
-              << fast_math_hint
-              << InputLayer(TensorDescriptor(TensorShape(224U, 224U, 3U, 1U), DataType::F32),
-                            get_input_accessor(image, std::move(preprocessor)))
+        graph << common_params.target
+              << common_params.fast_math_hint
+              << InputLayer(input_descriptor, get_input_accessor(common_params, std::move(preprocessor)))
               << ConvolutionLayer(
                   7U, 7U, 64U,
-                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy"),
+                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy", weights_layout),
                   get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"),
                   PadStrideInfo(2, 2, 3, 3))
               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
@@ -111,41 +92,46 @@
               << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
               << ConvolutionLayer(
                   1U, 1U, 64U,
-                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy"),
+                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy", weights_layout),
                   get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"),
                   PadStrideInfo(1, 1, 0, 0))
               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
               << ConvolutionLayer(
                   3U, 3U, 192U,
-                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy"),
+                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy", weights_layout),
                   get_weights_accessor(data_path, "/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"),
                   PadStrideInfo(1, 1, 1, 1))
               << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
               << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
               << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
-        graph << get_inception_node(data_path, "inception_3a", 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U);
-        graph << get_inception_node(data_path, "inception_3b", 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U);
+        graph << get_inception_node(data_path, "inception_3a", weights_layout, 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U);
+        graph << get_inception_node(data_path, "inception_3b", weights_layout, 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U);
         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
-        graph << get_inception_node(data_path, "inception_4a", 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U);
-        graph << get_inception_node(data_path, "inception_4b", 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U);
-        graph << get_inception_node(data_path, "inception_4c", 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U);
-        graph << get_inception_node(data_path, "inception_4d", 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U);
-        graph << get_inception_node(data_path, "inception_4e", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
+        graph << get_inception_node(data_path, "inception_4a", weights_layout, 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U);
+        graph << get_inception_node(data_path, "inception_4b", weights_layout, 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U);
+        graph << get_inception_node(data_path, "inception_4c", weights_layout, 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U);
+        graph << get_inception_node(data_path, "inception_4d", weights_layout, 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U);
+        graph << get_inception_node(data_path, "inception_4e", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
         graph << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL)));
-        graph << get_inception_node(data_path, "inception_5a", 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
-        graph << get_inception_node(data_path, "inception_5b", 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U);
+        graph << get_inception_node(data_path, "inception_5a", weights_layout, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U);
+        graph << get_inception_node(data_path, "inception_5b", weights_layout, 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U);
         graph << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 7, PadStrideInfo(1, 1, 0, 0, DimensionRoundingType::CEIL)))
               << FullyConnectedLayer(
                   1000U,
-                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy"),
+                  get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy", weights_layout),
                   get_weights_accessor(data_path, "/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy"))
               << SoftmaxLayer()
-              << OutputLayer(get_output_accessor(label, 5));
+              << OutputLayer(get_output_accessor(common_params, 5));
 
         // Finalize graph
         GraphConfig config;
-        config.use_tuner = (target == 2);
-        graph.finalize(target_hint, config);
+        config.num_threads = common_params.threads;
+        config.use_tuner   = common_params.enable_tuner;
+        config.tuner_file  = common_params.tuner_file;
+
+        graph.finalize(common_params.target, config);
+
+        return true;
     }
     void do_run() override
     {
@@ -154,9 +140,12 @@
     }
 
 private:
-    Stream graph{ 0, "GoogleNet" };
+    CommandLineParser  cmd_parser;
+    CommonGraphOptions common_opts;
+    CommonGraphParams  common_params;
+    Stream             graph;
 
-    BranchLayer get_inception_node(const std::string &data_path, std::string &&param_path,
+    BranchLayer get_inception_node(const std::string &data_path, std::string &&param_path, DataLayout weights_layout,
                                    unsigned int a_filt,
                                    std::tuple<unsigned int, unsigned int> b_filters,
                                    std::tuple<unsigned int, unsigned int> c_filters,
@@ -166,7 +155,7 @@
         SubStream   i_a(graph);
         i_a << ConvolutionLayer(
                 1U, 1U, a_filt,
-                get_weights_accessor(data_path, total_path + "1x1_w.npy"),
+                get_weights_accessor(data_path, total_path + "1x1_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "1x1_b.npy"),
                 PadStrideInfo(1, 1, 0, 0))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
@@ -174,13 +163,13 @@
         SubStream i_b(graph);
         i_b << ConvolutionLayer(
                 1U, 1U, std::get<0>(b_filters),
-                get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy"),
+                get_weights_accessor(data_path, total_path + "3x3_reduce_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "3x3_reduce_b.npy"),
                 PadStrideInfo(1, 1, 0, 0))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
             << ConvolutionLayer(
                 3U, 3U, std::get<1>(b_filters),
-                get_weights_accessor(data_path, total_path + "3x3_w.npy"),
+                get_weights_accessor(data_path, total_path + "3x3_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "3x3_b.npy"),
                 PadStrideInfo(1, 1, 1, 1))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
@@ -188,13 +177,13 @@
         SubStream i_c(graph);
         i_c << ConvolutionLayer(
                 1U, 1U, std::get<0>(c_filters),
-                get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy"),
+                get_weights_accessor(data_path, total_path + "5x5_reduce_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "5x5_reduce_b.npy"),
                 PadStrideInfo(1, 1, 0, 0))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
             << ConvolutionLayer(
                 5U, 5U, std::get<1>(c_filters),
-                get_weights_accessor(data_path, total_path + "5x5_w.npy"),
+                get_weights_accessor(data_path, total_path + "5x5_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "5x5_b.npy"),
                 PadStrideInfo(1, 1, 2, 2))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
@@ -203,7 +192,7 @@
         i_d << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL)))
             << ConvolutionLayer(
                 1U, 1U, d_filt,
-                get_weights_accessor(data_path, total_path + "pool_proj_w.npy"),
+                get_weights_accessor(data_path, total_path + "pool_proj_w.npy", weights_layout),
                 get_weights_accessor(data_path, total_path + "pool_proj_b.npy"),
                 PadStrideInfo(1, 1, 0, 0))
             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
@@ -214,8 +203,10 @@
 
 /** Main program for Googlenet
  *
+ * @note To list all the possible arguments execute the binary appended with the --help option
+ *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
+ * @param[in] argv Arguments
  */
 int main(int argc, char **argv)
 {