arm_compute v18.08
diff --git a/tests/validation/reference/NormalizationLayer.cpp b/tests/validation/reference/NormalizationLayer.cpp
index 226af96..2ae68c6 100644
--- a/tests/validation/reference/NormalizationLayer.cpp
+++ b/tests/validation/reference/NormalizationLayer.cpp
@@ -1,5 +1,5 @@
 /*
- * Copyright (c) 2017 ARM Limited.
+ * Copyright (c) 2017-2018 ARM Limited.
  *
  * SPDX-License-Identifier: MIT
  *
@@ -24,7 +24,6 @@
 #include "NormalizationLayer.h"
 
 #include "arm_compute/core/Types.h"
-#include "tests/validation/FixedPoint.h"
 
 namespace arm_compute
 {
@@ -38,7 +37,7 @@
 SimpleTensor<T> normalization_layer(const SimpleTensor<T> &src, NormalizationLayerInfo info)
 {
     // Create reference
-    SimpleTensor<T> dst{ src.shape(), src.data_type(), 1, src.fixed_point_position() };
+    SimpleTensor<T> dst{ src.shape(), src.data_type(), 1 };
 
     // Compute reference
     const uint32_t norm_size = info.norm_size();
@@ -146,129 +145,8 @@
     return dst;
 }
 
-template <typename T, typename std::enable_if<std::is_integral<T>::value, int>::type>
-SimpleTensor<T> normalization_layer(const SimpleTensor<T> &src, NormalizationLayerInfo info)
-{
-    using namespace fixed_point_arithmetic;
-
-    // Create reference
-    SimpleTensor<T> dst{ src.shape(), src.data_type(), 1, src.fixed_point_position() };
-
-    // Compute reference
-    const int fixed_point_position = src.fixed_point_position();
-
-    const uint32_t norm_size = info.norm_size();
-    NormType       type      = info.type();
-    fixed_point<T> beta(info.beta(), fixed_point_position);
-    fixed_point<T> kappa(info.kappa(), fixed_point_position);
-
-    const int cols       = src.shape()[0];
-    const int rows       = src.shape()[1];
-    const int depth      = src.shape()[2];
-    int       upper_dims = src.shape().total_size() / (cols * rows);
-
-    fixed_point<T> coeff(info.scale_coeff(), fixed_point_position);
-    int            radius_cols = norm_size / 2;
-
-    // IN_MAP_1D and CROSS_MAP normalize over a single axis only
-    int radius_rows = (NormType::IN_MAP_2D == type) ? norm_size / 2 : 0;
-
-    if(type == NormType::CROSS_MAP)
-    {
-        // Remove also depth from upper dimensions since it is the dimension we
-        // want to use for normalization
-        upper_dims /= depth;
-
-        for(int r = 0; r < upper_dims; ++r)
-        {
-            for(int i = 0; i < rows; ++i)
-            {
-                for(int k = 0; k < cols; ++k)
-                {
-                    for(int l = 0; l < depth; ++l)
-                    {
-                        fixed_point<T> accumulated_scale(0.f, fixed_point_position);
-
-                        for(int j = -radius_cols; j <= radius_cols; ++j)
-                        {
-                            const int z = l + j;
-
-                            if(z >= 0 && z < depth)
-                            {
-                                const T              value = src[k + i * cols + z * rows * cols + r * cols * rows * depth];
-                                const fixed_point<T> fp_value(value, fixed_point_position, true);
-                                accumulated_scale = add(accumulated_scale, mul(fp_value, fp_value));
-                            }
-                        }
-
-                        accumulated_scale                                             = add(kappa, mul(accumulated_scale, coeff));
-                        dst[k + i * cols + l * rows * cols + r * cols * rows * depth] = accumulated_scale.raw();
-                    }
-                }
-            }
-        }
-    }
-    else
-    {
-        for(int r = 0; r < upper_dims; ++r)
-        {
-            for(int i = 0; i < rows; ++i)
-            {
-                for(int k = 0; k < cols; ++k)
-                {
-                    fixed_point<T> accumulated_scale(0.f, fixed_point_position);
-
-                    for(int j = -radius_rows; j <= radius_rows; ++j)
-                    {
-                        const int y = i + j;
-
-                        for(int l = -radius_cols; l <= radius_cols; ++l)
-                        {
-                            const int x = k + l;
-
-                            if((x >= 0 && y >= 0) && (x < cols && y < rows))
-                            {
-                                const T              value = src[x + y * cols + r * cols * rows];
-                                const fixed_point<T> fp_value(value, fixed_point_position, true);
-                                accumulated_scale = add(accumulated_scale, mul(fp_value, fp_value));
-                            }
-                        }
-                    }
-
-                    accumulated_scale                   = add(kappa, mul(accumulated_scale, coeff));
-                    dst[k + i * cols + r * cols * rows] = accumulated_scale.raw();
-                }
-            }
-        }
-    }
-
-    if(info.beta() == 1.f)
-    {
-        for(int i = 0; i < dst.num_elements(); ++i)
-        {
-            fixed_point<T> res = div(fixed_point<T>(src[i], fixed_point_position, true), fixed_point<T>(dst[i], fixed_point_position, true));
-            dst[i]             = res.raw();
-        }
-    }
-    else
-    {
-        const fixed_point<T> beta(info.beta(), fixed_point_position);
-
-        for(int i = 0; i < dst.num_elements(); ++i)
-        {
-            fixed_point<T> res = pow(fixed_point<T>(dst[i], fixed_point_position, true), beta);
-            res                = div(fixed_point<T>(src[i], fixed_point_position, true), res);
-            dst[i]             = res.raw();
-        }
-    }
-
-    return dst;
-}
-
 template SimpleTensor<float> normalization_layer(const SimpleTensor<float> &src, NormalizationLayerInfo info);
 template SimpleTensor<half> normalization_layer(const SimpleTensor<half> &src, NormalizationLayerInfo info);
-template SimpleTensor<qint8_t> normalization_layer(const SimpleTensor<qint8_t> &src, NormalizationLayerInfo info);
-template SimpleTensor<qint16_t> normalization_layer(const SimpleTensor<qint16_t> &src, NormalizationLayerInfo info);
 } // namespace reference
 } // namespace validation
 } // namespace test