arm_compute v18.08
diff --git a/src/runtime/NEON/functions/NEGEMMAssemblyDispatch.cpp b/src/runtime/NEON/functions/NEGEMMAssemblyDispatch.cpp
new file mode 100644
index 0000000..29db654
--- /dev/null
+++ b/src/runtime/NEON/functions/NEGEMMAssemblyDispatch.cpp
@@ -0,0 +1,448 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/NEON/functions/NEGEMMAssemblyDispatch.h"
+
+#include "arm_compute/core/CPP/Validate.h"
+#include "arm_compute/core/NEON/kernels/assembly/NEGEMMInterleavedMatrixMultiplyWrapper.h"
+#include "arm_compute/core/NEON/kernels/assembly/NEGEMMInterleavedPrepareBWrapperKernel.h"
+#include "arm_compute/core/NEON/kernels/assembly/NEGEMMInterleavedTransformAWrapper.h"
+#include "arm_compute/core/NEON/kernels/assembly/NEGEMMNativeWrapperKernel.h"
+#include "arm_compute/runtime/NEON/NEScheduler.h"
+#include "arm_compute/runtime/NEON/functions/NESimpleAssemblyFunction.h"
+#include "arm_compute/runtime/NEON/functions/assembly/NEGEMMInterleavedWrapper.h"
+
+#include <arm_neon.h>
+
+namespace arm_compute
+{
+namespace
+{
+std::unique_ptr<IFunction> create_function_all_types(arm_gemm::GemmMethod method, const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint,
+                                                     std::shared_ptr<IMemoryManager> memory_manager)
+
+{
+    //Note: It's safe to not check for FP16 support because this was already checked in NEGEMMAssemblyDispatch::configure()
+    switch(method)
+    {
+        case arm_gemm::GemmMethod::GEMM_INTERLEAVED:
+        {
+            if(!pretranspose_hint)
+            {
+                return nullptr;
+            }
+            auto function = support::cpp14::make_unique<NEGEMMInterleavedWrapper>(memory_manager);
+            function->configure(a, b, d, alpha, beta, pretranspose_hint);
+            return std::move(function);
+        }
+        default:
+            return nullptr;
+    }
+}
+
+template <typename TypeInput, typename TypeOutput>
+std::unique_ptr<IFunction> create_function(arm_gemm::GemmMethod method, const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint,
+                                           std::shared_ptr<IMemoryManager> memory_manager)
+{
+    ARM_COMPUTE_UNUSED(method);
+    ARM_COMPUTE_UNUSED(a);
+    ARM_COMPUTE_UNUSED(b);
+    ARM_COMPUTE_UNUSED(d);
+    ARM_COMPUTE_UNUSED(alpha);
+    ARM_COMPUTE_UNUSED(beta);
+    ARM_COMPUTE_UNUSED(pretranspose_hint);
+    ARM_COMPUTE_UNUSED(memory_manager);
+    return nullptr;
+}
+
+#ifdef __aarch64__
+template <>
+std::unique_ptr<IFunction> create_function<int8_t, int32_t>(arm_gemm::GemmMethod method, const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint,
+                                                            std::shared_ptr<IMemoryManager> memory_manager)
+{
+    switch(method)
+    {
+        case arm_gemm::GemmMethod::GEMM_INTERLEAVED_DOT:
+        {
+            if(!pretranspose_hint)
+            {
+                return nullptr;
+            }
+            auto function = support::cpp14::make_unique<NEGEMMInterleavedWrapper>(memory_manager);
+            function->configure(a, b, d, alpha, beta, pretranspose_hint, true /* use_dot */);
+            return std::move(function);
+        }
+        default:
+            return nullptr;
+    }
+    return nullptr;
+}
+
+template <>
+std::unique_ptr<IFunction> create_function<uint8_t, uint32_t>(arm_gemm::GemmMethod method, const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint,
+                                                              std::shared_ptr<IMemoryManager> memory_manager)
+{
+    switch(method)
+    {
+        case arm_gemm::GemmMethod::GEMM_INTERLEAVED_DOT:
+        {
+            if(!pretranspose_hint)
+            {
+                return nullptr;
+            }
+            auto function = support::cpp14::make_unique<NEGEMMInterleavedWrapper>(memory_manager);
+            function->configure(a, b, d, alpha, beta, pretranspose_hint, true /* use_dot */);
+            return std::move(function);
+        }
+        default:
+            return nullptr;
+    }
+    return nullptr;
+}
+
+template <>
+std::unique_ptr<IFunction> create_function<float, float>(arm_gemm::GemmMethod method, const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint,
+                                                         std::shared_ptr<IMemoryManager> memory_manager)
+{
+    ARM_COMPUTE_UNUSED(pretranspose_hint);
+    ARM_COMPUTE_UNUSED(memory_manager);
+    switch(method)
+    {
+        case arm_gemm::GemmMethod::GEMM_NATIVE:
+        {
+            auto kernel = support::cpp14::make_unique<NEGEMMNativeWrapperKernel<float, float>>();
+            kernel->configure(a, b, d, alpha, beta);
+            auto function = support::cpp14::make_unique<NESimpleAssemblyFunction>();
+            function->configure(std::move(kernel));
+            return std::move(function);
+        }
+        default:
+            return nullptr;
+    }
+}
+#endif /* __aarch64__ */
+
+/** Fallback in case ACL doesn't have a function */
+template <typename TypeInput, typename TypeOutput>
+class Fallback : public NEGEMMAssemblyDispatch::IFallback
+{
+public:
+    void configure(const ITensor *a, const ITensor *b, ITensor *d, arm_gemm::GemmArgs<TypeOutput> &args, MemoryGroup &memory_group);
+    void run() override;
+    void prepare() override;
+    bool is_configured() const override;
+
+private:
+    /** Allocate a workspace tensor.
+     *
+     * @param[in] workspace_size Size to allocate.
+     * @param[in] memory_group   Tensor memory group.
+     * @param[in] alignment      Workspace memory alignment.
+     */
+    void allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment);
+
+    /** Assembly Gemm kernel */
+    std::unique_ptr<arm_gemm::GemmCommon<TypeInput, TypeOutput>> _gemm_kernel_asm{ nullptr };
+    /** Optimised NEON kernel */
+    std::unique_ptr<INEKernel> _optimised_kernel{ nullptr };
+    /** Input A */
+    const ITensor *_a
+    {
+        nullptr
+    };
+    /** Input B */
+    const ITensor *_b
+    {
+        nullptr
+    };
+    /** Output */
+    ITensor *_d{ nullptr };
+    /** GEMM workspace */
+    Tensor _workspace{};
+    /** Pre-transpose tensor */
+    Tensor _pretranspose{};
+    /** Prepared flag */
+    bool _is_prepared{ false };
+};
+
+template <typename TypeInput, typename TypeOutput>
+void Fallback<TypeInput, TypeOutput>::configure(const ITensor *a, const ITensor *b, ITensor *d, arm_gemm::GemmArgs<TypeOutput> &args, MemoryGroup &memory_group)
+{
+    _gemm_kernel_asm = arm_gemm::gemm<TypeInput, TypeOutput>(args, nullptr);
+    if(_gemm_kernel_asm == nullptr)
+    {
+        //configuration not supported: Leave function unconfigured:
+        return;
+    }
+
+    // arm_compute wrapper for the Gemm object (see above)
+    std::unique_ptr<NEGEMMAssemblyWrapperKernel<TypeInput, TypeOutput>> acl_gemm_wrapper = support::cpp14::make_unique<NEGEMMAssemblyWrapperKernel<TypeInput, TypeOutput>>();
+    ARM_COMPUTE_ERROR_ON(acl_gemm_wrapper == nullptr);
+    acl_gemm_wrapper->configure(_gemm_kernel_asm.get());
+    const size_t workspace_size = _gemm_kernel_asm->get_working_size();
+    if(workspace_size > 0)
+    {
+        // Allocate workspace
+        const unsigned int alignment = 4096;
+        allocate_workspace(workspace_size, memory_group, alignment);
+    }
+
+    //if we disable this code below in brackets then ConvLayer deadlocks when threads > 1 and
+    //the shapes are In=1x1x1024 Weights=1x1x1024x1001 Biases=1001 Out=1x1x1001
+    {
+        const int window_size = _gemm_kernel_asm->get_window_size();
+        if(window_size < args._maxthreads)
+        {
+            _gemm_kernel_asm->set_nthreads(window_size);
+        }
+    }
+
+    _optimised_kernel = std::move(acl_gemm_wrapper);
+    _a                = a;
+    _b                = b;
+    _d                = d;
+    // Check for pre-transposed support
+    if(_gemm_kernel_asm->B_pretranspose_required())
+    {
+        // Forcing 128-byte alignment (required by 32-bit kernels)
+        const unsigned int alignment           = 128;
+        const size_t       B_pretranspose_size = _gemm_kernel_asm->get_B_pretransposed_array_size();
+        _pretranspose.allocator()->init(TensorInfo(TensorShape{ (B_pretranspose_size + alignment) }, 1, DataType::S8), alignment);
+        _pretranspose.allocator()->allocate();
+        ARM_COMPUTE_ERROR_ON_NULLPTR(_pretranspose.buffer());
+    }
+}
+
+template <typename TypeInput, typename TypeOutput>
+void Fallback<TypeInput, TypeOutput>::prepare()
+{
+    if(!_is_prepared)
+    {
+        // Pretranspose B if required
+        if(_gemm_kernel_asm->B_pretranspose_required())
+        {
+            ARM_COMPUTE_ERROR_ON(_pretranspose.buffer() == nullptr);
+            const int  ldb            = _b->info()->strides_in_bytes().y() / sizeof(TypeInput);
+            const auto in1_ptr        = reinterpret_cast<const TypeInput *>(_b->buffer() + _b->info()->offset_first_element_in_bytes());
+            const int  multi_stride_b = _b->info()->strides_in_bytes().z() / sizeof(TypeInput);
+
+            _gemm_kernel_asm->pretranspose_B_array(_pretranspose.buffer(), in1_ptr, ldb, multi_stride_b);
+            _b->mark_as_unused();
+        }
+
+        _is_prepared = true;
+    }
+}
+
+template <typename TypeInput, typename TypeOutput>
+void Fallback<TypeInput, TypeOutput>::allocate_workspace(size_t workspace_size, MemoryGroup &memory_group, size_t alignment)
+{
+    ARM_COMPUTE_ERROR_ON_MSG(workspace_size == 0, "size cannot be 0");
+    _workspace.allocator()->init(TensorInfo(TensorShape{ (workspace_size + alignment) }, 1, DataType::S8), alignment);
+    memory_group.manage(&_workspace);
+    _workspace.allocator()->allocate();
+}
+
+template <typename TypeInput, typename TypeOutput>
+bool Fallback<TypeInput, TypeOutput>::is_configured() const
+{
+    return _optimised_kernel != nullptr;
+}
+
+template <typename TypeInput, typename TypeOutput>
+void Fallback<TypeInput, TypeOutput>::run()
+{
+    const int lda = _a->info()->strides_in_bytes().y() / sizeof(TypeInput);
+    int       ldb = 0;
+    const int ldd = _d->info()->strides_in_bytes().y() / sizeof(TypeOutput);
+
+    // In the case of NHWC we want to interpret the output shape as 3D. Thus, the batch stride for A is
+    // the relevant multiple of the row stride.
+    const bool is_nhwc           = _a->info()->data_layout() == DataLayout::NHWC;
+    const int  stride_in_bytes_a = is_nhwc ? _a->info()->strides_in_bytes().y() * _d->info()->dimension(1) : _a->info()->strides_in_bytes().z();
+
+    const int batch_stride_a = stride_in_bytes_a / sizeof(TypeInput);
+    const int batch_stride_d = _d->info()->strides_in_bytes().z() / sizeof(TypeOutput);
+
+    const int multi_stride_a = _a->info()->strides_in_bytes()[3] / sizeof(TypeInput);
+    int       multi_stride_b = 0;
+    const int multi_stride_d = _d->info()->strides_in_bytes()[3] / sizeof(TypeOutput);
+
+    const auto       in0_ptr = reinterpret_cast<const TypeInput *>(_a->buffer() + _a->info()->offset_first_element_in_bytes());
+    const TypeInput *in1_ptr = nullptr;
+    auto             out_ptr = reinterpret_cast<TypeOutput *>(_d->buffer() + _d->info()->offset_first_element_in_bytes());
+
+    // Check if B is pre-tranposed and de-reference if not
+    if(!_gemm_kernel_asm->B_is_pretransposed())
+    {
+        ldb            = _b->info()->strides_in_bytes().y() / sizeof(TypeInput);
+        multi_stride_b = _b->info()->strides_in_bytes().z() / sizeof(TypeInput);
+        in1_ptr        = reinterpret_cast<const TypeInput *>(_b->buffer() + _b->info()->offset_first_element_in_bytes());
+    }
+
+    // Set workspace if needed and reset number of threads as buffer manager gets re-created with max_threads
+    if(_workspace.buffer() != nullptr)
+    {
+        _gemm_kernel_asm->set_working_space(reinterpret_cast<void *>(_workspace.buffer()));
+        const unsigned int window_size = _gemm_kernel_asm->get_window_size();
+        unsigned int       num_threads = NEScheduler::get().num_threads();
+        if(window_size < num_threads)
+        {
+            num_threads = window_size;
+            _gemm_kernel_asm->set_nthreads(num_threads);
+        }
+    }
+
+    // Prepare assembly kernel
+    prepare();
+
+    // Set gemm parameters
+    _gemm_kernel_asm->set_arrays(in0_ptr, lda, batch_stride_a, multi_stride_a, in1_ptr, ldb, multi_stride_b, out_ptr, ldd, batch_stride_d, multi_stride_d);
+
+    // Schedule assembly kernel
+    NEScheduler::get().schedule(_optimised_kernel.get(), Window::DimX);
+}
+
+template <typename TypeInput, typename TypeOutput>
+void create_function_or_arm_gemm(std::unique_ptr<IFunction> &acl_function, std::unique_ptr<NEGEMMAssemblyDispatch::IFallback> &arm_gemm, MemoryGroup &memory_group, const ITensor *a, const ITensor *b,
+                                 ITensor *d, float alpha, float beta, bool pretranspose_hint, std::shared_ptr<IMemoryManager> memory_manager)
+{
+    INEGEMMWrapperKernel::Params p           = INEGEMMWrapperKernel::extract_parameters(a, b, d);
+    const CPUInfo               &ci          = NEScheduler::get().cpu_info();
+    unsigned int                 num_threads = NEScheduler::get().num_threads();
+
+    arm_gemm::GemmArgs<TypeOutput> args(&ci, p.M, p.N, p.K, p.batches, p.multis, false, false, alpha, beta, num_threads, pretranspose_hint);
+
+    //Try to create an ACL function:
+    acl_function = create_function_all_types(arm_gemm::get_gemm_method<TypeInput, TypeOutput>(args), a, b, d, alpha, beta, pretranspose_hint, memory_manager);
+    // If the type agnostic factory failed to create an ACL function, try the specialised one:
+    if(acl_function == nullptr)
+    {
+        acl_function = create_function<TypeInput, TypeOutput>(arm_gemm::get_gemm_method<TypeInput, TypeOutput>(args), a, b, d, alpha, beta, pretranspose_hint, memory_manager);
+    }
+    //If we still don't have an ACL function:
+    if(acl_function == nullptr)
+    {
+        //Fallback onto arm_gemm function if ACL doesn't support this method.
+        auto fallback = support::cpp14::make_unique<Fallback<TypeInput, TypeOutput>>();
+        fallback->configure(a, b, d, args, memory_group);
+        arm_gemm = std::move(fallback);
+    }
+}
+
+} //namespace
+
+NEGEMMAssemblyDispatch::NEGEMMAssemblyDispatch(std::shared_ptr<IMemoryManager> memory_manager)
+    : _function(nullptr), _arm_gemm(nullptr), _memory_group(memory_manager), _memory_manager(memory_manager)
+{
+}
+
+Status NEGEMMAssemblyDispatch::validate(const ITensorInfo *a, const ITensorInfo *b, const ITensorInfo *d, float alpha, float beta, bool pretranspose_hint)
+{
+    ARM_COMPUTE_UNUSED(alpha);
+    ARM_COMPUTE_UNUSED(beta);
+    ARM_COMPUTE_UNUSED(pretranspose_hint);
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(a, b, d);
+    ARM_COMPUTE_RETURN_ERROR_ON_CPU_F16_UNSUPPORTED(a);
+#ifndef __aarch64__
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::U8 || a->data_type() == DataType::S8 || a->data_type() == DataType::QASYMM8, "8bit integer types only supported for aarch64");
+#endif /* __aarch64__ */
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(a, 1, DataType::F32, DataType::U8, DataType::QASYMM8, DataType::S8, DataType::F16);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(a, b);
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F32 && d->data_type() != DataType::F32, "Only F32 output supported for F32 input");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::F16 && d->data_type() != DataType::F16, "Only F16 output supported for F16 input");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::U8 && d->data_type() != DataType::U32, "Only U32 output supported for U8 input");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::QASYMM8 && d->data_type() != DataType::S32 && d->data_type() != DataType::U32, "Only U32/S32 output supported for QASYMM8 input");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(a->data_type() == DataType::S8 && d->data_type() != DataType::S32, "Only S32 output supported for S8 input");
+    return Status{};
+}
+
+void NEGEMMAssemblyDispatch::configure(const ITensor *a, const ITensor *b, ITensor *d, float alpha, float beta, bool pretranspose_hint)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(a);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(b);
+    ARM_COMPUTE_ERROR_ON_NULLPTR(d);
+
+    //If we don't support a combination of data types, silently return: it is the caller's responsibility to check if configure() was successful via is_configured()
+    if(!NEGEMMAssemblyDispatch::validate(a->info(), b->info(), d->info(), alpha, beta, pretranspose_hint))
+    {
+        return;
+    }
+
+    switch(a->info()->data_type())
+    {
+        case DataType::F32:
+            create_function_or_arm_gemm<float, float>(_function, _arm_gemm, _memory_group, a, b, d, alpha, beta, pretranspose_hint, _memory_manager);
+            break;
+#ifdef __aarch64__
+        case DataType::U8:
+        case DataType::QASYMM8:
+            create_function_or_arm_gemm<uint8_t, uint32_t>(_function, _arm_gemm, _memory_group, a, b, d, alpha, beta, pretranspose_hint, _memory_manager);
+            break;
+        case DataType::S8:
+            create_function_or_arm_gemm<int8_t, int32_t>(_function, _arm_gemm, _memory_group, a, b, d, alpha, beta, pretranspose_hint, _memory_manager);
+            break;
+#endif /* __aarch64__ */
+#ifdef __ARM_FEATURE_FP16_VECTOR_ARITHMETIC
+        case DataType::F16:
+            create_function_or_arm_gemm<float16_t, float16_t>(_function, _arm_gemm, _memory_group, a, b, d, alpha, beta, pretranspose_hint, _memory_manager);
+            break;
+#endif /* __ARM_FEATURE_FP16_VECTOR_ARITHMETIC */
+        default:
+            break;
+    }
+}
+
+void NEGEMMAssemblyDispatch::prepare()
+{
+    if(_function != nullptr)
+    {
+        _function->prepare();
+    }
+    else
+    {
+        ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
+        _arm_gemm->prepare();
+    }
+}
+
+bool NEGEMMAssemblyDispatch::is_configured() const
+{
+    return (_arm_gemm != nullptr && _arm_gemm->is_configured()) || _function != nullptr;
+}
+
+void NEGEMMAssemblyDispatch::run()
+{
+    _memory_group.acquire();
+    if(_function != nullptr)
+    {
+        _function->run();
+    }
+    else
+    {
+        ARM_COMPUTE_ERROR_ON(_arm_gemm == nullptr);
+        _arm_gemm->run();
+    }
+    _memory_group.release();
+}
+} //namespace arm_compute