arm_compute v17.12
diff --git a/documentation/namespacearm__compute_1_1test.xhtml b/documentation/namespacearm__compute_1_1test.xhtml
index dd02b67..0873cc0 100644
--- a/documentation/namespacearm__compute_1_1test.xhtml
+++ b/documentation/namespacearm__compute_1_1test.xhtml
@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
-<meta name="generator" content="Doxygen 1.8.6"/>
+<meta name="generator" content="Doxygen 1.8.11"/>
<meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
<title>Compute Library: arm_compute::test Namespace Reference</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
@@ -12,22 +12,24 @@
<script type="text/javascript" src="dynsections.js"></script>
<link href="navtree.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="resize.js"></script>
+<script type="text/javascript" src="navtreedata.js"></script>
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
$(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
+<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
<script type="text/javascript">
- $(document).ready(function() { searchBox.OnSelectItem(0); });
+ $(document).ready(function() { init_search(); });
</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js"],
jax: ["input/TeX","output/HTML-CSS"],
});
-</script><script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
+</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
<link href="doxygen.css" rel="stylesheet" type="text/css" />
</head>
<body>
@@ -38,7 +40,7 @@
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Compute Library
-  <span id="projectnumber">17.10</span>
+  <span id="projectnumber">17.12</span>
</div>
</td>
</tr>
@@ -46,7 +48,7 @@
</table>
</div>
<!-- end header part -->
-<!-- Generated by Doxygen 1.8.6 -->
+<!-- Generated by Doxygen 1.8.11 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
@@ -101,7 +103,7 @@
onmouseover="return searchBox.OnSearchSelectShow()"
onmouseout="return searchBox.OnSearchSelectHide()"
onkeydown="return searchBox.OnSearchSelectKey(event)">
-<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark"> </span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark"> </span>Data Structures</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark"> </span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark"> </span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark"> </span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark"> </span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark"> </span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark"> </span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark"> </span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark"> </span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark"> </span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark"> </span>Pages</a></div>
+</div>
<!-- iframe showing the search results (closed by default) -->
<div id="MSearchResultsWindow">
@@ -124,107 +126,129 @@
<table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="namespaces"></a>
Namespaces</h2></td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1_c_l_suite"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1_c_l_suite.xhtml">CLSuite</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1_c_l_suite"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1_c_l_suite.xhtml">CLSuite</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1datasets"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1datasets.xhtml">datasets</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1datasets"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1datasets.xhtml">datasets</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1fixed__point__arithmetic"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic.xhtml">fixed_point_arithmetic</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1fixed__point__arithmetic"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic.xhtml">fixed_point_arithmetic</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1framework"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml">framework</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1framework"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml">framework</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1networks"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1networks.xhtml">networks</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1gles__compute"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1gles__compute.xhtml">gles_compute</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1traits"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1traits.xhtml">traits</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1networks"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1networks.xhtml">networks</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:namespacearm__compute_1_1test_1_1validation"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1validation.xhtml">validation</a></td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1traits"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1traits.xhtml">traits</a></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:namespacearm__compute_1_1test_1_1validation"><td class="memItemLeft" align="right" valign="top">  </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test_1_1validation.xhtml">validation</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
</table><table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="nested-classes"></a>
Data Structures</h2></td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_assets_library.xhtml">AssetsLibrary</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Factory class to create and fill tensors. <a href="classarm__compute_1_1test_1_1_assets_library.xhtml#details">More...</a><br/></td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> objects. <a href="classarm__compute_1_1test_1_1_accessor.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml" title="ArrayAccessor implementation for Array objects. ">ArrayAccessor</a> implementation for <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a> objects. <a href="classarm__compute_1_1test_1_1_array_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_assets_library.xhtml">AssetsLibrary</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Factory class to create and fill tensors. <a href="classarm__compute_1_1test_1_1_assets_library.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml">CLLutAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_lut.xhtml">CLLut</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">struct  </td><td class="memItemRight" valign="bottom"><a class="el" href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml">common_promoted_signed_type</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Find the signed promoted common type. <a href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">struct  </td><td class="memItemRight" valign="bottom"><a class="el" href="structarm__compute_1_1test_1_1common__promoted__unsigned__type.xhtml">common_promoted_unsigned_type</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Find the unsigned promoted common type. <a href="structarm__compute_1_1test_1_1common__promoted__unsigned__type.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_layer_fixture.xhtml">DepthwiseConvolutionLayerFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_convolution_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml">DepthwiseSeparableConvolutionLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_floor_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_floor_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a> objects. <a href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml">GEMMLowpMatrixMultiplyCoreFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_accessor.xhtml">IAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to tensor like structures. <a href="classarm__compute_1_1test_1_1_i_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml">IArrayAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to array like structures. <a href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml">ILutAccessor</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to <a class="el" href="classarm__compute_1_1_lut.xhtml" title="Basic implementation of the LUT interface. ">Lut</a> like structures. <a href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml">CLLutAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_c_l_lut.xhtml">CLLut</a> objects. <a href="classarm__compute_1_1test_1_1_c_l_lut_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_accessor.xhtml">IAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to tensor like structures. <a href="classarm__compute_1_1test_1_1_i_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml">IArrayAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to array like structures. <a href="classarm__compute_1_1test_1_1_i_array_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml">ILutAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Common interface to provide information and access to <a class="el" href="classarm__compute_1_1_lut.xhtml" title="Basic implementation of the LUT interface. ">Lut</a> like structures. <a href="classarm__compute_1_1test_1_1_i_lut_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a> objects. <a href="classarm__compute_1_1test_1_1_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml" title="ArrayAccessor implementation for Array objects. ">ArrayAccessor</a> implementation for <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a> objects. <a href="classarm__compute_1_1test_1_1_array_accessor.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_lut_accessor.xhtml">LutAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_lut.xhtml">Lut</a> objects. <a href="classarm__compute_1_1test_1_1_lut_accessor.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for <a class="el" href="classarm__compute_1_1_lut.xhtml">Lut</a> objects. <a href="classarm__compute_1_1test_1_1_lut_accessor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_mobile_net_fixture.xhtml">MobileNetFixture</a></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_mobile_net_v1_fixture.xhtml">MobileNetV1Fixture</a></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_n_e_synthetize_function.xhtml">NESynthetizeFunction</a></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_n_e_synthetize_function_with_zero_constant_border.xhtml">NESynthetizeFunctionWithZeroConstantBorder</a></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_padding_calculator.xhtml">PaddingCalculator</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Calculate required padding. <a href="classarm__compute_1_1test_1_1_padding_calculator.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Calculate required padding. <a href="classarm__compute_1_1test_1_1_padding_calculator.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_raw_lut_accessor.xhtml">RawLutAccessor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for std::map-lut objects. <a href="classarm__compute_1_1test_1_1_raw_lut_accessor.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight"><a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml" title="Accessor implementation for Tensor objects. ">Accessor</a> implementation for std::map-lut objects. <a href="classarm__compute_1_1test_1_1_raw_lut_accessor.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_raw_tensor.xhtml">RawTensor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Subclass of <a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml" title="Simple tensor object that stores elements in a consecutive chunk of memory. ">SimpleTensor</a> using uint8_t as value type. <a href="classarm__compute_1_1test_1_1_raw_tensor.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Subclass of <a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml" title="Simple tensor object that stores elements in a consecutive chunk of memory. ">SimpleTensor</a> using uint8_t as value type. <a href="classarm__compute_1_1test_1_1_raw_tensor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON and CL. <a href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Simple tensor object that stores elements in a consecutive chunk of memory. <a href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Simple tensor object that stores elements in a consecutive chunk of memory. <a href="classarm__compute_1_1test_1_1_simple_tensor.xhtml#details">More...</a><br /></td></tr>
+<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Fixture that can be used for NEON, CL and OpenGL ES. <a href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">class  </td><td class="memItemRight" valign="bottom"><a class="el" href="classarm__compute_1_1test_1_1_tensor_cache.xhtml">TensorCache</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Stores <a class="el" href="classarm__compute_1_1test_1_1_raw_tensor.xhtml">RawTensor</a> categorised by the image they are created from including name, format and channel. <a href="classarm__compute_1_1test_1_1_tensor_cache.xhtml#details">More...</a><br/></td></tr>
-<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:"><td class="memItemLeft" align="right" valign="top">struct  </td><td class="memItemRight" valign="bottom"><a class="el" href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml">common_promoted_signed_type</a></td></tr>
-<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Find the signed promoted common type. <a href="structarm__compute_1_1test_1_1common__promoted__signed__type.xhtml#details">More...</a><br/></td></tr>
+<tr class="memdesc:"><td class="mdescLeft"> </td><td class="mdescRight">Stores <a class="el" href="classarm__compute_1_1test_1_1_raw_tensor.xhtml">RawTensor</a> categorised by the image they are created from including name, format and channel. <a href="classarm__compute_1_1test_1_1_tensor_cache.xhtml#details">More...</a><br /></td></tr>
<tr class="separator:"><td class="memSeparator" colspan="2"> </td></tr>
</table><table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="typedef-members"></a>
@@ -235,8 +259,8 @@
<tr class="separator:af80ea91532f0ebdccb3f1d8e507a98ad"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ad275d75e1b63f91fdc59afe026688b12"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
<tr class="separator:ad275d75e1b63f91fdc59afe026688b12"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a1e3870d2e47dfd84b259bdbff0a6f5f8"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution.xhtml">CLDepthwiseConvolution</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
-<tr class="separator:a1e3870d2e47dfd84b259bdbff0a6f5f8"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ad40ce68156a5d070d24869036ed41080"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad40ce68156a5d070d24869036ed41080">CLDepthwiseConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_layer_fixture.xhtml">DepthwiseConvolutionLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer.xhtml">CLDepthwiseConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
+<tr class="separator:ad40ce68156a5d070d24869036ed41080"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:adc07e82b4049d653c965af2606a7d70f"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_separable_convolution_layer_fixture.xhtml">DepthwiseSeparableConvolutionLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_separable_convolution_layer.xhtml">CLDepthwiseSeparableConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
<tr class="separator:adc07e82b4049d653c965af2606a7d70f"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a4a14e383a632057e99845c74a72a6454"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4a14e383a632057e99845c74a72a6454">CLFloorFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_floor_fixture.xhtml">FloorFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_floor.xhtml">CLFloor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
@@ -245,16 +269,38 @@
<tr class="separator:a4c33955ce3f6ed3a4d756cdebf6c8b3a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:abf07c2bf7d8e9c76e146f9b21bee88fd"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_g_e_m_m.xhtml">CLGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
<tr class="separator:abf07c2bf7d8e9c76e146f9b21bee88fd"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:aa2b528ffcc8ae3f017a4b0fefde56083"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml">GEMMLowpMatrixMultiplyCoreFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_lowp_matrix_multiply_core.xhtml">CLGEMMLowpMatrixMultiplyCore</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
+<tr class="separator:aa2b528ffcc8ae3f017a4b0fefde56083"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:af4f1c6ad288931f07f614316f57ed63b"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
<tr class="separator:af4f1c6ad288931f07f614316f57ed63b"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9c81648f3199d0d1c3f34a29a7a2bb8d"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
<tr class="separator:a9c81648f3199d0d1c3f34a29a7a2bb8d"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a41884dec2ecae6674396802641b01060"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_r_o_i_pooling_layer.xhtml">CLROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_array.xhtml">CLArray</a>< <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> >, <a class="el" href="classarm__compute_1_1test_1_1_c_l_array_accessor.xhtml">CLArrayAccessor</a>< <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> >></td></tr>
<tr class="separator:a41884dec2ecae6674396802641b01060"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ab532906bae5b47b20f74c2fd5f2ef147"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a> ></td></tr>
+<tr class="separator:ab532906bae5b47b20f74c2fd5f2ef147"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aa631c5ec3d7cb3dab649f994e9e9217d"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>< <a class="el" href="classarm__compute_1_1_i_c_l_tensor.xhtml">ICLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_sub_tensor.xhtml">CLSubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_normalization_layer.xhtml">CLNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a> ></td></tr>
<tr class="separator:aa631c5ec3d7cb3dab649f994e9e9217d"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ae3b678c8477dd5acc5e264eae37b562c"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_fully_connected_layer.xhtml">CLFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a> ></td></tr>
<tr class="separator:ae3b678c8477dd5acc5e264eae37b562c"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ac0a89d29e95929bd42879c07b9c0c901"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac0a89d29e95929bd42879c07b9c0c901">CLMobileNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_fixture.xhtml">MobileNetFixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer.xhtml">CLDepthwiseConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a> ></td></tr>
+<tr class="separator:ac0a89d29e95929bd42879c07b9c0c901"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a29a2dde86e6a0e8f295723be2331e4a5"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a29a2dde86e6a0e8f295723be2331e4a5">CLMobileNetV1_224_Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_v1_fixture.xhtml">MobileNetV1Fixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer3x3.xhtml">CLDepthwiseConvolutionLayer3x3</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, 224 ></td></tr>
+<tr class="separator:a29a2dde86e6a0e8f295723be2331e4a5"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:aba121ef21ddc551591a696c156ea8cc5"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aba121ef21ddc551591a696c156ea8cc5">CLMobileNetV1_128_Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_v1_fixture.xhtml">MobileNetV1Fixture</a>< <a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer3x3.xhtml">CLDepthwiseConvolutionLayer3x3</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, 128 ></td></tr>
+<tr class="separator:aba121ef21ddc551591a696c156ea8cc5"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a8b4153be3e745d94aa922b3ae6a6d178"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_batch_normalization_layer.xhtml">GCBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:a8b4153be3e745d94aa922b3ae6a6d178"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:afb74db03ceee9fb272663c68133771f2"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">GCDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:afb74db03ceee9fb272663c68133771f2"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a24e2d47432cc0b346147bbbc3964e6c8"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_fully_connected_layer.xhtml">GCFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:a24e2d47432cc0b346147bbbc3964e6c8"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a6991a2c9303e8c258547b6be1b30ae5d"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_g_e_m_m.xhtml">GCGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:a6991a2c9303e8c258547b6be1b30ae5d"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a1221a94382ab38693543c527d6cf6827"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_pooling_layer.xhtml">GCPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:a1221a94382ab38693543c527d6cf6827"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a1227db70d61e996287ff23ac4ffcdf0a"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a>< <a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_softmax_layer.xhtml">GCSoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a> ></td></tr>
+<tr class="separator:a1227db70d61e996287ff23ac4ffcdf0a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aeded391cb7ec7a44c41eb23544265894"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_activation_layer_fixture.xhtml">ActivationLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
<tr class="separator:aeded391cb7ec7a44c41eb23544265894"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac7369c169e6de526fcb6f68e4a959444"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer.xhtml">NEBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
@@ -267,12 +313,16 @@
<tr class="separator:a0b4f7a523ddb2b823750ff5bdc03470c"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a789c444c1307e85eec5f8b0d75fd5f7d"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m.xhtml">NEGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
<tr class="separator:a789c444c1307e85eec5f8b0d75fd5f7d"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ae6b70294fc810b1706aa240ce6488d43"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml">GEMMLowpMatrixMultiplyCoreFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_core.xhtml">NEGEMMLowpMatrixMultiplyCore</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
+<tr class="separator:ae6b70294fc810b1706aa240ce6488d43"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:acc2c4764a300b505b50e9ba0642eff2b"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_normalization_layer_fixture.xhtml">NormalizationLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
<tr class="separator:acc2c4764a300b505b50e9ba0642eff2b"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aafcc5ee5a13d9ed18d31591bb1d50fb0"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
<tr class="separator:aafcc5ee5a13d9ed18d31591bb1d50fb0"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a7ad74154ac625702bef70b90243ae63f"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_r_o_i_pooling_layer_fixture.xhtml">ROIPoolingLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer.xhtml">NEROIPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_array.xhtml">Array</a>< <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> >, <a class="el" href="classarm__compute_1_1test_1_1_array_accessor.xhtml">ArrayAccessor</a>< <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> >></td></tr>
<tr class="separator:a7ad74154ac625702bef70b90243ae63f"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a332c02fe617367f14266075c7c046823"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a> ></td></tr>
+<tr class="separator:a332c02fe617367f14266075c7c046823"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ae0e8bcf3b0ed15e708b4a38febfdb84e"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_alex_net_fixture.xhtml">AlexNetFixture</a>< <a class="el" href="classarm__compute_1_1_i_tensor.xhtml">ITensor</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_sub_tensor.xhtml">SubTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml">NENormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> ></td></tr>
<tr class="separator:ae0e8bcf3b0ed15e708b4a38febfdb84e"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a6a292ad5fedcc7dea6c6eb1be6d4c0d3"><td class="memItemLeft" align="right" valign="top">using </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_le_net5_fixture.xhtml">LeNet5Fixture</a>< <a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>, <a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml">NEActivationLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml">NEConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml">NEFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml">NEPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> ></td></tr>
@@ -312,8 +362,8 @@
<tr class="separator:a5a371e1a37be130dc9e8c905cd5efc29"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a7473924d4fdf2b5dec0d8ee9aa11e25d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7473924d4fdf2b5dec0d8ee9aa11e25d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:a7473924d4fdf2b5dec0d8ee9aa11e25d"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:ad7d919409d3d679cfbf28b2dae757fec"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad7d919409d3d679cfbf28b2dae757fec">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetDepthwiseConvolution, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_convolution_dataset.xhtml">datasets::MobileNetDepthwiseConvolutionDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1})))</td></tr>
-<tr class="separator:ad7d919409d3d679cfbf28b2dae757fec"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ad92059e16a67ed784198e950dda2902b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad92059e16a67ed784198e950dda2902b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetDepthwiseConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad40ce68156a5d070d24869036ed41080">CLDepthwiseConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_convolution_layer_dataset.xhtml">datasets::MobileNetDepthwiseConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1})))</td></tr>
+<tr class="separator:ad92059e16a67ed784198e950dda2902b"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a1f4b9eae17da2aebc223b0fdeee74cea"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1f4b9eae17da2aebc223b0fdeee74cea">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetDepthwiseSeparableConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_separable_convolution_layer_dataset.xhtml">datasets::MobileNetDepthwiseSeparableConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1})))</td></tr>
<tr class="separator:a1f4b9eae17da2aebc223b0fdeee74cea"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ad52c9735c67d5972016f143cd15ea874"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad52c9735c67d5972016f143cd15ea874">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
@@ -364,6 +414,12 @@
<tr class="separator:aef76c7b3cf7d1e3c6fc7ff96804a5753"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:af935c08091163839aead6ac3023c2147"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af935c08091163839aead6ac3023c2147">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
<tr class="separator:af935c08091163839aead6ac3023c2147"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a93edbe7d55866665a687505cd5863cec"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a93edbe7d55866665a687505cd5863cec">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1GEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>())</td></tr>
+<tr class="separator:a93edbe7d55866665a687505cd5863cec"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a4f689027a5150831876f5fadaa006d01"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4f689027a5150831876f5fadaa006d01">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MatrixMultiplyGEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>())</td></tr>
+<tr class="separator:a4f689027a5150831876f5fadaa006d01"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a00a05a099b87aecb58697099e68c675d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a00a05a099b87aecb58697099e68c675d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>())</td></tr>
+<tr class="separator:a00a05a099b87aecb58697099e68c675d"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a70d28ab3b5936a6454451d42f3c170f3"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70d28ab3b5936a6454451d42f3c170f3">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
<tr class="separator:a70d28ab3b5936a6454451d42f3c170f3"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:afc6ba7f0f4b792e2df1270d8f83f138d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afc6ba7f0f4b792e2df1270d8f83f138d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
@@ -402,10 +458,106 @@
<tr class="separator:a7d579c9d463693975486ea2248adc966"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac7d54f1a842ebb07f378846c21ccbe97"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7d54f1a842ebb07f378846c21ccbe97">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SmallROIPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:ac7d54f1a842ebb07f378846c21ccbe97"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a608cdfde996f02219e1601a6d9f3cb88"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a608cdfde996f02219e1601a6d9f3cb88">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayerSmall, <a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a608cdfde996f02219e1601a6d9f3cb88"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a70e322038256cbb2084fae2f15cf383a"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70e322038256cbb2084fae2f15cf383a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayerLarge, <a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a70e322038256cbb2084fae2f15cf383a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a69b2d4f81544c38878bd196d49d41360"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a69b2d4f81544c38878bd196d49d41360">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNet, <a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>}), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:a69b2d4f81544c38878bd196d49d41360"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a485c6b6af55e2f12c1b7ef40546c08f7"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a485c6b6af55e2f12c1b7ef40546c08f7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae3b678c8477dd5acc5e264eae37b562c">CLLeNet5Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}))</td></tr>
<tr class="separator:a485c6b6af55e2f12c1b7ef40546c08f7"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a381ffb66382b7bf8c5dccb610f83df3b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a381ffb66382b7bf8c5dccb610f83df3b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNet, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac0a89d29e95929bd42879c07b9c0c901">CLMobileNetFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}))</td></tr>
+<tr class="separator:a381ffb66382b7bf8c5dccb610f83df3b"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a1a355039fa43e6f304c229ee3f58dc81"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1a355039fa43e6f304c229ee3f58dc81">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetV1_224, <a class="el" href="namespacearm__compute_1_1test.xhtml#a29a2dde86e6a0e8f295723be2331e4a5">CLMobileNetV1_224_Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}))</td></tr>
+<tr class="separator:a1a355039fa43e6f304c229ee3f58dc81"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a58a9076b25625de375843189630e1a05"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a58a9076b25625de375843189630e1a05">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MobileNetV1_128, <a class="el" href="namespacearm__compute_1_1test.xhtml#aba121ef21ddc551591a696c156ea8cc5">CLMobileNetV1_128_Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}))</td></tr>
+<tr class="separator:a58a9076b25625de375843189630e1a05"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5fb0cef8d7bfbdbd6e5647f906f3d821"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5fb0cef8d7bfbdbd6e5647f906f3d821">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a5fb0cef8d7bfbdbd6e5647f906f3d821"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5fd146c0c60f589ab5ef9ab46841186f"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5fd146c0c60f589ab5ef9ab46841186f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a5fd146c0c60f589ab5ef9ab46841186f"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5584a5d2181daed3cdd3b48d51a4eff4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5584a5d2181daed3cdd3b48d51a4eff4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a5584a5d2181daed3cdd3b48d51a4eff4"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ac4eb299c6e0da01e3870a2f262c325a1"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac4eb299c6e0da01e3870a2f262c325a1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:ac4eb299c6e0da01e3870a2f262c325a1"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a20190a6c2970433854d7a0ffbf17bb80"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a20190a6c2970433854d7a0ffbf17bb80">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a20190a6c2970433854d7a0ffbf17bb80"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a245e9548b6ab48c67db2ddbccf67cdd2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a245e9548b6ab48c67db2ddbccf67cdd2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a245e9548b6ab48c67db2ddbccf67cdd2"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:add96c569b006602c948ff7f3444b1c9a"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#add96c569b006602c948ff7f3444b1c9a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:add96c569b006602c948ff7f3444b1c9a"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:abd76a8c08261c3cf7f5d64931f3f5fd7"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abd76a8c08261c3cf7f5d64931f3f5fd7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:abd76a8c08261c3cf7f5d64931f3f5fd7"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a75691b7b41c639f10f9cdb98f19c058e"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a75691b7b41c639f10f9cdb98f19c058e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a75691b7b41c639f10f9cdb98f19c058e"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a4a77614625e35d2af808df2961d1c579"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4a77614625e35d2af808df2961d1c579">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a4a77614625e35d2af808df2961d1c579"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a9b660449f326a011fc5ad2d2618b2cc7"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9b660449f326a011fc5ad2d2618b2cc7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a9b660449f326a011fc5ad2d2618b2cc7"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a250a8029fcac0c0ce944ac23402ded7e"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a250a8029fcac0c0ce944ac23402ded7e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a250a8029fcac0c0ce944ac23402ded7e"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a2cb4a87cb9ff411d586d9e8a733cb226"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2cb4a87cb9ff411d586d9e8a733cb226">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
+<tr class="separator:a2cb4a87cb9ff411d586d9e8a733cb226"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a12c42b639978f49f819b6bc4f9cc2ee1"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a12c42b639978f49f819b6bc4f9cc2ee1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
+<tr class="separator:a12c42b639978f49f819b6bc4f9cc2ee1"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a053b4cd76538ee71115d020d9224d055"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a053b4cd76538ee71115d020d9224d055">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a053b4cd76538ee71115d020d9224d055"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ad46ed8de628305582dc04bd1996c6138"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad46ed8de628305582dc04bd1996c6138">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:ad46ed8de628305582dc04bd1996c6138"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a97f196a8438fbc6132c851fc8434f84f"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a97f196a8438fbc6132c851fc8434f84f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a97f196a8438fbc6132c851fc8434f84f"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5f895a2dbd323136be8722ad444d60f4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5f895a2dbd323136be8722ad444d60f4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a5f895a2dbd323136be8722ad444d60f4"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a12f8a8207d12d154e97c0b5fe50e0e0a"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a12f8a8207d12d154e97c0b5fe50e0e0a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a12f8a8207d12d154e97c0b5fe50e0e0a"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:abf01fe5297b8fe3957462e6c9b028ad4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf01fe5297b8fe3957462e6c9b028ad4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetFullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:abf01fe5297b8fe3957462e6c9b028ad4"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a6d0db7e16f1130f5efe0cc4363b86b28"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6d0db7e16f1130f5efe0cc4363b86b28">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a6d0db7e16f1130f5efe0cc4363b86b28"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a8f20a93ea27547491d22070ce2942281"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8f20a93ea27547491d22070ce2942281">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a8f20a93ea27547491d22070ce2942281"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ad4188172c26fc647ddfdf222b8d33ad2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad4188172c26fc647ddfdf222b8d33ad2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:ad4188172c26fc647ddfdf222b8d33ad2"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a4d90ba1ed4109f6e9debfe6021933cbe"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4d90ba1ed4109f6e9debfe6021933cbe">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a4d90ba1ed4109f6e9debfe6021933cbe"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a17641c916ca59feed34dcb7b5b5477e7"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a17641c916ca59feed34dcb7b5b5477e7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1GEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a17641c916ca59feed34dcb7b5b5477e7"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a4aec13cad3d15943e16962f3525199f8"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4aec13cad3d15943e16962f3525199f8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MatrixMultiplyGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a4aec13cad3d15943e16962f3525199f8"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ab850888a1cd954603b49a47a508e5606"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab850888a1cd954603b49a47a508e5606">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:ab850888a1cd954603b49a47a508e5606"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a938559efc7909b4c49f9dd968c78fdd6"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a938559efc7909b4c49f9dd968c78fdd6">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a938559efc7909b4c49f9dd968c78fdd6"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a93c8b1edde08dabb54781f587d72eb6d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a93c8b1edde08dabb54781f587d72eb6d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a93c8b1edde08dabb54781f587d72eb6d"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a3ddca2f7e1f652a835a33c61ee123ae2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3ddca2f7e1f652a835a33c61ee123ae2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a3ddca2f7e1f652a835a33c61ee123ae2"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:af5d2dbdc7da1fbc112e899580be35b29"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af5d2dbdc7da1fbc112e899580be35b29">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:af5d2dbdc7da1fbc112e899580be35b29"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:add85474fcc98d0f6028b94bc6cf2fa39"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#add85474fcc98d0f6028b94bc6cf2fa39">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:add85474fcc98d0f6028b94bc6cf2fa39"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ab240fb15156a63fb1d7859ae3733ad3c"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab240fb15156a63fb1d7859ae3733ad3c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:ab240fb15156a63fb1d7859ae3733ad3c"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:addf51f08a1f8f5c0db21e29fce9d8262"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#addf51f08a1f8f5c0db21e29fce9d8262">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:addf51f08a1f8f5c0db21e29fce9d8262"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a9ee9ba7638c961aa1bd557a5dc8c4fba"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9ee9ba7638c961aa1bd557a5dc8c4fba">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a9ee9ba7638c961aa1bd557a5dc8c4fba"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a4c1a4a25d083c88cbf4b5704478e943b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c1a4a25d083c88cbf4b5704478e943b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a4c1a4a25d083c88cbf4b5704478e943b"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a064d32deb294293817fb405592241e0e"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a064d32deb294293817fb405592241e0e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a064d32deb294293817fb405592241e0e"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5d23224b64dfe75913aa5e404c19e564"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5d23224b64dfe75913aa5e404c19e564">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a5d23224b64dfe75913aa5e404c19e564"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a7bb1c4420640a128c86a4c50771ea8ff"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7bb1c4420640a128c86a4c50771ea8ff">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a7bb1c4420640a128c86a4c50771ea8ff"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:add14d596aac62405e78dc4e21797b469"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#add14d596aac62405e78dc4e21797b469">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:add14d596aac62405e78dc4e21797b469"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a32669e484b5d18ddb6400f7fd97eb16f"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a32669e484b5d18ddb6400f7fd97eb16f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a32669e484b5d18ddb6400f7fd97eb16f"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a64f1553690dc4323b4fa0a166872818f"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a64f1553690dc4323b4fa0a166872818f">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a64f1553690dc4323b4fa0a166872818f"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a61651c6bf6ae4a7ec0b853e33eb3fe05"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a61651c6bf6ae4a7ec0b853e33eb3fe05">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a61651c6bf6ae4a7ec0b853e33eb3fe05"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:abfd4fd028574ac46a9d056e7a1ead6f7"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abfd4fd028574ac46a9d056e7a1ead6f7">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_activation_layer_dataset.xhtml">datasets::AlexNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
<tr class="separator:abfd4fd028574ac46a9d056e7a1ead6f7"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a70381b263268259b4b6fbff88a0526c4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a70381b263268259b4b6fbff88a0526c4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_activation_layer_dataset.xhtml">datasets::LeNet5ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
@@ -430,8 +582,8 @@
<tr class="separator:a6ada452bc1053385b8574f38d341ffc9"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a6692a58c12e2eff315715e6c971d0230"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6692a58c12e2eff315715e6c971d0230">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_activation_layer_dataset.xhtml">datasets::SqueezeNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a6692a58c12e2eff315715e6c971d0230"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a26e3678291b5f879d82808eda0d39bc2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a26e3678291b5f879d82808eda0d39bc2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
-<tr class="separator:a26e3678291b5f879d82808eda0d39bc2"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a03bf42b30d3055f61780d2267f91b7a6"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a03bf42b30d3055f61780d2267f91b7a6">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})))</td></tr>
+<tr class="separator:a03bf42b30d3055f61780d2267f91b7a6"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ab77581768cf2f7433ba92c2b42c4617e"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab77581768cf2f7433ba92c2b42c4617e">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ActivationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_activation_layer_dataset.xhtml">datasets::YOLOV2ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:ab77581768cf2f7433ba92c2b42c4617e"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9e4dd8377091a877cf271bb34f2ed7da"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9e4dd8377091a877cf271bb34f2ed7da">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2BatchNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
@@ -462,28 +614,28 @@
<tr class="separator:a4470fc8180788f756fccdb77f9a25886"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a029d80ad64be335749e827cc64efd88c"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a029d80ad64be335749e827cc64efd88c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a029d80ad64be335749e827cc64efd88c"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a68166bcb788035f5a6c17fe0c68ae730"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a68166bcb788035f5a6c17fe0c68ae730">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4})))</td></tr>
-<tr class="separator:a68166bcb788035f5a6c17fe0c68ae730"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a07da1bf46f895627de5c87fddea485e2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a07da1bf46f895627de5c87fddea485e2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 2})))</td></tr>
+<tr class="separator:a07da1bf46f895627de5c87fddea485e2"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a0ca04d4de125be45c16b579b43d53835"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0ca04d4de125be45c16b579b43d53835">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2ConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:a0ca04d4de125be45c16b579b43d53835"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:abe7167f9af260495f067dd8f36251a3b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#abe7167f9af260495f067dd8f36251a3b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
-<tr class="separator:abe7167f9af260495f067dd8f36251a3b"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:adc3f7b3f1d06144af1980e8705253583"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adc3f7b3f1d06144af1980e8705253583">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
-<tr class="separator:adc3f7b3f1d06144af1980e8705253583"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ae157bfaddb93840defe1b2d959c9773c"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae157bfaddb93840defe1b2d959c9773c">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:ae157bfaddb93840defe1b2d959c9773c"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5e95b77e85b00a24859e29420f5e9a23"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5e95b77e85b00a24859e29420f5e9a23">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
+<tr class="separator:a5e95b77e85b00a24859e29420f5e9a23"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9cc3e01ede750344f389191184d4682d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9cc3e01ede750344f389191184d4682d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
<tr class="separator:a9cc3e01ede750344f389191184d4682d"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9c7a41c764eb85334c2d75df71d40cc4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c7a41c764eb85334c2d75df71d40cc4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
<tr class="separator:a9c7a41c764eb85334c2d75df71d40cc4"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:ad8c07298bae2d7cd7ace3ad869371b0b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad8c07298bae2d7cd7ace3ad869371b0b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
-<tr class="separator:ad8c07298bae2d7cd7ace3ad869371b0b"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a981537b01124fe1025ab51dfe0dde1ee"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a981537b01124fe1025ab51dfe0dde1ee">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
-<tr class="separator:a981537b01124fe1025ab51dfe0dde1ee"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5d451fd866cd008c0d9ead31011dea51"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5d451fd866cd008c0d9ead31011dea51">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a5d451fd866cd008c0d9ead31011dea51"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a24b206491fc10a588a6550eb6a7330a5"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24b206491fc10a588a6550eb6a7330a5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
+<tr class="separator:a24b206491fc10a588a6550eb6a7330a5"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a27446bd5b343d26d6028cd2ab34065a6"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a27446bd5b343d26d6028cd2ab34065a6">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a27446bd5b343d26d6028cd2ab34065a6"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a13170587db62e123a041d2b8cab82ef8"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a13170587db62e123a041d2b8cab82ef8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetDirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a13170587db62e123a041d2b8cab82ef8"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a1f92978c7363135053baa95b94501676"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1f92978c7363135053baa95b94501676">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
-<tr class="separator:a1f92978c7363135053baa95b94501676"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:afae7c1fa456ae3e126f9a5329b28dca4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afae7c1fa456ae3e126f9a5329b28dca4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 2})))</td></tr>
+<tr class="separator:afae7c1fa456ae3e126f9a5329b28dca4"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:af3310a6693b1d28b4d474e2a025b8777"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af3310a6693b1d28b4d474e2a025b8777">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2DirectConvolutionLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:af3310a6693b1d28b4d474e2a025b8777"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a6faf0b684dd2c7e5bb111dd8f8f8c6f1"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6faf0b684dd2c7e5bb111dd8f8f8c6f1">REGISTER_FIXTURE_DATA_TEST_CASE</a> (Floor, <a class="el" href="namespacearm__compute_1_1test.xhtml#ac8cf6873b0e9ac7334bcbc042fdc5f02">NEFloorFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_shapes.xhtml">datasets::SmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
@@ -502,8 +654,8 @@
<tr class="separator:a4325316dca63988d0c63c8e761143557"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a4ecb06077e2a789221648d0479e61809"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4ecb06077e2a789221648d0479e61809">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a4ecb06077e2a789221648d0479e61809"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:adeee41f0a436718ca296fc99f2e2a151"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#adeee41f0a436718ca296fc99f2e2a151">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
-<tr class="separator:adeee41f0a436718ca296fc99f2e2a151"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a5ae8d8668836305ebff7acd820dc4aa2"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5ae8d8668836305ebff7acd820dc4aa2">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})))</td></tr>
+<tr class="separator:a5ae8d8668836305ebff7acd820dc4aa2"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:af5e14e7ca5ce517a75fb019b02108797"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af5e14e7ca5ce517a75fb019b02108797">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:af5e14e7ca5ce517a75fb019b02108797"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a1d77d86fcdca1b8578756eae70fcac85"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1d77d86fcdca1b8578756eae70fcac85">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV4FullyConnectedLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
@@ -514,6 +666,12 @@
<tr class="separator:a5dbda869f12c5e1ffa17a2dce7e82609"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac9eaa20c5215f43c16202896b7ea9118"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac9eaa20c5215f43c16202896b7ea9118">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMM, <a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
<tr class="separator:ac9eaa20c5215f43c16202896b7ea9118"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a6590738cef59da2d66f938348f7e447b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6590738cef59da2d66f938348f7e447b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1GEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>())</td></tr>
+<tr class="separator:a6590738cef59da2d66f938348f7e447b"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a2939435211a0b12318ecf27de5e82341"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2939435211a0b12318ecf27de5e82341">REGISTER_FIXTURE_DATA_TEST_CASE</a> (MatrixMultiplyGEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>())</td></tr>
+<tr class="separator:a2939435211a0b12318ecf27de5e82341"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ae32f1e3c34f40106570812eed538aa3a"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae32f1e3c34f40106570812eed538aa3a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogleNetGEMMLowp, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>())</td></tr>
+<tr class="separator:ae32f1e3c34f40106570812eed538aa3a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a3d815590d056717dde89027c469fba5a"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3d815590d056717dde89027c469fba5a">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNetNormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
<tr class="separator:a3d815590d056717dde89027c469fba5a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a04a6f03a4f0b85f507735cd409a8b74d"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a04a6f03a4f0b85f507735cd409a8b74d">REGISTER_FIXTURE_DATA_TEST_CASE</a> (GoogLeNetInceptionV1NormalizationLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)))</td></tr>
@@ -546,34 +704,42 @@
<tr class="separator:ad0b2b0d1564cc6c5ac951a7b8e59bda8"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aa973f66482fdadbd2ab72cdb6face4b5"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa973f66482fdadbd2ab72cdb6face4b5">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SqueezeNetPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:aa973f66482fdadbd2ab72cdb6face4b5"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a9adba78f24e5c87b2c95a1c5e23883e9"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9adba78f24e5c87b2c95a1c5e23883e9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
-<tr class="separator:a9adba78f24e5c87b2c95a1c5e23883e9"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:afcaaee96f26340bdfe7a841f158453b8"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#afcaaee96f26340bdfe7a841f158453b8">REGISTER_FIXTURE_DATA_TEST_CASE</a> (VGG16PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})))</td></tr>
+<tr class="separator:afcaaee96f26340bdfe7a841f158453b8"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a03474ce6764bea95de0edb583d281017"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a03474ce6764bea95de0edb583d281017">REGISTER_FIXTURE_DATA_TEST_CASE</a> (YOLOV2PoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})))</td></tr>
<tr class="separator:a03474ce6764bea95de0edb583d281017"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aa14390b7bed93ce327f5dedd89fc8928"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa14390b7bed93ce327f5dedd89fc8928">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SmallROIPoolingLayer, <a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F32})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:aa14390b7bed93ce327f5dedd89fc8928"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a0d406b3fef0ea64a37cc052a77c71872"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0d406b3fef0ea64a37cc052a77c71872">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayerSmall, <a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a0d406b3fef0ea64a37cc052a77c71872"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a0efb60f70808da99791a9e62cb9f9a3b"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0efb60f70808da99791a9e62cb9f9a3b">REGISTER_FIXTURE_DATA_TEST_CASE</a> (SoftmaxLayerLarge, <a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>))</td></tr>
+<tr class="separator:a0efb60f70808da99791a9e62cb9f9a3b"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a4fa3f7aa92292c25a9876a3b1cded7c9"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4fa3f7aa92292c25a9876a3b1cded7c9">REGISTER_FIXTURE_DATA_TEST_CASE</a> (AlexNet, <a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(alex_net_data_types, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})))</td></tr>
<tr class="separator:a4fa3f7aa92292c25a9876a3b1cded7c9"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9ba464da0fc25dbd0cb96fe5c61494c4"><td class="memItemLeft" align="right" valign="top"> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9ba464da0fc25dbd0cb96fe5c61494c4">REGISTER_FIXTURE_DATA_TEST_CASE</a> (LeNet5, <a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a>, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}))</td></tr>
<tr class="separator:a9ba464da0fc25dbd0cb96fe5c61494c4"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a629633220b1b91a871c57b679b9f06e3"><td class="memTemplParams" colspan="2">template<typename O , typename F , typename... As> </td></tr>
-<tr class="memitem:a629633220b1b91a871c57b679b9f06e3"><td class="memTemplItemLeft" align="right" valign="top">void </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a629633220b1b91a871c57b679b9f06e3">apply</a> (O *obj, F &&func, const std::tuple< As...> &args)</td></tr>
-<tr class="separator:a629633220b1b91a871c57b679b9f06e3"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:ab3a61953b0f41e932f8a2ce8918e7aec"><td class="memTemplParams" colspan="2">template<typename O , typename F , typename... As> </td></tr>
+<tr class="memitem:ab3a61953b0f41e932f8a2ce8918e7aec"><td class="memTemplItemLeft" align="right" valign="top">void </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab3a61953b0f41e932f8a2ce8918e7aec">apply</a> (O *obj, F &&func, const std::tuple< As... > &args)</td></tr>
+<tr class="separator:ab3a61953b0f41e932f8a2ce8918e7aec"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memTemplParams" colspan="2">template<typename T , typename std::enable_if< std::is_same< typename T::value_type, std::string >::value, int >::type = 0> </td></tr>
<tr class="memitem:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memTemplItemLeft" align="right" valign="top">std::string </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa18932675cbb5eb9c9dbf8ff4d7106c7">join</a> (T first, T last, const std::string &separator)</td></tr>
-<tr class="memdesc:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple strings. <a href="#aa18932675cbb5eb9c9dbf8ff4d7106c7">More...</a><br/></td></tr>
+<tr class="memdesc:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple strings. <a href="#aa18932675cbb5eb9c9dbf8ff4d7106c7">More...</a><br /></td></tr>
<tr class="separator:aa18932675cbb5eb9c9dbf8ff4d7106c7"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a898a0423aace06af0f3a18a26a972a1a"><td class="memTemplParams" colspan="2">template<typename T , typename UnaryOp > </td></tr>
<tr class="memitem:a898a0423aace06af0f3a18a26a972a1a"><td class="memTemplItemLeft" align="right" valign="top">std::string </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a898a0423aace06af0f3a18a26a972a1a">join</a> (T &&first, T &&last, const std::string &separator, UnaryOp &&op)</td></tr>
-<tr class="memdesc:a898a0423aace06af0f3a18a26a972a1a"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a898a0423aace06af0f3a18a26a972a1a">More...</a><br/></td></tr>
+<tr class="memdesc:a898a0423aace06af0f3a18a26a972a1a"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a898a0423aace06af0f3a18a26a972a1a">More...</a><br /></td></tr>
<tr class="separator:a898a0423aace06af0f3a18a26a972a1a"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a69835710fc772315f4e65ce156034530"><td class="memTemplParams" colspan="2">template<typename T , typename std::enable_if< std::is_arithmetic< typename T::value_type >::value, int >::type = 0> </td></tr>
<tr class="memitem:a69835710fc772315f4e65ce156034530"><td class="memTemplItemLeft" align="right" valign="top">std::string </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">join</a> (T &&first, T &&last, const std::string &separator)</td></tr>
-<tr class="memdesc:a69835710fc772315f4e65ce156034530"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a69835710fc772315f4e65ce156034530">More...</a><br/></td></tr>
+<tr class="memdesc:a69835710fc772315f4e65ce156034530"><td class="mdescLeft"> </td><td class="mdescRight">Helper function to concatenate multiple values. <a href="#a69835710fc772315f4e65ce156034530">More...</a><br /></td></tr>
<tr class="separator:a69835710fc772315f4e65ce156034530"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="memItemLeft" align="right" valign="top">std::string </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">tolower</a> (std::string string)</td></tr>
-<tr class="memdesc:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="mdescLeft"> </td><td class="mdescRight">Convert string to lower case. <a href="#a5b67cbf475b1e1d3bec9b0b937fdafac">More...</a><br/></td></tr>
+<tr class="memdesc:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="mdescLeft"> </td><td class="mdescRight">Convert string to lower case. <a href="#a5b67cbf475b1e1d3bec9b0b937fdafac">More...</a><br /></td></tr>
<tr class="separator:a5b67cbf475b1e1d3bec9b0b937fdafac"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a93690f80f7fb88ea733fdc6f9f3b3ada"><td class="memTemplParams" colspan="2">template<typename T , typename std::enable_if< std::is_arithmetic< T >::value, int >::type = 0> </td></tr>
+<tr class="memitem:a93690f80f7fb88ea733fdc6f9f3b3ada"><td class="memTemplItemLeft" align="right" valign="top">std::string </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a93690f80f7fb88ea733fdc6f9f3b3ada">arithmetic_to_string</a> (T val, int decimal_places=0)</td></tr>
+<tr class="memdesc:a93690f80f7fb88ea733fdc6f9f3b3ada"><td class="mdescLeft"> </td><td class="mdescRight">Create a string with the arithmetic value in full precision. <a href="#a93690f80f7fb88ea733fdc6f9f3b3ada">More...</a><br /></td></tr>
+<tr class="separator:a93690f80f7fb88ea733fdc6f9f3b3ada"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a8939810976531494e8db1f491bf61a35"><td class="memTemplParams" colspan="2">template<typename D , typename T , typename... Ts> </td></tr>
<tr class="memitem:a8939810976531494e8db1f491bf61a35"><td class="memTemplItemLeft" align="right" valign="top">void </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8939810976531494e8db1f491bf61a35">fill_tensors</a> (D &&dist, std::initializer_list< int > seeds, T &&tensor, Ts &&...other_tensors)</td></tr>
<tr class="separator:a8939810976531494e8db1f491bf61a35"><td class="memSeparator" colspan="2"> </td></tr>
@@ -582,62 +748,65 @@
<tr class="separator:a28edc8880596d14c099f3c2509efc8b3"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memTemplParams" colspan="2">template<typename T , typename = typename std::enable_if<std::is_floating_point<T>::value>::type> </td></tr>
<tr class="memitem:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4bcf30f8c56f547f66d61c7c5ae01db">round_half_up</a> (T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)</td></tr>
-<tr class="memdesc:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="mdescLeft"> </td><td class="mdescRight">Round floating-point value with half value rounding to positive infinity. <a href="#af4bcf30f8c56f547f66d61c7c5ae01db">More...</a><br/></td></tr>
+<tr class="memdesc:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="mdescLeft"> </td><td class="mdescRight">Round floating-point value with half value rounding to positive infinity. <a href="#af4bcf30f8c56f547f66d61c7c5ae01db">More...</a><br /></td></tr>
<tr class="separator:af4bcf30f8c56f547f66d61c7c5ae01db"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ad93bb148a873f19ad7692756e59617f4"><td class="memTemplParams" colspan="2">template<typename T , typename = typename std::enable_if<std::is_floating_point<T>::value>::type> </td></tr>
<tr class="memitem:ad93bb148a873f19ad7692756e59617f4"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad93bb148a873f19ad7692756e59617f4">round_half_even</a> (T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, T epsilon=std::numeric_limits< T >::epsilon())</td></tr>
-<tr class="memdesc:ad93bb148a873f19ad7692756e59617f4"><td class="mdescLeft"> </td><td class="mdescRight">Round floating-point value with half value rounding to nearest even. <a href="#ad93bb148a873f19ad7692756e59617f4">More...</a><br/></td></tr>
+<tr class="memdesc:ad93bb148a873f19ad7692756e59617f4"><td class="mdescLeft"> </td><td class="mdescRight">Round floating-point value with half value rounding to nearest even. <a href="#ad93bb148a873f19ad7692756e59617f4">More...</a><br /></td></tr>
<tr class="separator:ad93bb148a873f19ad7692756e59617f4"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:aa337ab76176f3c4193642ac6de3a61cf"><td class="memItemLeft" align="right" valign="top"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa337ab76176f3c4193642ac6de3a61cf">get_format_for_channel</a> (<a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> channel)</td></tr>
-<tr class="memdesc:aa337ab76176f3c4193642ac6de3a61cf"><td class="mdescLeft"> </td><td class="mdescRight">Look up the format corresponding to a channel. <a href="#aa337ab76176f3c4193642ac6de3a61cf">More...</a><br/></td></tr>
+<tr class="memdesc:aa337ab76176f3c4193642ac6de3a61cf"><td class="mdescLeft"> </td><td class="mdescRight">Look up the format corresponding to a channel. <a href="#aa337ab76176f3c4193642ac6de3a61cf">More...</a><br /></td></tr>
<tr class="separator:aa337ab76176f3c4193642ac6de3a61cf"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac7dbe33793790fc37a5eda11ed6b0273"><td class="memItemLeft" align="right" valign="top"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7dbe33793790fc37a5eda11ed6b0273">get_channel_format</a> (<a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> channel)</td></tr>
-<tr class="memdesc:ac7dbe33793790fc37a5eda11ed6b0273"><td class="mdescLeft"> </td><td class="mdescRight">Return the format of a channel. <a href="#ac7dbe33793790fc37a5eda11ed6b0273">More...</a><br/></td></tr>
+<tr class="memdesc:ac7dbe33793790fc37a5eda11ed6b0273"><td class="mdescLeft"> </td><td class="mdescRight">Return the format of a channel. <a href="#ac7dbe33793790fc37a5eda11ed6b0273">More...</a><br /></td></tr>
<tr class="separator:ac7dbe33793790fc37a5eda11ed6b0273"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a1ebbb23b0094d47c51226d58e17e6447"><td class="memTemplParams" colspan="2">template<typename F , typename T > </td></tr>
<tr class="memitem:a1ebbb23b0094d47c51226d58e17e6447"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1ebbb23b0094d47c51226d58e17e6447">foldl</a> (F &&, const T &<a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)</td></tr>
-<tr class="memdesc:a1ebbb23b0094d47c51226d58e17e6447"><td class="mdescLeft"> </td><td class="mdescRight">Base case of foldl. <a href="#a1ebbb23b0094d47c51226d58e17e6447">More...</a><br/></td></tr>
+<tr class="memdesc:a1ebbb23b0094d47c51226d58e17e6447"><td class="mdescLeft"> </td><td class="mdescRight">Base case of foldl. <a href="#a1ebbb23b0094d47c51226d58e17e6447">More...</a><br /></td></tr>
<tr class="separator:a1ebbb23b0094d47c51226d58e17e6447"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memTemplParams" colspan="2">template<typename F , typename T , typename U > </td></tr>
<tr class="memitem:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memTemplItemLeft" align="right" valign="top">auto </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad933f996ccb22854ae56dd86de8cbbfe">foldl</a> (F &&func, T &&value1, U &&value2) -> decltype(func(value1, value2))</td></tr>
-<tr class="memdesc:ad933f996ccb22854ae56dd86de8cbbfe"><td class="mdescLeft"> </td><td class="mdescRight">Base case of foldl. <a href="#ad933f996ccb22854ae56dd86de8cbbfe">More...</a><br/></td></tr>
+<tr class="memdesc:ad933f996ccb22854ae56dd86de8cbbfe"><td class="mdescLeft"> </td><td class="mdescRight">Base case of foldl. <a href="#ad933f996ccb22854ae56dd86de8cbbfe">More...</a><br /></td></tr>
<tr class="separator:ad933f996ccb22854ae56dd86de8cbbfe"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a89322cccde5e0a27d3a41085d3fd366c"><td class="memTemplParams" colspan="2">template<typename F , typename I , typename T , typename... Vs> </td></tr>
<tr class="memitem:a89322cccde5e0a27d3a41085d3fd366c"><td class="memTemplItemLeft" align="right" valign="top">I </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">foldl</a> (F &&func, I &&initial, T &&<a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, Vs &&...values)</td></tr>
-<tr class="memdesc:a89322cccde5e0a27d3a41085d3fd366c"><td class="mdescLeft"> </td><td class="mdescRight">Fold left. <a href="#a89322cccde5e0a27d3a41085d3fd366c">More...</a><br/></td></tr>
+<tr class="memdesc:a89322cccde5e0a27d3a41085d3fd366c"><td class="mdescLeft"> </td><td class="mdescRight">Fold left. <a href="#a89322cccde5e0a27d3a41085d3fd366c">More...</a><br /></td></tr>
<tr class="separator:a89322cccde5e0a27d3a41085d3fd366c"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a4c9ad143c34306817986409ffb1dbd40"><td class="memItemLeft" align="right" valign="top"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c9ad143c34306817986409ffb1dbd40">shape_to_valid_region</a> (<a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> shape, bool border_undefined=false, <a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a> border_size=<a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a>(0))</td></tr>
-<tr class="memdesc:a4c9ad143c34306817986409ffb1dbd40"><td class="mdescLeft"> </td><td class="mdescRight">Create a valid region based on tensor shape, border mode and border size. <a href="#a4c9ad143c34306817986409ffb1dbd40">More...</a><br/></td></tr>
+<tr class="memdesc:a4c9ad143c34306817986409ffb1dbd40"><td class="mdescLeft"> </td><td class="mdescRight">Create a valid region based on tensor shape, border mode and border size. <a href="#a4c9ad143c34306817986409ffb1dbd40">More...</a><br /></td></tr>
<tr class="separator:a4c9ad143c34306817986409ffb1dbd40"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a0c848c53c05bedad63a7cc1bfa0b9725"><td class="memItemLeft" align="right" valign="top"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0c848c53c05bedad63a7cc1bfa0b9725">shape_to_valid_region_gaussian_pyramid_half</a> (<a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> shape, <a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> valid_region, bool border_undefined=false)</td></tr>
+<tr class="memdesc:a0c848c53c05bedad63a7cc1bfa0b9725"><td class="mdescLeft"> </td><td class="mdescRight">Create a valid region for Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half based on tensor shape and valid region at level "i - 1" and border mode. <a href="#a0c848c53c05bedad63a7cc1bfa0b9725">More...</a><br /></td></tr>
+<tr class="separator:a0c848c53c05bedad63a7cc1bfa0b9725"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a1e6934e95738573214c2ce1d6648d116"><td class="memTemplParams" colspan="2">template<typename T > </td></tr>
<tr class="memitem:a1e6934e95738573214c2ce1d6648d116"><td class="memTemplItemLeft" align="right" valign="top">void </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1e6934e95738573214c2ce1d6648d116">store_value_with_data_type</a> (void *ptr, T <a class="el" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type)</td></tr>
-<tr class="memdesc:a1e6934e95738573214c2ce1d6648d116"><td class="mdescLeft"> </td><td class="mdescRight">Write the value after casting the pointer according to <code>data_type</code>. <a href="#a1e6934e95738573214c2ce1d6648d116">More...</a><br/></td></tr>
+<tr class="memdesc:a1e6934e95738573214c2ce1d6648d116"><td class="mdescLeft"> </td><td class="mdescRight">Write the value after casting the pointer according to <code>data_type</code>. <a href="#a1e6934e95738573214c2ce1d6648d116">More...</a><br /></td></tr>
<tr class="separator:a1e6934e95738573214c2ce1d6648d116"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a4965b2f6821e0cf0afee738158bd8377"><td class="memTemplParams" colspan="2">template<typename U , typename T > </td></tr>
<tr class="memitem:a4965b2f6821e0cf0afee738158bd8377"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4965b2f6821e0cf0afee738158bd8377">saturate_cast</a> (T val)</td></tr>
-<tr class="memdesc:a4965b2f6821e0cf0afee738158bd8377"><td class="mdescLeft"> </td><td class="mdescRight">Saturate a value of type T against the numeric limits of type U. <a href="#a4965b2f6821e0cf0afee738158bd8377">More...</a><br/></td></tr>
+<tr class="memdesc:a4965b2f6821e0cf0afee738158bd8377"><td class="mdescLeft"> </td><td class="mdescRight">Saturate a value of type T against the numeric limits of type U. <a href="#a4965b2f6821e0cf0afee738158bd8377">More...</a><br /></td></tr>
<tr class="separator:a4965b2f6821e0cf0afee738158bd8377"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="memItemLeft" align="right" valign="top"><a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24d8c0391cfa38e78969b6ad97c0ff09">index2coord</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &shape, int index)</td></tr>
-<tr class="memdesc:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="mdescLeft"> </td><td class="mdescRight">Convert a linear index into n-dimensional coordinates. <a href="#a24d8c0391cfa38e78969b6ad97c0ff09">More...</a><br/></td></tr>
+<tr class="memdesc:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="mdescLeft"> </td><td class="mdescRight">Convert a linear index into n-dimensional coordinates. <a href="#a24d8c0391cfa38e78969b6ad97c0ff09">More...</a><br /></td></tr>
<tr class="separator:a24d8c0391cfa38e78969b6ad97c0ff09"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="memItemLeft" align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9be4cb7e6ee20063a4a10bc3abb750b9">coord2index</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &shape, const <a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &coord)</td></tr>
-<tr class="memdesc:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="mdescLeft"> </td><td class="mdescRight">Linearise the given coordinate. <a href="#a9be4cb7e6ee20063a4a10bc3abb750b9">More...</a><br/></td></tr>
+<tr class="memdesc:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="mdescLeft"> </td><td class="mdescRight">Linearise the given coordinate. <a href="#a9be4cb7e6ee20063a4a10bc3abb750b9">More...</a><br /></td></tr>
<tr class="separator:a9be4cb7e6ee20063a4a10bc3abb750b9"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="memItemLeft" align="right" valign="top">bool </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a856b55fc20ddcbdbeb84c35ae27bedac">is_in_valid_region</a> (const <a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> &valid_region, <a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> coord)</td></tr>
-<tr class="memdesc:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="mdescLeft"> </td><td class="mdescRight">Check if a coordinate is within a valid region. <a href="#a856b55fc20ddcbdbeb84c35ae27bedac">More...</a><br/></td></tr>
+<tr class="memdesc:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="mdescLeft"> </td><td class="mdescRight">Check if a coordinate is within a valid region. <a href="#a856b55fc20ddcbdbeb84c35ae27bedac">More...</a><br /></td></tr>
<tr class="separator:a856b55fc20ddcbdbeb84c35ae27bedac"><td class="memSeparator" colspan="2"> </td></tr>
-<tr class="memitem:a2ce249581879425cc66db8d364c838f3"><td class="memTemplParams" colspan="2">template<typename T > </td></tr>
-<tr class="memitem:a2ce249581879425cc66db8d364c838f3"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a2ce249581879425cc66db8d364c838f3">create_tensor</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &shape, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type, int num_channels=1, int fixed_point_position=0)</td></tr>
-<tr class="memdesc:a2ce249581879425cc66db8d364c838f3"><td class="mdescLeft"> </td><td class="mdescRight">Create and initialize a tensor of the given type. <a href="#a2ce249581879425cc66db8d364c838f3">More...</a><br/></td></tr>
-<tr class="separator:a2ce249581879425cc66db8d364c838f3"><td class="memSeparator" colspan="2"> </td></tr>
+<tr class="memitem:a316948014329b50b11a302305a6ab3ab"><td class="memTemplParams" colspan="2">template<typename T > </td></tr>
+<tr class="memitem:a316948014329b50b11a302305a6ab3ab"><td class="memTemplItemLeft" align="right" valign="top">T </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#a316948014329b50b11a302305a6ab3ab">create_tensor</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &shape, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type, int num_channels=1, int fixed_point_position=0, <a class="el" href="structarm__compute_1_1_quantization_info.xhtml">QuantizationInfo</a> quantization_info=<a class="el" href="structarm__compute_1_1_quantization_info.xhtml">QuantizationInfo</a>())</td></tr>
+<tr class="memdesc:a316948014329b50b11a302305a6ab3ab"><td class="mdescLeft"> </td><td class="mdescRight">Create and initialize a tensor of the given type. <a href="#a316948014329b50b11a302305a6ab3ab">More...</a><br /></td></tr>
+<tr class="separator:a316948014329b50b11a302305a6ab3ab"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac7324cc960068b65c558b7d25dfe2914"><td class="memItemLeft" align="right" valign="top">std::vector< <a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a> > </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7324cc960068b65c558b7d25dfe2914">generate_random_rois</a> (const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> &shape, const <a class="el" href="classarm__compute_1_1_r_o_i_pooling_layer_info.xhtml">ROIPoolingLayerInfo</a> &pool_info, unsigned int num_rois, std::random_device::result_type seed)</td></tr>
-<tr class="memdesc:ac7324cc960068b65c558b7d25dfe2914"><td class="mdescLeft"> </td><td class="mdescRight">Create a vector of random ROIs. <a href="#ac7324cc960068b65c558b7d25dfe2914">More...</a><br/></td></tr>
+<tr class="memdesc:ac7324cc960068b65c558b7d25dfe2914"><td class="mdescLeft"> </td><td class="mdescRight">Create a vector of random ROIs. <a href="#ac7324cc960068b65c558b7d25dfe2914">More...</a><br /></td></tr>
<tr class="separator:ac7324cc960068b65c558b7d25dfe2914"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memTemplParams" colspan="2">template<typename T , typename ArrayAccessor_T > </td></tr>
<tr class="memitem:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memTemplItemLeft" align="right" valign="top">void </td><td class="memTemplItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac35e7a1ad467f5fe8620cbbc5793d53b">fill_array</a> (ArrayAccessor_T &&array, const std::vector< T > &v)</td></tr>
<tr class="separator:ac35e7a1ad467f5fe8620cbbc5793d53b"><td class="memSeparator" colspan="2"> </td></tr>
<tr class="memitem:ae47155d6186155ec4da9295764b3c05a"><td class="memItemLeft" align="right" valign="top">std::string </td><td class="memItemRight" valign="bottom"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae47155d6186155ec4da9295764b3c05a">get_typestring</a> (<a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> data_type)</td></tr>
-<tr class="memdesc:ae47155d6186155ec4da9295764b3c05a"><td class="mdescLeft"> </td><td class="mdescRight">Obtain numpy type string from DataType. <a href="#ae47155d6186155ec4da9295764b3c05a">More...</a><br/></td></tr>
+<tr class="memdesc:ae47155d6186155ec4da9295764b3c05a"><td class="mdescLeft"> </td><td class="mdescRight">Obtain numpy type string from DataType. <a href="#ae47155d6186155ec4da9295764b3c05a">More...</a><br /></td></tr>
<tr class="separator:ae47155d6186155ec4da9295764b3c05a"><td class="memSeparator" colspan="2"> </td></tr>
</table><table class="memberdecls">
<tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="var-members"></a>
@@ -704,17 +873,17 @@
</div>
</div>
-<a class="anchor" id="a1e3870d2e47dfd84b259bdbff0a6f5f8"></a>
+<a class="anchor" id="ad40ce68156a5d070d24869036ed41080"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
- <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a1e3870d2e47dfd84b259bdbff0a6f5f8">CLDepthwiseConvolutionFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_fixture.xhtml">DepthwiseConvolutionFixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution.xhtml">CLDepthwiseConvolution</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>></td>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ad40ce68156a5d070d24869036ed41080">CLDepthwiseConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_depthwise_convolution_layer_fixture.xhtml">DepthwiseConvolutionLayerFixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer.xhtml">CLDepthwiseConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>></td>
</tr>
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml#l00041">41</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml">DepthwiseConvolution.cpp</a>.</p>
+<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_layer_8cpp_source.xhtml#l00041">41</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_layer_8cpp_source.xhtml">DepthwiseConvolutionLayer.cpp</a>.</p>
</div>
</div>
@@ -774,6 +943,20 @@
</div>
</div>
+<a class="anchor" id="aa2b528ffcc8ae3f017a4b0fefde56083"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml">GEMMLowpMatrixMultiplyCoreFixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_lowp_matrix_multiply_core.xhtml">CLGEMMLowpMatrixMultiplyCore</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_c_l_2_g_e_m_m_lowp_8cpp_source.xhtml#l00042">42</a> of file <a class="el" href="benchmark_2_c_l_2_g_e_m_m_lowp_8cpp_source.xhtml">GEMMLowp.cpp</a>.</p>
+
+</div>
+</div>
<a class="anchor" id="ae3b678c8477dd5acc5e264eae37b562c"></a>
<div class="memitem">
<div class="memproto">
@@ -788,6 +971,48 @@
</div>
</div>
+<a class="anchor" id="ac0a89d29e95929bd42879c07b9c0c901"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ac0a89d29e95929bd42879c07b9c0c901">CLMobileNetFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_fixture.xhtml">MobileNetFixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer.xhtml">CLDepthwiseConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="_mobile_net_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="_mobile_net_8cpp_source.xhtml">MobileNet.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="aba121ef21ddc551591a696c156ea8cc5"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#aba121ef21ddc551591a696c156ea8cc5">CLMobileNetV1_128_Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_v1_fixture.xhtml">MobileNetV1Fixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer3x3.xhtml">CLDepthwiseConvolutionLayer3x3</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, 128></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="_mobile_net_v1_8cpp_source.xhtml#l00068">68</a> of file <a class="el" href="_mobile_net_v1_8cpp_source.xhtml">MobileNetV1.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a29a2dde86e6a0e8f295723be2331e4a5"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a29a2dde86e6a0e8f295723be2331e4a5">CLMobileNetV1_224_Fixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_mobile_net_v1_fixture.xhtml">MobileNetV1Fixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>, <a class="el" href="classarm__compute_1_1_c_l_activation_layer.xhtml">CLActivationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_batch_normalization_layer.xhtml">CLBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_convolution_layer.xhtml">CLConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_direct_convolution_layer.xhtml">CLDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_depthwise_convolution_layer3x3.xhtml">CLDepthwiseConvolutionLayer3x3</a>, <a class="el" href="classarm__compute_1_1_c_l_reshape_layer.xhtml">CLReshapeLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_pooling_layer.xhtml">CLPoolingLayer</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, 224></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="_mobile_net_v1_8cpp_source.xhtml#l00056">56</a> of file <a class="el" href="_mobile_net_v1_8cpp_source.xhtml">MobileNetV1.cpp</a>.</p>
+
+</div>
+</div>
<a class="anchor" id="af4f1c6ad288931f07f614316f57ed63b"></a>
<div class="memitem">
<div class="memproto">
@@ -830,6 +1055,104 @@
</div>
</div>
+<a class="anchor" id="ab532906bae5b47b20f74c2fd5f2ef147"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a><<a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml">CLTensor</a>, <a class="el" href="classarm__compute_1_1_c_l_softmax_layer.xhtml">CLSoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_c_l_accessor.xhtml">CLAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_c_l_2_softmax_layer_8cpp_source.xhtml#l00045">45</a> of file <a class="el" href="benchmark_2_c_l_2_softmax_layer_8cpp_source.xhtml">SoftmaxLayer.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a8b4153be3e745d94aa922b3ae6a6d178"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_batch_normalization_layer_fixture.xhtml">BatchNormalizationLayerFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_batch_normalization_layer.xhtml">GCBatchNormalizationLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_batch_normalization_layer_8cpp_source.xhtml#l00046">46</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_batch_normalization_layer_8cpp_source.xhtml">BatchNormalizationLayer.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="afb74db03ceee9fb272663c68133771f2"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_convolution_layer_fixture.xhtml">ConvolutionLayerFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">GCDirectConvolutionLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_direct_convolution_layer_8cpp_source.xhtml#l00050">50</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_direct_convolution_layer_8cpp_source.xhtml">DirectConvolutionLayer.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a24e2d47432cc0b346147bbbc3964e6c8"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_fully_connected_layer_fixture.xhtml">FullyConnectedLayerFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_fully_connected_layer.xhtml">GCFullyConnectedLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_fully_connected_layer_8cpp_source.xhtml#l00049">49</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_fully_connected_layer_8cpp_source.xhtml">FullyConnectedLayer.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a6991a2c9303e8c258547b6be1b30ae5d"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_fixture.xhtml">GEMMFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_g_e_m_m.xhtml">GCGEMM</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_g_e_m_m_8cpp_source.xhtml#l00046">46</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_g_e_m_m_8cpp_source.xhtml">GEMM.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a1221a94382ab38693543c527d6cf6827"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_pooling_layer_fixture.xhtml">PoolingLayerFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_pooling_layer.xhtml">GCPoolingLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_pooling_layer_8cpp_source.xhtml#l00051">51</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_pooling_layer_8cpp_source.xhtml">PoolingLayer.cpp</a>.</p>
+
+</div>
+</div>
+<a class="anchor" id="a1227db70d61e996287ff23ac4ffcdf0a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a><<a class="el" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>, <a class="el" href="classarm__compute_1_1_g_c_softmax_layer.xhtml">GCSoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_g_c_accessor.xhtml">GCAccessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_softmax_layer_8cpp_source.xhtml#l00045">45</a> of file <a class="el" href="benchmark_2_g_l_e_s___c_o_m_p_u_t_e_2_softmax_layer_8cpp_source.xhtml">SoftmaxLayer.cpp</a>.</p>
+
+</div>
+</div>
<a class="anchor" id="aeded391cb7ec7a44c41eb23544265894"></a>
<div class="memitem">
<div class="memproto">
@@ -882,7 +1205,7 @@
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml#l00055">55</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml">ConvolutionLayer.cpp</a>.</p>
+<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml#l00056">56</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_convolution_layer_8cpp_source.xhtml">ConvolutionLayer.cpp</a>.</p>
</div>
</div>
@@ -928,6 +1251,20 @@
</div>
</div>
+<a class="anchor" id="ae6b70294fc810b1706aa240ce6488d43"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_g_e_m_m_lowp_matrix_multiply_core_fixture.xhtml">GEMMLowpMatrixMultiplyCoreFixture</a><<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_core.xhtml">NEGEMMLowpMatrixMultiplyCore</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_g_e_m_m_lowp_8cpp_source.xhtml#l00042">42</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_g_e_m_m_lowp_8cpp_source.xhtml">GEMMLowp.cpp</a>.</p>
+
+</div>
+</div>
<a class="anchor" id="a6a292ad5fedcc7dea6c6eb1be6d4c0d3"></a>
<div class="memitem">
<div class="memproto">
@@ -984,8 +1321,22 @@
</div>
</div>
+<a class="anchor" id="a332c02fe617367f14266075c7c046823"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">using <a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a> = <a class="el" href="classarm__compute_1_1test_1_1_softmax_layer_fixture.xhtml">SoftmaxLayerFixture</a><<a class="el" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a>, <a class="el" href="classarm__compute_1_1test_1_1_accessor.xhtml">Accessor</a>></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+<p>Definition at line <a class="el" href="benchmark_2_n_e_o_n_2_softmax_layer_8cpp_source.xhtml#l00045">45</a> of file <a class="el" href="benchmark_2_n_e_o_n_2_softmax_layer_8cpp_source.xhtml">SoftmaxLayer.cpp</a>.</p>
+
+</div>
+</div>
<h2 class="groupheader">Function Documentation</h2>
-<a class="anchor" id="a629633220b1b91a871c57b679b9f06e3"></a>
+<a class="anchor" id="ab3a61953b0f41e932f8a2ce8918e7aec"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -1004,7 +1355,7 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">const std::tuple< As...> & </td>
+ <td class="paramtype">const std::tuple< As... > & </td>
<td class="paramname"><em>args</em> </td>
</tr>
<tr>
@@ -1017,15 +1368,60 @@
<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00079">79</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00072">arm_compute::test::framework::apply_impl()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00080"></a><span class="lineno"> 80</span> {</div>
-<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a8daf3ad5a8666ce417ad176256a592eb">detail::apply_impl</a>(obj, std::forward<F>(func), <a class="code" href="namespacecaffe__data__extractor.xhtml#aad3cdfd6574de97bf37448087aaff11d">args</a>, detail::sequence_t<<span class="keyword">sizeof</span>...(As)>());</div>
-<div class="line"><a name="l00082"></a><span class="lineno"> 82</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_a8daf3ad5a8666ce417ad176256a592eb"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#a8daf3ad5a8666ce417ad176256a592eb">arm_compute::test::framework::apply_impl</a></div><div class="ttdeci">void apply_impl(O *obj, F &&func, const std::tuple< As...> &args, detail::sequence< S...>)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00072">Utils.h:72</a></div></div>
-<div class="ttc" id="namespacecaffe__data__extractor_xhtml_aad3cdfd6574de97bf37448087aaff11d"><div class="ttname"><a href="namespacecaffe__data__extractor.xhtml#aad3cdfd6574de97bf37448087aaff11d">caffe_data_extractor.args</a></div><div class="ttdeci">tuple args</div><div class="ttdef"><b>Definition:</b> <a href="caffe__data__extractor_8py_source.xhtml#l00021">caffe_data_extractor.py:21</a></div></div>
+<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00072">arm_compute::test::framework::apply_impl()</a>, <a class="el" href="caffe__data__extractor_8py_source.xhtml#l00019">caffe_data_extractor::type</a>, and <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
+<div class="fragment"><div class="line"><a name="l00080"></a><span class="lineno"> 80</span> {</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#a1ce487275e4d9e2072af217789dcdcc5">detail::apply_impl</a>(obj, std::forward<F>(func), <a class="code" href="namespacecaffe__data__extractor.xhtml#a8187411843a6284ffb964ef3fb9fcab3">args</a>, detail::sequence_t<<span class="keyword">sizeof</span>...(As)>());</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_a1ce487275e4d9e2072af217789dcdcc5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#a1ce487275e4d9e2072af217789dcdcc5">arm_compute::test::framework::apply_impl</a></div><div class="ttdeci">void apply_impl(O *obj, F &&func, const std::tuple< As... > &args, detail::sequence< S... >)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00072">Utils.h:72</a></div></div>
+<div class="ttc" id="namespacecaffe__data__extractor_xhtml_a8187411843a6284ffb964ef3fb9fcab3"><div class="ttname"><a href="namespacecaffe__data__extractor.xhtml#a8187411843a6284ffb964ef3fb9fcab3">caffe_data_extractor.args</a></div><div class="ttdeci">args</div><div class="ttdef"><b>Definition:</b> <a href="caffe__data__extractor_8py_source.xhtml#l00021">caffe_data_extractor.py:21</a></div></div>
</div><!-- fragment -->
</div>
</div>
+<a class="anchor" id="a93690f80f7fb88ea733fdc6f9f3b3ada"></a>
+<div class="memitem">
+<div class="memproto">
+<table class="mlabels">
+ <tr>
+ <td class="mlabels-left">
+ <table class="memname">
+ <tr>
+ <td class="memname">std::string arm_compute::test::arithmetic_to_string </td>
+ <td>(</td>
+ <td class="paramtype">T </td>
+ <td class="paramname"><em>val</em>, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype">int </td>
+ <td class="paramname"><em>decimal_places</em> = <code>0</code> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+ </td>
+ <td class="mlabels-right">
+<span class="mlabels"><span class="mlabel">inline</span></span> </td>
+ </tr>
+</table>
+</div><div class="memdoc">
+
+<p>Create a string with the arithmetic value in full precision. </p>
+<dl class="params"><dt>Parameters</dt><dd>
+ <table class="params">
+ <tr><td class="paramname">val</td><td>Arithmetic value </td></tr>
+ <tr><td class="paramname">decimal_places</td><td>How many decimal places to show</td></tr>
+ </table>
+ </dd>
+</dl>
+<dl class="section return"><dt>Returns</dt><dd>String with the arithmetic value. </dd></dl>
+
+<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00164">164</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+
+<p>Referenced by <a class="el" href="_pretty_printer_8cpp_source.xhtml#l00118">PrettyPrinter::print_measurements()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00165"></a><span class="lineno"> 165</span> {</div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span>  std::stringstream ss;</div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  ss << std::fixed;</div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  ss.precision((decimal_places) ? decimal_places : std::numeric_limits<T>::digits10 + 1);</div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  ss << val;</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  <span class="keywordflow">return</span> ss.str();</div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span> }</div></div><!-- fragment -->
+</div>
+</div>
<a class="anchor" id="a9be4cb7e6ee20063a4a10bc3abb750b9"></a>
<div class="memitem">
<div class="memproto">
@@ -1036,13 +1432,13 @@
<tr>
<td class="memname">int arm_compute::test::coord2index </td>
<td>(</td>
- <td class="paramtype">const TensorShape & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> & </td>
<td class="paramname"><em>shape</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">const Coordinates & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> & </td>
<td class="paramname"><em>coord</em> </td>
</tr>
<tr>
@@ -1069,32 +1465,17 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>Linear offset to the element. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00337">337</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00413">413</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00115">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions< T >::num_dimensions()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00297">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00122">Dimensions< T >::num_dimensions()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
-<p>Referenced by <a class="el" href="tests_2validation_2_c_p_p_2_utils_8h_source.xhtml#l00081">arm_compute::test::validation::apply_2d_spatial_filter()</a>, <a class="el" href="_raw_tensor_8cpp_source.xhtml#l00057">RawTensor::operator()()</a>, <a class="el" href="_simple_tensor_8h_source.xhtml#l00323">SimpleTensor< T >::operator()()</a>, <a class="el" href="_c_p_p_2_scale_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::scale()</a>, <a class="el" href="tests_2validation_2_c_p_p_2_utils_8h_source.xhtml#l00046">arm_compute::test::validation::tensor_elem_at()</a>, <a class="el" href="_c_p_p_2_warp_affine_8cpp_source.xhtml#l00050">arm_compute::test::validation::reference::warp_affine()</a>, and <a class="el" href="_c_p_p_2_warp_perspective_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::warp_perspective()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00338"></a><span class="lineno"> 338</span> {</div>
-<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size() == 0, <span class="stringliteral">"Cannot get index from empty shape"</span>);</div>
-<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>  <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(coord.num_dimensions() == 0, <span class="stringliteral">"Cannot get index of empty coordinate"</span>);</div>
-<div class="line"><a name="l00341"></a><span class="lineno"> 341</span> </div>
-<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  <span class="keywordtype">int</span> index = 0;</div>
-<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  <span class="keywordtype">int</span> dim_size = 1;</div>
-<div class="line"><a name="l00344"></a><span class="lineno"> 344</span> </div>
-<div class="line"><a name="l00345"></a><span class="lineno"> 345</span>  <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 0; i < coord.num_dimensions(); ++i)</div>
-<div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  {</div>
-<div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  index += coord[i] * dim_size;</div>
-<div class="line"><a name="l00348"></a><span class="lineno"> 348</span>  dim_size *= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[i];</div>
-<div class="line"><a name="l00349"></a><span class="lineno"> 349</span>  }</div>
-<div class="line"><a name="l00350"></a><span class="lineno"> 350</span> </div>
-<div class="line"><a name="l00351"></a><span class="lineno"> 351</span>  <span class="keywordflow">return</span> index;</div>
-<div class="line"><a name="l00352"></a><span class="lineno"> 352</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
-<div class="ttc" id="_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00115">Error.h:115</a></div></div>
+<p>Referenced by <a class="el" href="tests_2validation_2reference_2_utils_8h_source.xhtml#l00096">arm_compute::test::validation::apply_2d_spatial_filter()</a>, <a class="el" href="tests_2validation_2_u_n_i_t_2_utils_8cpp_source.xhtml#l00077">DATA_TEST_CASE()</a>, <a class="el" href="_raw_tensor_8cpp_source.xhtml#l00057">RawTensor::operator()()</a>, <a class="el" href="_simple_tensor_8h_source.xhtml#l00339">SimpleTensor< T >::operator()()</a>, <a class="el" href="reference_2_permute_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::permute()</a>, <a class="el" href="reference_2_scale_8cpp_source.xhtml#l00040">arm_compute::test::validation::reference::scale()</a>, <a class="el" href="validation_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00057">ConvolutionValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="tests_2validation_2reference_2_utils_8h_source.xhtml#l00061">arm_compute::test::validation::tensor_elem_at()</a>, <a class="el" href="reference_2_transpose_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::transpose()</a>, <a class="el" href="reference_2_warp_affine_8cpp_source.xhtml#l00050">arm_compute::test::validation::reference::warp_affine()</a>, and <a class="el" href="reference_2_warp_perspective_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::warp_perspective()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00414"></a><span class="lineno"> 414</span> {</div><div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  <a class="code" href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size() == 0, <span class="stringliteral">"Cannot get index from empty shape"</span>);</div><div class="line"><a name="l00416"></a><span class="lineno"> 416</span>  <a class="code" href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(coord.num_dimensions() == 0, <span class="stringliteral">"Cannot get index of empty coordinate"</span>);</div><div class="line"><a name="l00417"></a><span class="lineno"> 417</span> </div><div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  <span class="keywordtype">int</span> index = 0;</div><div class="line"><a name="l00419"></a><span class="lineno"> 419</span>  <span class="keywordtype">int</span> dim_size = 1;</div><div class="line"><a name="l00420"></a><span class="lineno"> 420</span> </div><div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 0; i < coord.num_dimensions(); ++i)</div><div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  {</div><div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  index += coord[i] * dim_size;</div><div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  dim_size *= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[i];</div><div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  }</div><div class="line"><a name="l00426"></a><span class="lineno"> 426</span> </div><div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  <span class="keywordflow">return</span> index;</div><div class="line"><a name="l00428"></a><span class="lineno"> 428</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00297">Error.h:297</a></div></div>
</div><!-- fragment -->
</div>
</div>
-<a class="anchor" id="a2ce249581879425cc66db8d364c838f3"></a>
+<a class="anchor" id="a316948014329b50b11a302305a6ab3ab"></a>
<div class="memitem">
<div class="memproto">
<table class="mlabels">
@@ -1104,13 +1485,13 @@
<tr>
<td class="memname">T arm_compute::test::create_tensor </td>
<td>(</td>
- <td class="paramtype">const TensorShape & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> & </td>
<td class="paramname"><em>shape</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">DataType </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> </td>
<td class="paramname"><em>data_type</em>, </td>
</tr>
<tr>
@@ -1123,7 +1504,13 @@
<td class="paramkey"></td>
<td></td>
<td class="paramtype">int </td>
- <td class="paramname"><em>fixed_point_position</em> = <code>0</code> </td>
+ <td class="paramname"><em>fixed_point_position</em> = <code>0</code>, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="structarm__compute_1_1_quantization_info.xhtml">QuantizationInfo</a> </td>
+ <td class="paramname"><em>quantization_info</em> = <code><a class="el" href="structarm__compute_1_1_quantization_info.xhtml">QuantizationInfo</a>()</code> </td>
</tr>
<tr>
<td></td>
@@ -1144,20 +1531,18 @@
<tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td><a class="el" href="classarm__compute_1_1_tensor.xhtml" title="Basic implementation of the tensor interface. ">Tensor</a> shape. </td></tr>
<tr><td class="paramdir">[in]</td><td class="paramname">data_type</td><td>Data type. </td></tr>
<tr><td class="paramdir">[in]</td><td class="paramname">num_channels</td><td>(Optional) Number of channels. </td></tr>
- <tr><td class="paramdir">[in]</td><td class="paramname">fixed_point_position</td><td>(Optional) Number of fractional bits.</td></tr>
+ <tr><td class="paramdir">[in]</td><td class="paramname">fixed_point_position</td><td>(Optional) Number of fractional bits. </td></tr>
+ <tr><td class="paramdir">[in]</td><td class="paramname">quantization_info</td><td>(Optional) Quantization info for asymmetric quantized types.</td></tr>
</table>
</dd>
</dl>
<dl class="section return"><dt>Returns</dt><dd>Initialized tensor of given type. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00378">378</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<div class="fragment"><div class="line"><a name="l00379"></a><span class="lineno"> 379</span> {</div>
-<div class="line"><a name="l00380"></a><span class="lineno"> 380</span>  T tensor;</div>
-<div class="line"><a name="l00381"></a><span class="lineno"> 381</span>  tensor.allocator()->init(TensorInfo(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>, num_channels, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>, fixed_point_position));</div>
-<div class="line"><a name="l00382"></a><span class="lineno"> 382</span> </div>
-<div class="line"><a name="l00383"></a><span class="lineno"> 383</span>  <span class="keywordflow">return</span> tensor;</div>
-<div class="line"><a name="l00384"></a><span class="lineno"> 384</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00455">455</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+
+<p>References <a class="el" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">arm_compute::test::validation::info()</a>, and <a class="el" href="classarm__compute_1_1_tensor_info.xhtml#ae3099a4be4777389b60712f43e065403">TensorInfo::set_quantization_info()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00457"></a><span class="lineno"> 457</span> {</div><div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  T tensor;</div><div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  TensorInfo <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>, num_channels, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>, fixed_point_position);</div><div class="line"><a name="l00460"></a><span class="lineno"> 460</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>.set_quantization_info(quantization_info);</div><div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  tensor.allocator()->init(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>);</div><div class="line"><a name="l00462"></a><span class="lineno"> 462</span> </div><div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  <span class="keywordflow">return</span> tensor;</div><div class="line"><a name="l00464"></a><span class="lineno"> 464</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a096668313a9a819d54a2e65ec21ff0cc"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">arm_compute::test::validation::info</a></div><div class="ttdeci">src info() -> set_format(Format::S16)</div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
</div><!-- fragment -->
</div>
@@ -1194,14 +1579,10 @@
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00433">433</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00513">513</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
<p>Referenced by <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture< TensorType, Function, Accessor, Array_T, ArrayAccessor >::setup()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00434"></a><span class="lineno"> 434</span> {</div>
-<div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  array.resize(v.size());</div>
-<div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  std::memcpy(array.buffer(), v.data(), v.size() * <span class="keyword">sizeof</span>(T));</div>
-<div class="line"><a name="l00437"></a><span class="lineno"> 437</span> }</div>
-</div><!-- fragment -->
+<div class="fragment"><div class="line"><a name="l00514"></a><span class="lineno"> 514</span> {</div><div class="line"><a name="l00515"></a><span class="lineno"> 515</span>  array.resize(v.size());</div><div class="line"><a name="l00516"></a><span class="lineno"> 516</span>  std::memcpy(array.buffer(), v.data(), v.size() * <span class="keyword">sizeof</span>(T));</div><div class="line"><a name="l00517"></a><span class="lineno"> 517</span> }</div></div><!-- fragment -->
</div>
</div>
<a class="anchor" id="a8939810976531494e8db1f491bf61a35"></a>
@@ -1240,21 +1621,11 @@
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="_helper_8h_source.xhtml#l00039">39</a> of file <a class="el" href="_helper_8h_source.xhtml">Helper.h</a>.</p>
+<p>Definition at line <a class="el" href="_n_e_o_n_2_helper_8h_source.xhtml#l00041">41</a> of file <a class="el" href="_n_e_o_n_2_helper_8h_source.xhtml">Helper.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, and <a class="el" href="main_8cpp_source.xhtml#l00055">library</a>.</p>
-<div class="fragment"><div class="line"><a name="l00040"></a><span class="lineno"> 40</span> {</div>
-<div class="line"><a name="l00041"></a><span class="lineno"> 41</span>  <span class="keyword">const</span> std::array < T, 1 + <span class="keyword">sizeof</span>...(Ts) > tensors{ { std::forward<T>(tensor), std::forward<Ts>(other_tensors)... } };</div>
-<div class="line"><a name="l00042"></a><span class="lineno"> 42</span>  std::vector<int> vs(seeds);</div>
-<div class="line"><a name="l00043"></a><span class="lineno"> 43</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(vs.size() != tensors.size());</div>
-<div class="line"><a name="l00044"></a><span class="lineno"> 44</span>  <span class="keywordtype">int</span> k = 0;</div>
-<div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  <span class="keywordflow">for</span>(<span class="keyword">auto</span> tp : tensors)</div>
-<div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  {</div>
-<div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">library</a>->fill(Accessor(*tp), std::forward<D>(dist), vs[k++]);</div>
-<div class="line"><a name="l00048"></a><span class="lineno"> 48</span>  }</div>
-<div class="line"><a name="l00049"></a><span class="lineno"> 49</span> }</div>
-<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a71326f0909d77386e29b511e1990a11f"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">arm_compute::test::library</a></div><div class="ttdeci">std::unique_ptr< AssetsLibrary > library</div><div class="ttdef"><b>Definition:</b> <a href="main_8cpp_source.xhtml#l00055">main.cpp:55</a></div></div>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00306">ARM_COMPUTE_ERROR_ON</a>, and <a class="el" href="main_8cpp_source.xhtml#l00058">library</a>.</p>
+<div class="fragment"><div class="line"><a name="l00042"></a><span class="lineno"> 42</span> {</div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span>  <span class="keyword">const</span> std::array < T, 1 + <span class="keyword">sizeof</span>...(Ts) > tensors{ { std::forward<T>(tensor), std::forward<Ts>(other_tensors)... } };</div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span>  std::vector<int> vs(seeds);</div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span>  <a class="code" href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(vs.size() != tensors.size());</div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span>  <span class="keywordtype">int</span> k = 0;</div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span>  <span class="keywordflow">for</span>(<span class="keyword">auto</span> tp : tensors)</div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span>  {</div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">library</a>->fill(Accessor(*tp), std::forward<D>(dist), vs[k++]);</div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span>  }</div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span> }</div><div class="ttc" id="core_2_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00306">Error.h:306</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a71326f0909d77386e29b511e1990a11f"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a71326f0909d77386e29b511e1990a11f">arm_compute::test::library</a></div><div class="ttdeci">std::unique_ptr< AssetsLibrary > library</div><div class="ttdef"><b>Definition:</b> <a href="main_8cpp_source.xhtml#l00058">main.cpp:58</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1293,15 +1664,12 @@
<p>Base case of foldl. </p>
<dl class="section return"><dt>Returns</dt><dd>value. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00156">156</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00160">160</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
<p>References <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
-<p>Referenced by <a class="el" href="tests_2_utils_8h_source.xhtml#l00179">foldl()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00157"></a><span class="lineno"> 157</span> {</div>
-<div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  <span class="keywordflow">return</span> <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00159"></a><span class="lineno"> 159</span> }</div>
-<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
+<p>Referenced by <a class="el" href="tests_2_utils_8h_source.xhtml#l00183">foldl()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00161"></a><span class="lineno"> 161</span> {</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  <span class="keywordflow">return</span> <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span> }</div><div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1347,11 +1715,8 @@
<p>Base case of foldl. </p>
<dl class="section return"><dt>Returns</dt><dd>func(value1, value2). </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00166">166</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<div class="fragment"><div class="line"><a name="l00167"></a><span class="lineno"> 167</span> {</div>
-<div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  <span class="keywordflow">return</span> func(value1, value2);</div>
-<div class="line"><a name="l00169"></a><span class="lineno"> 169</span> }</div>
-</div><!-- fragment -->
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00170">170</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<div class="fragment"><div class="line"><a name="l00171"></a><span class="lineno"> 171</span> {</div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  <span class="keywordflow">return</span> func(value1, value2);</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span> }</div></div><!-- fragment -->
</div>
</div>
<a class="anchor" id="a89322cccde5e0a27d3a41085d3fd366c"></a>
@@ -1409,13 +1774,10 @@
</dd>
</dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00179">179</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00183">183</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="tests_2_utils_8h_source.xhtml#l00156">foldl()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00180"></a><span class="lineno"> 180</span> {</div>
-<div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">foldl</a>(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)), std::forward<Vs>(values)...);</div>
-<div class="line"><a name="l00182"></a><span class="lineno"> 182</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a89322cccde5e0a27d3a41085d3fd366c"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">arm_compute::test::foldl</a></div><div class="ttdeci">I foldl(F &&func, I &&initial, T &&value, Vs &&...values)</div><div class="ttdoc">Fold left. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2_utils_8h_source.xhtml#l00179">Utils.h:179</a></div></div>
+<p>References <a class="el" href="tests_2_utils_8h_source.xhtml#l00160">foldl()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00184"></a><span class="lineno"> 184</span> {</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">foldl</a>(std::forward<F>(func), func(std::forward<I>(initial), std::forward<T>(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>)), std::forward<Vs>(values)...);</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_xhtml_a89322cccde5e0a27d3a41085d3fd366c"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a89322cccde5e0a27d3a41085d3fd366c">arm_compute::test::foldl</a></div><div class="ttdeci">I foldl(F &&func, I &&initial, T &&value, Vs &&...values)</div><div class="ttdoc">Fold left. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2_utils_8h_source.xhtml#l00183">Utils.h:183</a></div></div>
<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
</div><!-- fragment -->
</div>
@@ -1430,13 +1792,13 @@
<tr>
<td class="memname">std::vector<<a class="el" href="structarm__compute_1_1_r_o_i.xhtml">ROI</a>> arm_compute::test::generate_random_rois </td>
<td>(</td>
- <td class="paramtype">const TensorShape & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> & </td>
<td class="paramname"><em>shape</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">const ROIPoolingLayerInfo & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_r_o_i_pooling_layer_info.xhtml">ROIPoolingLayerInfo</a> & </td>
<td class="paramname"><em>pool_info</em>, </td>
</tr>
<tr>
@@ -1476,48 +1838,13 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>A vector that contains the requested number of random ROIs </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00395">395</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00475">475</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00312">ROI::batch_idx</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00290">Rectangle::height</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00495">ROIPoolingLayerInfo::pooled_height()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00491">ROIPoolingLayerInfo::pooled_width()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00311">ROI::rect</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00499">ROIPoolingLayerInfo::spatial_scale()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00289">Rectangle::width</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions< T >::x()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00287">Rectangle::x</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions< T >::y()</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00288">Rectangle::y</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00306">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00366">ROI::batch_idx</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00344">Rectangle::height</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00634">ROIPoolingLayerInfo::pooled_height()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00630">ROIPoolingLayerInfo::pooled_width()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00365">ROI::rect</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00638">ROIPoolingLayerInfo::spatial_scale()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00343">Rectangle::width</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions< T >::x()</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00341">Rectangle::x</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions< T >::y()</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00342">Rectangle::y</a>.</p>
<p>Referenced by <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture< TensorType, Function, Accessor, Array_T, ArrayAccessor >::setup()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00396"></a><span class="lineno"> 396</span> {</div>
-<div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>((pool_info.pooled_width() < 4) || (pool_info.pooled_height() < 4));</div>
-<div class="line"><a name="l00398"></a><span class="lineno"> 398</span> </div>
-<div class="line"><a name="l00399"></a><span class="lineno"> 399</span>  std::vector<ROI> rois;</div>
-<div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  std::mt19937 gen(seed);</div>
-<div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> pool_width = pool_info.pooled_width();</div>
-<div class="line"><a name="l00402"></a><span class="lineno"> 402</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> pool_height = pool_info.pooled_height();</div>
-<div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> roi_scale = pool_info.spatial_scale();</div>
-<div class="line"><a name="l00404"></a><span class="lineno"> 404</span> </div>
-<div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <span class="comment">// Calculate distribution bounds</span></div>
-<div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  <span class="keyword">const</span> <span class="keyword">auto</span> scaled_width = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x() / roi_scale) / pool_width);</div>
-<div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  <span class="keyword">const</span> <span class="keyword">auto</span> scaled_height = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y() / roi_scale) / pool_height);</div>
-<div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  <span class="keyword">const</span> <span class="keyword">auto</span> min_width = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(pool_width / roi_scale);</div>
-<div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  <span class="keyword">const</span> <span class="keyword">auto</span> min_height = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(pool_height / roi_scale);</div>
-<div class="line"><a name="l00410"></a><span class="lineno"> 410</span> </div>
-<div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  <span class="comment">// Create distributions</span></div>
-<div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  std::uniform_int_distribution<int> dist_batch(0, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[3] - 1);</div>
-<div class="line"><a name="l00413"></a><span class="lineno"> 413</span>  std::uniform_int_distribution<int> dist_x(0, scaled_width);</div>
-<div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  std::uniform_int_distribution<int> dist_y(0, scaled_height);</div>
-<div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  std::uniform_int_distribution<int> dist_w(min_width, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_width, (pool_width - 2) * scaled_width));</div>
-<div class="line"><a name="l00416"></a><span class="lineno"> 416</span>  std::uniform_int_distribution<int> dist_h(min_height, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_height, (pool_height - 2) * scaled_height));</div>
-<div class="line"><a name="l00417"></a><span class="lineno"> 417</span> </div>
-<div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> r = 0; r < num_rois; ++r)</div>
-<div class="line"><a name="l00419"></a><span class="lineno"> 419</span>  {</div>
-<div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  ROI roi;</div>
-<div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  roi.batch_idx = dist_batch(gen);</div>
-<div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  roi.rect.x = dist_x(gen);</div>
-<div class="line"><a name="l00423"></a><span class="lineno"> 423</span>  roi.rect.y = dist_y(gen);</div>
-<div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  roi.rect.width = dist_w(gen);</div>
-<div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  roi.rect.height = dist_h(gen);</div>
-<div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  rois.push_back(roi);</div>
-<div class="line"><a name="l00427"></a><span class="lineno"> 427</span>  }</div>
-<div class="line"><a name="l00428"></a><span class="lineno"> 428</span> </div>
-<div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  <span class="keywordflow">return</span> rois;</div>
-<div class="line"><a name="l00430"></a><span class="lineno"> 430</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
-<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
+<div class="fragment"><div class="line"><a name="l00476"></a><span class="lineno"> 476</span> {</div><div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <a class="code" href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>((pool_info.pooled_width() < 4) || (pool_info.pooled_height() < 4));</div><div class="line"><a name="l00478"></a><span class="lineno"> 478</span> </div><div class="line"><a name="l00479"></a><span class="lineno"> 479</span>  std::vector<ROI> rois;</div><div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  std::mt19937 gen(seed);</div><div class="line"><a name="l00481"></a><span class="lineno"> 481</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> pool_width = pool_info.pooled_width();</div><div class="line"><a name="l00482"></a><span class="lineno"> 482</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> pool_height = pool_info.pooled_height();</div><div class="line"><a name="l00483"></a><span class="lineno"> 483</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> roi_scale = pool_info.spatial_scale();</div><div class="line"><a name="l00484"></a><span class="lineno"> 484</span> </div><div class="line"><a name="l00485"></a><span class="lineno"> 485</span>  <span class="comment">// Calculate distribution bounds</span></div><div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  <span class="keyword">const</span> <span class="keyword">auto</span> scaled_width = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x() / roi_scale) / pool_width);</div><div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  <span class="keyword">const</span> <span class="keyword">auto</span> scaled_height = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>((<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y() / roi_scale) / pool_height);</div><div class="line"><a name="l00488"></a><span class="lineno"> 488</span>  <span class="keyword">const</span> <span class="keyword">auto</span> min_width = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(pool_width / roi_scale);</div><div class="line"><a name="l00489"></a><span class="lineno"> 489</span>  <span class="keyword">const</span> <span class="keyword">auto</span> min_height = <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(pool_height / roi_scale);</div><div class="line"><a name="l00490"></a><span class="lineno"> 490</span> </div><div class="line"><a name="l00491"></a><span class="lineno"> 491</span>  <span class="comment">// Create distributions</span></div><div class="line"><a name="l00492"></a><span class="lineno"> 492</span>  std::uniform_int_distribution<int> dist_batch(0, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[3] - 1);</div><div class="line"><a name="l00493"></a><span class="lineno"> 493</span>  std::uniform_int_distribution<int> dist_x(0, scaled_width);</div><div class="line"><a name="l00494"></a><span class="lineno"> 494</span>  std::uniform_int_distribution<int> dist_y(0, scaled_height);</div><div class="line"><a name="l00495"></a><span class="lineno"> 495</span>  std::uniform_int_distribution<int> dist_w(min_width, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_width, (pool_width - 2) * scaled_width));</div><div class="line"><a name="l00496"></a><span class="lineno"> 496</span>  std::uniform_int_distribution<int> dist_h(min_height, <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(min_height, (pool_height - 2) * scaled_height));</div><div class="line"><a name="l00497"></a><span class="lineno"> 497</span> </div><div class="line"><a name="l00498"></a><span class="lineno"> 498</span>  <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> r = 0; r < num_rois; ++r)</div><div class="line"><a name="l00499"></a><span class="lineno"> 499</span>  {</div><div class="line"><a name="l00500"></a><span class="lineno"> 500</span>  ROI roi;</div><div class="line"><a name="l00501"></a><span class="lineno"> 501</span>  roi.batch_idx = dist_batch(gen);</div><div class="line"><a name="l00502"></a><span class="lineno"> 502</span>  roi.rect.x = dist_x(gen);</div><div class="line"><a name="l00503"></a><span class="lineno"> 503</span>  roi.rect.y = dist_y(gen);</div><div class="line"><a name="l00504"></a><span class="lineno"> 504</span>  roi.rect.width = dist_w(gen);</div><div class="line"><a name="l00505"></a><span class="lineno"> 505</span>  roi.rect.height = dist_h(gen);</div><div class="line"><a name="l00506"></a><span class="lineno"> 506</span>  rois.push_back(roi);</div><div class="line"><a name="l00507"></a><span class="lineno"> 507</span>  }</div><div class="line"><a name="l00508"></a><span class="lineno"> 508</span> </div><div class="line"><a name="l00509"></a><span class="lineno"> 509</span>  <span class="keywordflow">return</span> rois;</div><div class="line"><a name="l00510"></a><span class="lineno"> 510</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00306">Error.h:306</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point< T > max(fixed_point< T > x, fixed_point< T > y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
</div><!-- fragment -->
</div>
@@ -1532,7 +1859,7 @@
<tr>
<td class="memname"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> arm_compute::test::get_channel_format </td>
<td>(</td>
- <td class="paramtype">Channel </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> </td>
<td class="paramname"><em>channel</em></td><td>)</td>
<td></td>
</tr>
@@ -1553,21 +1880,12 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>Format of the given channel. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00138">138</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00142">142</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
<p>References <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa9d5ed678fe57bcca610140957afab571">arm_compute::B</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aadfcf28d0734569a6a693bc8194de62bf">arm_compute::G</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aae1e1d3d40573127e9ee0480caf1283d6">arm_compute::R</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
-<div class="fragment"><div class="line"><a name="l00139"></a><span class="lineno"> 139</span> {</div>
-<div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  <span class="keywordflow">switch</span>(channel)</div>
-<div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  {</div>
-<div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  <span class="keywordflow">case</span> Channel::R:</div>
-<div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  <span class="keywordflow">case</span> Channel::G:</div>
-<div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  <span class="keywordflow">case</span> Channel::B:</div>
-<div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  <span class="keywordflow">return</span> Format::U8;</div>
-<div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <span class="keywordflow">default</span>:</div>
-<div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Unsupported channel"</span>);</div>
-<div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  }</div>
-<div class="line"><a name="l00149"></a><span class="lineno"> 149</span> }</div>
-</div><!-- fragment -->
+
+<p>Referenced by <a class="el" href="_assets_library_8cpp_source.xhtml#l00215">AssetsLibrary::fill()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00143"></a><span class="lineno"> 143</span> {</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  <span class="keywordflow">switch</span>(channel)</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span>  {</div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <span class="keywordflow">case</span> Channel::R:</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span>  <span class="keywordflow">case</span> Channel::G:</div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  <span class="keywordflow">case</span> Channel::B:</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  <span class="keywordflow">return</span> Format::U8;</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  <span class="keywordflow">default</span>:</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Unsupported channel"</span>);</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  }</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span> }</div></div><!-- fragment -->
</div>
</div>
<a class="anchor" id="aa337ab76176f3c4193642ac6de3a61cf"></a>
@@ -1580,7 +1898,7 @@
<tr>
<td class="memname"><a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58">Format</a> arm_compute::test::get_format_for_channel </td>
<td>(</td>
- <td class="paramtype">Channel </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455a">Channel</a> </td>
<td class="paramname"><em>channel</em></td><td>)</td>
<td></td>
</tr>
@@ -1601,23 +1919,12 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>Format that contains the given channel. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00119">119</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00123">123</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
<p>References <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa9d5ed678fe57bcca610140957afab571">arm_compute::B</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aadfcf28d0734569a6a693bc8194de62bf">arm_compute::G</a>, <a class="el" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aae1e1d3d40573127e9ee0480caf1283d6">arm_compute::R</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a30ff380a3be74628024063a99fba10f0">arm_compute::RGB888</a>.</p>
<p>Referenced by <a class="el" href="_assets_library_8cpp_source.xhtml#l00210">AssetsLibrary::fill()</a>, and <a class="el" href="_assets_library_8cpp_source.xhtml#l00427">AssetsLibrary::get()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00120"></a><span class="lineno"> 120</span> {</div>
-<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="keywordflow">switch</span>(channel)</div>
-<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  {</div>
-<div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  <span class="keywordflow">case</span> Channel::R:</div>
-<div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  <span class="keywordflow">case</span> Channel::G:</div>
-<div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  <span class="keywordflow">case</span> Channel::B:</div>
-<div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  <span class="keywordflow">return</span> Format::RGB888;</div>
-<div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  <span class="keywordflow">default</span>:</div>
-<div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Unsupported channel"</span>);</div>
-<div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  }</div>
-<div class="line"><a name="l00130"></a><span class="lineno"> 130</span> }</div>
-</div><!-- fragment -->
+<div class="fragment"><div class="line"><a name="l00124"></a><span class="lineno"> 124</span> {</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  <span class="keywordflow">switch</span>(channel)</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  {</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  <span class="keywordflow">case</span> Channel::R:</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  <span class="keywordflow">case</span> Channel::G:</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  <span class="keywordflow">case</span> Channel::B:</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  <span class="keywordflow">return</span> Format::RGB888;</div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  <span class="keywordflow">default</span>:</div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <span class="keywordflow">throw</span> std::runtime_error(<span class="stringliteral">"Unsupported channel"</span>);</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  }</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span> }</div></div><!-- fragment -->
</div>
</div>
<a class="anchor" id="ae47155d6186155ec4da9295764b3c05a"></a>
@@ -1630,7 +1937,7 @@
<tr>
<td class="memname">std::string arm_compute::test::get_typestring </td>
<td>(</td>
- <td class="paramtype">DataType </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> </td>
<td class="paramname"><em>data_type</em></td><td>)</td>
<td></td>
</tr>
@@ -1651,57 +1958,15 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>numpy type string. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00445">445</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00525">525</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00031">ARM_COMPUTE_ERROR</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00168">arm_compute::support::cpp11::to_string()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00238">ARM_COMPUTE_ERROR</a>, <a class="el" href="validation_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml#l00117">arm_compute::test::validation::c</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00187">arm_compute::support::cpp11::to_string()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
-<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00656">AssetsLibrary::fill_layer_data()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00446"></a><span class="lineno"> 446</span> {</div>
-<div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  <span class="comment">// Check endianness</span></div>
-<div class="line"><a name="l00448"></a><span class="lineno"> 448</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 1;</div>
-<div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  <span class="keyword">const</span> <span class="keywordtype">char</span> *c = <span class="keyword">reinterpret_cast<</span><span class="keyword">const </span><span class="keywordtype">char</span> *<span class="keyword">></span>(&i);</div>
-<div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  std::string endianness;</div>
-<div class="line"><a name="l00451"></a><span class="lineno"> 451</span>  <span class="keywordflow">if</span>(*c == 1)</div>
-<div class="line"><a name="l00452"></a><span class="lineno"> 452</span>  {</div>
-<div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  endianness = std::string(<span class="stringliteral">"<"</span>);</div>
-<div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  }</div>
-<div class="line"><a name="l00455"></a><span class="lineno"> 455</span>  <span class="keywordflow">else</span></div>
-<div class="line"><a name="l00456"></a><span class="lineno"> 456</span>  {</div>
-<div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  endianness = std::string(<span class="stringliteral">">"</span>);</div>
-<div class="line"><a name="l00458"></a><span class="lineno"> 458</span>  }</div>
-<div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  <span class="keyword">const</span> std::string no_endianness(<span class="stringliteral">"|"</span>);</div>
-<div class="line"><a name="l00460"></a><span class="lineno"> 460</span> </div>
-<div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div>
-<div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  {</div>
-<div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  <span class="keywordflow">case</span> DataType::U8:</div>
-<div class="line"><a name="l00464"></a><span class="lineno"> 464</span>  <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint8_t));</div>
-<div class="line"><a name="l00465"></a><span class="lineno"> 465</span>  <span class="keywordflow">case</span> DataType::S8:</div>
-<div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int8_t));</div>
-<div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  <span class="keywordflow">case</span> DataType::U16:</div>
-<div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint16_t));</div>
-<div class="line"><a name="l00469"></a><span class="lineno"> 469</span>  <span class="keywordflow">case</span> DataType::S16:</div>
-<div class="line"><a name="l00470"></a><span class="lineno"> 470</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int16_t));</div>
-<div class="line"><a name="l00471"></a><span class="lineno"> 471</span>  <span class="keywordflow">case</span> DataType::U32:</div>
-<div class="line"><a name="l00472"></a><span class="lineno"> 472</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint32_t));</div>
-<div class="line"><a name="l00473"></a><span class="lineno"> 473</span>  <span class="keywordflow">case</span> DataType::S32:</div>
-<div class="line"><a name="l00474"></a><span class="lineno"> 474</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int32_t));</div>
-<div class="line"><a name="l00475"></a><span class="lineno"> 475</span>  <span class="keywordflow">case</span> DataType::U64:</div>
-<div class="line"><a name="l00476"></a><span class="lineno"> 476</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint64_t));</div>
-<div class="line"><a name="l00477"></a><span class="lineno"> 477</span>  <span class="keywordflow">case</span> DataType::S64:</div>
-<div class="line"><a name="l00478"></a><span class="lineno"> 478</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int64_t));</div>
-<div class="line"><a name="l00479"></a><span class="lineno"> 479</span>  <span class="keywordflow">case</span> DataType::F32:</div>
-<div class="line"><a name="l00480"></a><span class="lineno"> 480</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"f"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">float</span>));</div>
-<div class="line"><a name="l00481"></a><span class="lineno"> 481</span>  <span class="keywordflow">case</span> DataType::F64:</div>
-<div class="line"><a name="l00482"></a><span class="lineno"> 482</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"f"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">double</span>));</div>
-<div class="line"><a name="l00483"></a><span class="lineno"> 483</span>  <span class="keywordflow">case</span> DataType::SIZET:</div>
-<div class="line"><a name="l00484"></a><span class="lineno"> 484</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>));</div>
-<div class="line"><a name="l00485"></a><span class="lineno"> 485</span>  <span class="keywordflow">default</span>:</div>
-<div class="line"><a name="l00486"></a><span class="lineno"> 486</span>  <a class="code" href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">"NOT SUPPORTED!"</span>);</div>
-<div class="line"><a name="l00487"></a><span class="lineno"> 487</span>  }</div>
-<div class="line"><a name="l00488"></a><span class="lineno"> 488</span> }</div>
-<div class="ttc" id="_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00031">Error.h:31</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
+<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00661">AssetsLibrary::fill_layer_data()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00526"></a><span class="lineno"> 526</span> {</div><div class="line"><a name="l00527"></a><span class="lineno"> 527</span>  <span class="comment">// Check endianness</span></div><div class="line"><a name="l00528"></a><span class="lineno"> 528</span>  <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> i = 1;</div><div class="line"><a name="l00529"></a><span class="lineno"> 529</span>  <span class="keyword">const</span> <span class="keywordtype">char</span> *<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a497347573faa3778743ddf277f861094">c</a> = <span class="keyword">reinterpret_cast<</span><span class="keyword">const </span><span class="keywordtype">char</span> *<span class="keyword">></span>(&i);</div><div class="line"><a name="l00530"></a><span class="lineno"> 530</span>  std::string endianness;</div><div class="line"><a name="l00531"></a><span class="lineno"> 531</span>  <span class="keywordflow">if</span>(*c == 1)</div><div class="line"><a name="l00532"></a><span class="lineno"> 532</span>  {</div><div class="line"><a name="l00533"></a><span class="lineno"> 533</span>  endianness = std::string(<span class="stringliteral">"<"</span>);</div><div class="line"><a name="l00534"></a><span class="lineno"> 534</span>  }</div><div class="line"><a name="l00535"></a><span class="lineno"> 535</span>  <span class="keywordflow">else</span></div><div class="line"><a name="l00536"></a><span class="lineno"> 536</span>  {</div><div class="line"><a name="l00537"></a><span class="lineno"> 537</span>  endianness = std::string(<span class="stringliteral">">"</span>);</div><div class="line"><a name="l00538"></a><span class="lineno"> 538</span>  }</div><div class="line"><a name="l00539"></a><span class="lineno"> 539</span>  <span class="keyword">const</span> std::string no_endianness(<span class="stringliteral">"|"</span>);</div><div class="line"><a name="l00540"></a><span class="lineno"> 540</span> </div><div class="line"><a name="l00541"></a><span class="lineno"> 541</span>  <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div><div class="line"><a name="l00542"></a><span class="lineno"> 542</span>  {</div><div class="line"><a name="l00543"></a><span class="lineno"> 543</span>  <span class="keywordflow">case</span> DataType::U8:</div><div class="line"><a name="l00544"></a><span class="lineno"> 544</span>  <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint8_t));</div><div class="line"><a name="l00545"></a><span class="lineno"> 545</span>  <span class="keywordflow">case</span> DataType::S8:</div><div class="line"><a name="l00546"></a><span class="lineno"> 546</span>  <span class="keywordflow">return</span> no_endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int8_t));</div><div class="line"><a name="l00547"></a><span class="lineno"> 547</span>  <span class="keywordflow">case</span> DataType::U16:</div><div class="line"><a name="l00548"></a><span class="lineno"> 548</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint16_t));</div><div class="line"><a name="l00549"></a><span class="lineno"> 549</span>  <span class="keywordflow">case</span> DataType::S16:</div><div class="line"><a name="l00550"></a><span class="lineno"> 550</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int16_t));</div><div class="line"><a name="l00551"></a><span class="lineno"> 551</span>  <span class="keywordflow">case</span> DataType::U32:</div><div class="line"><a name="l00552"></a><span class="lineno"> 552</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint32_t));</div><div class="line"><a name="l00553"></a><span class="lineno"> 553</span>  <span class="keywordflow">case</span> DataType::S32:</div><div class="line"><a name="l00554"></a><span class="lineno"> 554</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int32_t));</div><div class="line"><a name="l00555"></a><span class="lineno"> 555</span>  <span class="keywordflow">case</span> DataType::U64:</div><div class="line"><a name="l00556"></a><span class="lineno"> 556</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(uint64_t));</div><div class="line"><a name="l00557"></a><span class="lineno"> 557</span>  <span class="keywordflow">case</span> DataType::S64:</div><div class="line"><a name="l00558"></a><span class="lineno"> 558</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"i"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(int64_t));</div><div class="line"><a name="l00559"></a><span class="lineno"> 559</span>  <span class="keywordflow">case</span> DataType::F32:</div><div class="line"><a name="l00560"></a><span class="lineno"> 560</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"f"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">float</span>));</div><div class="line"><a name="l00561"></a><span class="lineno"> 561</span>  <span class="keywordflow">case</span> DataType::F64:</div><div class="line"><a name="l00562"></a><span class="lineno"> 562</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"f"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">double</span>));</div><div class="line"><a name="l00563"></a><span class="lineno"> 563</span>  <span class="keywordflow">case</span> DataType::SIZET:</div><div class="line"><a name="l00564"></a><span class="lineno"> 564</span>  <span class="keywordflow">return</span> endianness + <span class="stringliteral">"u"</span> + <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>(<span class="keyword">sizeof</span>(<span class="keywordtype">size_t</span>));</div><div class="line"><a name="l00565"></a><span class="lineno"> 565</span>  <span class="keywordflow">default</span>:</div><div class="line"><a name="l00566"></a><span class="lineno"> 566</span>  <a class="code" href="core_2_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">"NOT SUPPORTED!"</span>);</div><div class="line"><a name="l00567"></a><span class="lineno"> 567</span>  }</div><div class="line"><a name="l00568"></a><span class="lineno"> 568</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="core_2_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00238">Error.h:238</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a497347573faa3778743ddf277f861094"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a497347573faa3778743ddf277f861094">arm_compute::test::validation::c</a></div><div class="ttdeci">Tensor c</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml#l00117">GEMM.cpp:117</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1715,7 +1980,7 @@
<tr>
<td class="memname"><a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> arm_compute::test::index2coord </td>
<td>(</td>
- <td class="paramtype">const TensorShape & </td>
+ <td class="paramtype">const <a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> & </td>
<td class="paramname"><em>shape</em>, </td>
</tr>
<tr>
@@ -1747,30 +2012,13 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>n-dimensional coordinates. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00308">308</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00384">384</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00115">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions< T >::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00297">ARM_COMPUTE_ERROR_ON_MSG</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00122">Dimensions< T >::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, and <a class="el" href="_tensor_shape_8h_source.xhtml#l00135">TensorShape::total_size()</a>.</p>
-<p>Referenced by <a class="el" href="_c_p_p_2_box3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::box3x3()</a>, <a class="el" href="_assets_library_8h_source.xhtml#l00438">AssetsLibrary::fill()</a>, <a class="el" href="_c_p_p_2_gaussian3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian3x3()</a>, <a class="el" href="_c_p_p_2_gaussian5x5_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian5x5()</a>, <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_scale_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::scale()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, <a class="el" href="tests_2validation_2_c_p_p_2_utils_8cpp_source.xhtml#l00069">arm_compute::test::validation::transpose()</a>, <a class="el" href="_validation_8cpp_source.xhtml#l00173">arm_compute::test::validation::validate()</a>, <a class="el" href="_c_p_p_2_warp_affine_8cpp_source.xhtml#l00050">arm_compute::test::validation::reference::warp_affine()</a>, and <a class="el" href="_c_p_p_2_warp_perspective_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::warp_perspective()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00309"></a><span class="lineno"> 309</span> {</div>
-<div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  <span class="keywordtype">int</span> num_elements = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size();</div>
-<div class="line"><a name="l00311"></a><span class="lineno"> 311</span> </div>
-<div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(index < 0 || index >= num_elements, <span class="stringliteral">"Index has to be in [0, num_elements]"</span>);</div>
-<div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  <a class="code" href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(num_elements == 0, <span class="stringliteral">"Cannot create coordinate from empty shape"</span>);</div>
-<div class="line"><a name="l00314"></a><span class="lineno"> 314</span> </div>
-<div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  Coordinates coord{ 0 };</div>
-<div class="line"><a name="l00316"></a><span class="lineno"> 316</span> </div>
-<div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> d = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() - 1; d >= 0; --d)</div>
-<div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  {</div>
-<div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  num_elements /= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[d];</div>
-<div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  coord.set(d, index / num_elements);</div>
-<div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  index %= num_elements;</div>
-<div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  }</div>
-<div class="line"><a name="l00323"></a><span class="lineno"> 323</span> </div>
-<div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  <span class="keywordflow">return</span> coord;</div>
-<div class="line"><a name="l00325"></a><span class="lineno"> 325</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
-<div class="ttc" id="_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00115">Error.h:115</a></div></div>
+<p>Referenced by <a class="el" href="reference_2_box3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::box3x3()</a>, <a class="el" href="tests_2validation_2_u_n_i_t_2_utils_8cpp_source.xhtml#l00054">DATA_TEST_CASE()</a>, <a class="el" href="reference_2_dilate_8cpp_source.xhtml#l00041">arm_compute::test::validation::reference::dilate()</a>, <a class="el" href="reference_2_erode_8cpp_source.xhtml#l00041">arm_compute::test::validation::reference::erode()</a>, <a class="el" href="_assets_library_8h_source.xhtml#l00441">AssetsLibrary::fill()</a>, <a class="el" href="reference_2_gaussian3x3_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian3x3()</a>, <a class="el" href="reference_2_gaussian5x5_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::gaussian5x5()</a>, <a class="el" href="reference_2_median3x3_8cpp_source.xhtml#l00044">arm_compute::test::validation::reference::median3x3()</a>, <a class="el" href="reference_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="reference_2_permute_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::permute()</a>, <a class="el" href="reference_2_scale_8cpp_source.xhtml#l00040">arm_compute::test::validation::reference::scale()</a>, <a class="el" href="reference_2_scharr_8cpp_source.xhtml#l00062">arm_compute::test::validation::reference::scharr()</a>, <a class="el" href="validation_2fixtures_2_fully_connected_layer_fixture_8h_source.xhtml#l00056">FullyConnectedLayerValidationGenericFixture< TensorType, AccessorType, FunctionType, T, run_interleave >::setup()</a>, <a class="el" href="validation_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00057">ConvolutionValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="reference_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, <a class="el" href="reference_2_transpose_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::transpose()</a>, <a class="el" href="tests_2validation_2reference_2_utils_8cpp_source.xhtml#l00069">arm_compute::test::validation::transpose()</a>, <a class="el" href="_validation_8cpp_source.xhtml#l00173">arm_compute::test::validation::validate()</a>, <a class="el" href="_validation_8h_source.xhtml#l00389">arm_compute::test::validation::validate_wrap()</a>, <a class="el" href="reference_2_warp_affine_8cpp_source.xhtml#l00050">arm_compute::test::validation::reference::warp_affine()</a>, and <a class="el" href="reference_2_warp_perspective_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::warp_perspective()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00385"></a><span class="lineno"> 385</span> {</div><div class="line"><a name="l00386"></a><span class="lineno"> 386</span>  <span class="keywordtype">int</span> num_elements = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.total_size();</div><div class="line"><a name="l00387"></a><span class="lineno"> 387</span> </div><div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  <a class="code" href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(index < 0 || index >= num_elements, <span class="stringliteral">"Index has to be in [0, num_elements]"</span>);</div><div class="line"><a name="l00389"></a><span class="lineno"> 389</span>  <a class="code" href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a>(num_elements == 0, <span class="stringliteral">"Cannot create coordinate from empty shape"</span>);</div><div class="line"><a name="l00390"></a><span class="lineno"> 390</span> </div><div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  Coordinates coord{ 0 };</div><div class="line"><a name="l00392"></a><span class="lineno"> 392</span> </div><div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  <span class="keywordflow">for</span>(<span class="keywordtype">int</span> d = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() - 1; d >= 0; --d)</div><div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  {</div><div class="line"><a name="l00395"></a><span class="lineno"> 395</span>  num_elements /= <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[d];</div><div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  coord.set(d, index / num_elements);</div><div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  index %= num_elements;</div><div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  }</div><div class="line"><a name="l00399"></a><span class="lineno"> 399</span> </div><div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  <span class="keywordflow">return</span> coord;</div><div class="line"><a name="l00401"></a><span class="lineno"> 401</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a5bbdcf574d3f5e412fa6a1117911e67b"><div class="ttname"><a href="core_2_error_8h.xhtml#a5bbdcf574d3f5e412fa6a1117911e67b">ARM_COMPUTE_ERROR_ON_MSG</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON_MSG(cond,...)</div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00297">Error.h:297</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1784,13 +2032,13 @@
<tr>
<td class="memname">bool arm_compute::test::is_in_valid_region </td>
<td>(</td>
- <td class="paramtype">const ValidRegion & </td>
+ <td class="paramtype">const <a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> & </td>
<td class="paramname"><em>valid_region</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">Coordinates </td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> </td>
<td class="paramname"><em>coord</em> </td>
</tr>
<tr>
@@ -1808,23 +2056,12 @@
<p>Check if a coordinate is within a valid region. </p>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00355">355</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00431">431</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00118">ValidRegion::end()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00045">Dimensions< int >::num_max_dimensions</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00112">ValidRegion::start()</a>.</p>
+<p>References <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00180">ValidRegion::end()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00045">Dimensions< int >::num_max_dimensions</a>, and <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00174">ValidRegion::start()</a>.</p>
-<p>Referenced by <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00319">arm_compute::test::validation::validate()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00356"></a><span class="lineno"> 356</span> {</div>
-<div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  <span class="keywordflow">for</span>(<span class="keywordtype">size_t</span> d = 0; d < Coordinates::num_max_dimensions; ++d)</div>
-<div class="line"><a name="l00358"></a><span class="lineno"> 358</span>  {</div>
-<div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  <span class="keywordflow">if</span>(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))</div>
-<div class="line"><a name="l00360"></a><span class="lineno"> 360</span>  {</div>
-<div class="line"><a name="l00361"></a><span class="lineno"> 361</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div>
-<div class="line"><a name="l00362"></a><span class="lineno"> 362</span>  }</div>
-<div class="line"><a name="l00363"></a><span class="lineno"> 363</span>  }</div>
-<div class="line"><a name="l00364"></a><span class="lineno"> 364</span> </div>
-<div class="line"><a name="l00365"></a><span class="lineno"> 365</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div>
-<div class="line"><a name="l00366"></a><span class="lineno"> 366</span> }</div>
-</div><!-- fragment -->
+<p>Referenced by <a class="el" href="reference_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="reference_2_scharr_8cpp_source.xhtml#l00062">arm_compute::test::validation::reference::scharr()</a>, <a class="el" href="reference_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, <a class="el" href="_validation_8h_source.xhtml#l00328">arm_compute::test::validation::validate()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00389">arm_compute::test::validation::validate_wrap()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00432"></a><span class="lineno"> 432</span> {</div><div class="line"><a name="l00433"></a><span class="lineno"> 433</span>  <span class="keywordflow">for</span>(<span class="keywordtype">size_t</span> d = 0; d < Coordinates::num_max_dimensions; ++d)</div><div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  {</div><div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  <span class="keywordflow">if</span>(coord[d] < valid_region.start(d) || coord[d] >= valid_region.end(d))</div><div class="line"><a name="l00436"></a><span class="lineno"> 436</span>  {</div><div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  <span class="keywordflow">return</span> <span class="keyword">false</span>;</div><div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  }</div><div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  }</div><div class="line"><a name="l00440"></a><span class="lineno"> 440</span> </div><div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  <span class="keywordflow">return</span> <span class="keyword">true</span>;</div><div class="line"><a name="l00442"></a><span class="lineno"> 442</span> }</div></div><!-- fragment -->
</div>
</div>
<a class="anchor" id="aa18932675cbb5eb9c9dbf8ff4d7106c7"></a>
@@ -1872,14 +2109,8 @@
<p>References <a class="el" href="accumulate_8cl_source.xhtml#l00041">accumulate()</a>.</p>
-<p>Referenced by <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00136">join()</a>, and <a class="el" href="_j_s_o_n_printer_8cpp_source.xhtml#l00157">JSONPrinter::print_measurements()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00094"></a><span class="lineno"> 94</span> {</div>
-<div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, *first, [&separator](<span class="keyword">const</span> std::string & base, <span class="keyword">const</span> std::string & suffix)</div>
-<div class="line"><a name="l00096"></a><span class="lineno"> 96</span>  {</div>
-<div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  <span class="keywordflow">return</span> base + separator + suffix;</div>
-<div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  });</div>
-<div class="line"><a name="l00099"></a><span class="lineno"> 99</span> }</div>
-<div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
+<p>Referenced by <a class="el" href="_framework_8cpp_source.xhtml#l00102">Framework::init()</a>, <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00136">join()</a>, and <a class="el" href="_j_s_o_n_printer_8cpp_source.xhtml#l00172">JSONPrinter::print_measurements()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00094"></a><span class="lineno"> 94</span> {</div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span>  <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, *first, [&separator](<span class="keyword">const</span> std::string & base, <span class="keyword">const</span> std::string & suffix)</div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span>  {</div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span>  <span class="keywordflow">return</span> base + separator + suffix;</div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span>  });</div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span> }</div><div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1935,14 +2166,8 @@
<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00117">117</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="accumulate_8cl_source.xhtml#l00041">accumulate()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00118"></a><span class="lineno"> 118</span> {</div>
-<div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, op(*first), [&separator, &op](<span class="keyword">const</span> std::string & base, <span class="keyword">const</span> <span class="keyword">typename</span> T::value_type & suffix)</div>
-<div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  {</div>
-<div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="keywordflow">return</span> base + separator + op(suffix);</div>
-<div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  });</div>
-<div class="line"><a name="l00123"></a><span class="lineno"> 123</span> }</div>
-<div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
+<p>References <a class="el" href="accumulate_8cl_source.xhtml#l00041">accumulate()</a>, and <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
+<div class="fragment"><div class="line"><a name="l00118"></a><span class="lineno"> 118</span> {</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  <span class="keywordflow">return</span> <a class="code" href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">std::accumulate</a>(std::next(first), last, op(*first), [&separator, &op](<span class="keyword">const</span> std::string & base, <span class="keyword">const</span> <span class="keyword">typename</span> T::value_type & suffix)</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  {</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="keywordflow">return</span> base + separator + op(suffix);</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  });</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span> }</div><div class="ttc" id="accumulate_8cl_xhtml_a00e540076dd545ad59ac7482f8cdf514"><div class="ttname"><a href="accumulate_8cl.xhtml#a00e540076dd545ad59ac7482f8cdf514">accumulate</a></div><div class="ttdeci">__kernel void accumulate(__global uchar *input_ptr, uint input_stride_x, uint input_step_x, uint input_stride_y, uint input_step_y, uint input_offset_first_element_in_bytes, __global uchar *accu_ptr, uint accu_stride_x, uint accu_step_x, uint accu_stride_y, uint accu_step_y, uint accu_offset_first_element_in_bytes)</div><div class="ttdoc">This function accumulates an input image into output image. </div><div class="ttdef"><b>Definition:</b> <a href="accumulate_8cl_source.xhtml#l00041">accumulate.cl:41</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -1990,53 +2215,12 @@
<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00136">136</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00093">join()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00168">arm_compute::support::cpp11::to_string()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00137"></a><span class="lineno"> 137</span> {</div>
-<div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">join</a>(std::forward<T>(first), std::forward<T>(last), separator, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>);</div>
-<div class="line"><a name="l00139"></a><span class="lineno"> 139</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
+<p>References <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00093">join()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00187">arm_compute::support::cpp11::to_string()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00137"></a><span class="lineno"> 137</span> {</div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">join</a>(std::forward<T>(first), std::forward<T>(last), separator, <a class="code" href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">support::cpp11::to_string</a>);</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1framework_xhtml_ace86dc6f3dfa4f3c256b3999ab250c0a"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1framework.xhtml#ace86dc6f3dfa4f3c256b3999ab250c0a">arm_compute::test::framework::to_string</a></div><div class="ttdeci">std::string to_string(DatasetMode mode)</div><div class="ttdef"><b>Definition:</b> <a href="_dataset_modes_8h_source.xhtml#l00097">DatasetModes.h:97</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a69835710fc772315f4e65ce156034530"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a69835710fc772315f4e65ce156034530">arm_compute::test::join</a></div><div class="ttdeci">std::string join(T &&first, T &&last, const std::string &separator)</div><div class="ttdoc">Helper function to concatenate multiple values. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00136">Utils.h:136</a></div></div>
</div><!-- fragment -->
</div>
</div>
-<a class="anchor" id="ad7d919409d3d679cfbf28b2dae757fec"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">MobileNetDepthwiseConvolution </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLDepthwiseConvolutionFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::MobileNetDepthwiseConvolutionDataset(), data_types), framework::dataset::make("Batches",{1}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
<a class="anchor" id="a1f4b9eae17da2aebc223b0fdeee74cea"></a>
<div class="memitem">
<div class="memproto">
@@ -2050,20 +2234,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLDepthwiseSeparableConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#adc07e82b4049d653c965af2606a7d70f">CLDepthwiseSeparableConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::MobileNetDepthwiseSeparableConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_separable_convolution_layer_dataset.xhtml">datasets::MobileNetDepthwiseSeparableConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2075,33 +2259,33 @@
</div>
</div>
-<a class="anchor" id="aa14390b7bed93ce327f5dedd89fc8928"></a>
+<a class="anchor" id="ad92059e16a67ed784198e950dda2902b"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">SmallROIPoolingLayer </td>
+ <td class="paramtype">MobileNetDepthwiseConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEROIPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad40ce68156a5d070d24869036ed41080">CLDepthwiseConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SmallROIPoolingLayerDataset(), framework::dataset::make("DataType",{DataType::F32})), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_mobile_net_depthwise_convolution_layer_dataset.xhtml">datasets::MobileNetDepthwiseConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2126,20 +2310,324 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLROIPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a41884dec2ecae6674396802641b01060">CLROIPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SmallROIPoolingLayerDataset(), framework::dataset::make("DataType",{DataType::F16, DataType::F32})), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a93edbe7d55866665a687505cd5863cec"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1GEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a6590738cef59da2d66f938348f7e447b"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1GEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="aa14390b7bed93ce327f5dedd89fc8928"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SmallROIPoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a7ad74154ac625702bef70b90243ae63f">NEROIPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_r_o_i_pooling_layer_dataset.xhtml">datasets::SmallROIPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F32})), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a2939435211a0b12318ecf27de5e82341"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">MatrixMultiplyGEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a4f689027a5150831876f5fadaa006d01"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">MatrixMultiplyGEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ae32f1e3c34f40106570812eed538aa3a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogleNetGEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae6b70294fc810b1706aa240ce6488d43">NEGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a00a05a099b87aecb58697099e68c675d"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogleNetGEMMLowp </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa2b528ffcc8ae3f017a4b0fefde56083">CLGEMMLowpFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>() </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a608cdfde996f02219e1601a6d9f3cb88"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayerSmall </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2164,20 +2652,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFloorFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac8cf6873b0e9ac7334bcbc042fdc5f02">NEFloorFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::SmallShapes(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_shapes.xhtml">datasets::SmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a0d406b3fef0ea64a37cc052a77c71872"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayerSmall </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2202,20 +2728,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFloorFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4a14e383a632057e99845c74a72a6454">CLFloorFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::SmallShapes(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_small_shapes.xhtml">datasets::SmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a64f1553690dc4323b4fa0a166872818f"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_small_shapes.xhtml">datasets::SoftmaxLayerSmallShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2240,20 +2804,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a5fb0cef8d7bfbdbd6e5647f906f3d821"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2278,20 +2880,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::GoogLeNetInceptionV1GEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2316,20 +2918,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a17641c916ca59feed34dcb7b5b5477e7"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1GEMM </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2354,20 +2994,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::MatrixMultiplyGEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a4aec13cad3d15943e16962f3525199f8"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">MatrixMultiplyGEMM </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a70e322038256cbb2084fae2f15cf383a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayerLarge </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ab532906bae5b47b20f74c2fd5f2ef147">CLSoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2392,20 +3108,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#abf07c2bf7d8e9c76e146f9b21bee88fd">CLGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::GoogleNetGEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ab850888a1cd954603b49a47a508e5606"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogleNetGEMM </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6991a2c9303e8c258547b6be1b30ae5d">GCGEMMFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a0efb60f70808da99791a9e62cb9f9a3b"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayerLarge </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a332c02fe617367f14266075c7c046823">NESoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a053b4cd76538ee71115d020d9224d055"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetFullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2430,20 +3260,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NENormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2468,96 +3298,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a9ba464da0fc25dbd0cb96fe5c61494c4"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">LeNet5 </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a> </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>make</em>"Batches",{1, 4, 8} </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="ad52c9735c67d5972016f143cd15ea874"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">AlexNetDirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2588,14 +3342,14 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>make</em>"Batches",{1, 4, 8} </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2607,33 +3361,147 @@
</div>
</div>
-<a class="anchor" id="a365d9325d2bba7fbf9983f80bfe8c796"></a>
+<a class="anchor" id="ad52c9735c67d5972016f143cd15ea874"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer </td>
+ <td class="paramtype">AlexNetDirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a20190a6c2970433854d7a0ffbf17bb80"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9ba464da0fc25dbd0cb96fe5c61494c4"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5 </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a6a292ad5fedcc7dea6c6eb1be6d4c0d3">NELeNet5Fixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a61651c6bf6ae4a7ec0b853e33eb3fe05"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SoftmaxLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1227db70d61e996287ff23ac4ffcdf0a">GCSoftmaxLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_softmax_layer_large_shapes.xhtml">datasets::SoftmaxLayerLargeShapes</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2658,20 +3526,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a5fd146c0c60f589ab5ef9ab46841186f"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a365d9325d2bba7fbf9983f80bfe8c796"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2696,20 +3640,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2734,20 +3678,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2772,20 +3716,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a938559efc7909b4c49f9dd968c78fdd6"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetPoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a381ffb66382b7bf8c5dccb610f83df3b"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">MobileNet </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac0a89d29e95929bd42879c07b9c0c901">CLMobileNetFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2810,20 +3830,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2848,20 +3868,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::GoogLeNetInceptionV1GEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_g_e_m_m_dataset.xhtml">datasets::GoogLeNetInceptionV1GEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2886,20 +3906,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NENormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ad46ed8de628305582dc04bd1996c6138"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -2924,58 +3982,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="abfd4fd028574ac46a9d056e7a1ead6f7"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">AlexNetActivationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3000,20 +4020,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a245e9548b6ab48c67db2ddbccf67cdd2"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3038,96 +4096,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a4fc639ce3410d3609337137d44a68ac9"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">AlexNetConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="abe7167f9af260495f067dd8f36251a3b"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">AlexNetDirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3152,20 +4134,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::MatrixMultiplyGEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_matrix_multiply_g_e_m_m_dataset.xhtml">datasets::MatrixMultiplyGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3190,20 +4172,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3215,33 +4197,33 @@
</div>
</div>
-<a class="anchor" id="a0889351f9ee837c8009925f17dd4688b"></a>
+<a class="anchor" id="abfd4fd028574ac46a9d056e7a1ead6f7"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">LeNet5PoolingLayer </td>
+ <td class="paramtype">AlexNetActivationLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_activation_layer_dataset.xhtml">datasets::AlexNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3266,20 +4248,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEGEMMFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a789c444c1307e85eec5f8b0d75fd5f7d">NEGEMMFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>datasets::GoogleNetGEMMDataset(), data_types </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_google_net_g_e_m_m_dataset.xhtml">datasets::GoogleNetGEMMDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a0889351f9ee837c8009925f17dd4688b"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a93c8b1edde08dabb54781f587d72eb6d"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3304,96 +4362,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="ae4dd72b2a2e5af0c89c5ce7d2443e115"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">AlexNetNormalizationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLNormalizationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a2abd12df8c0c36eed83982ee073db2ff"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">YOLOV2BatchNormalizationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLBatchNormalizationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3418,20 +4400,172 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLAlexNetFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aa631c5ec3d7cb3dab649f994e9e9217d">CLAlexNetFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::make("DataType",{DataType::F16, DataType::F32}), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("DataType",{DataType::F16, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">DataType::F32</a>}), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a5584a5d2181daed3cdd3b48d51a4eff4"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a2abd12df8c0c36eed83982ee073db2ff"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ae4dd72b2a2e5af0c89c5ce7d2443e115"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ae157bfaddb93840defe1b2d959c9773c"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3456,20 +4590,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3494,20 +4628,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3532,20 +4666,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a97f196a8438fbc6132c851fc8434f84f"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3570,96 +4742,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a7da7dbada8d8e076c78d1402743b7de9"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">LeNet5ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="adc3f7b3f1d06144af1980e8705253583"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_activation_layer_dataset.xhtml">datasets::LeNet5ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3684,20 +4780,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_batch_normalization_layer_dataset.xhtml">datasets::YOLOV2BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="add96c569b006602c948ff7f3444b1c9a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3722,20 +4856,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3760,96 +4894,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NENormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a903e3acaf54969c5d276058e979a753c"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1PoolingLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a3e452462cb397897f476f6d83b468914"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_normalization_layer_dataset.xhtml">datasets::AlexNetNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3874,20 +4932,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a3ddca2f7e1f652a835a33c61ee123ae2"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a903e3acaf54969c5d276058e979a753c"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a3e452462cb397897f476f6d83b468914"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3912,20 +5084,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af80ea91532f0ebdccb3f1d8e507a98ad">CLBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a5e95b77e85b00a24859e29420f5e9a23"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ac4eb299c6e0da01e3870a2f262c325a1"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4BatchNormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a8b4153be3e745d94aa922b3ae6a6d178">GCBatchNormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -3950,134 +5198,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#af4f1c6ad288931f07f614316f57ed63b">CLNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="add697a0c19a1638874c37d5d15fc2d83"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ActivationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a9c30ac20d9eae69db3b004f36d8efaca"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a9cc3e01ede750344f389191184d4682d"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4102,20 +5236,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="add697a0c19a1638874c37d5d15fc2d83"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ActivationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4140,20 +5312,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4178,20 +5350,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEBatchNormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ac7369c169e6de526fcb6f68e4a959444">NEBatchNormalizationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_batch_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4BatchNormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4216,20 +5388,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4241,33 +5413,71 @@
</div>
</div>
-<a class="anchor" id="ab17878545b689878d626f8e2298d2b1b"></a>
+<a class="anchor" id="a5f895a2dbd323136be8722ad444d60f4"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer </td>
+ <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NENormalizationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1NormalizationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="abd76a8c08261c3cf7f5d64931f3f5fd7"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4292,20 +5502,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ab17878545b689878d626f8e2298d2b1b"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1NormalizationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#acc2c4764a300b505b50e9ba0642eff2b">NENormalizationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_normalization_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1NormalizationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4330,20 +5578,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEAlexNetFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ae0e8bcf3b0ed15e708b4a38febfdb84e">NEAlexNetFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>alex_net_data_types, framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(alex_net_data_types, <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4368,20 +5616,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9cc3e01ede750344f389191184d4682d"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="af5d2dbdc7da1fbc112e899580be35b29"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4406,134 +5730,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a117bc733390c845f7493e6dad0b75191"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV4ActivationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="abe4e6a4ff5c68a5403ec4dc38149d097"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a9c7a41c764eb85334c2d75df71d40cc4"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4558,20 +5768,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a117bc733390c845f7493e6dad0b75191"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4ActivationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4596,20 +5844,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4634,20 +5882,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a1a355039fa43e6f304c229ee3f58dc81"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">MobileNetV1_224 </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a29a2dde86e6a0e8f295723be2331e4a5">CLMobileNetV1_224_Fixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a12f8a8207d12d154e97c0b5fe50e0e0a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9c7a41c764eb85334c2d75df71d40cc4"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4672,20 +6034,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4710,20 +6072,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4735,71 +6097,33 @@
</div>
</div>
-<a class="anchor" id="a70f04129817692e0b5727fb542f9153c"></a>
+<a class="anchor" id="a75691b7b41c639f10f9cdb98f19c058e"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">SqueezeNetActivationLayer </td>
+ <td class="paramtype">AlexNetDirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a2a91a938df2a246bb92811fe90bf5ee0"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">SqueezeNetConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4824,20 +6148,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="add85474fcc98d0f6028b94bc6cf2fa39"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetPoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4862,20 +6224,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4887,33 +6249,33 @@
</div>
</div>
-<a class="anchor" id="ad8c07298bae2d7cd7ace3ad869371b0b"></a>
+<a class="anchor" id="a70f04129817692e0b5727fb542f9153c"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">AlexNetDirectConvolutionLayer </td>
+ <td class="paramtype">SqueezeNetActivationLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetDirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_activation_layer_dataset.xhtml">datasets::SqueezeNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4925,33 +6287,33 @@
</div>
</div>
-<a class="anchor" id="a49f6de6126e559d77c77ec1252ead9e1"></a>
+<a class="anchor" id="a58a9076b25625de375843189630e1a05"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">YOLOV2PoolingLayer </td>
+ <td class="paramtype">MobileNetV1_128 </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aba121ef21ddc551591a696c156ea8cc5">CLMobileNetV1_128_Fixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8}) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -4976,20 +6338,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5001,33 +6363,71 @@
</div>
</div>
-<a class="anchor" id="ab10eddd065a1bdb9c6b09cb1e1382f5a"></a>
+<a class="anchor" id="a49f6de6126e559d77c77ec1252ead9e1"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">VGG16ActivationLayer </td>
+ <td class="paramtype">YOLOV2PoolingLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a4fc639ce3410d3609337137d44a68ac9"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5052,20 +6452,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5077,33 +6477,33 @@
</div>
</div>
-<a class="anchor" id="a8c86e43926d24040dbbc73e5ad638dea"></a>
+<a class="anchor" id="abf01fe5297b8fe3957462e6c9b028ad4"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">AlexNetConvolutionLayer </td>
+ <td class="paramtype">AlexNetFullyConnectedLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5115,33 +6515,109 @@
</div>
</div>
-<a class="anchor" id="afd017468a129b6650b73cb65ecc40516"></a>
+<a class="anchor" id="a5d451fd866cd008c0d9ead31011dea51"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">VGG16PoolingLayer </td>
+ <td class="paramtype">AlexNetDirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_direct_convolution_layer_dataset.xhtml">datasets::AlexNetDirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ab10eddd065a1bdb9c6b09cb1e1382f5a"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16ActivationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a4a77614625e35d2af808df2961d1c579"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5166,20 +6642,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5191,33 +6667,33 @@
</div>
</div>
-<a class="anchor" id="a981537b01124fe1025ab51dfe0dde1ee"></a>
+<a class="anchor" id="ab240fb15156a63fb1d7859ae3733ad3c"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
+ <td class="paramtype">VGG16PoolingLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5229,33 +6705,33 @@
</div>
</div>
-<a class="anchor" id="ac62a5389a4a60e89fabb6bb2153adfc5"></a>
+<a class="anchor" id="afd017468a129b6650b73cb65ecc40516"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">AlexNetConvolutionLayer </td>
+ <td class="paramtype">VGG16PoolingLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5280,20 +6756,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5305,33 +6781,71 @@
</div>
</div>
-<a class="anchor" id="a572b94c09ce496eda95d8d544dc1c4d1"></a>
+<a class="anchor" id="ac62a5389a4a60e89fabb6bb2153adfc5"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">YOLOV2ActivationLayer </td>
+ <td class="paramtype">AlexNetConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ActivationLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a7da7dbada8d8e076c78d1402743b7de9"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5356,20 +6870,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetFullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_fully_connected_layer_dataset.xhtml">datasets::AlexNetFullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5381,33 +6895,71 @@
</div>
</div>
-<a class="anchor" id="a0a1da94fb11977ec74784861c2c56246"></a>
+<a class="anchor" id="a24b206491fc10a588a6550eb6a7330a5"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">LeNet5PoolingLayer </td>
+ <td class="paramtype">GoogLeNetInceptionV1DirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1DirectConvolutionLayerDataset</a>(), data_types_no_fixed), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a572b94c09ce496eda95d8d544dc1c4d1"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2ActivationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_activation_layer_dataset.xhtml">datasets::YOLOV2ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5432,20 +6984,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5457,33 +7009,33 @@
</div>
</div>
-<a class="anchor" id="a11c4e187683f0687472d48d8f279c8fc"></a>
+<a class="anchor" id="a6d0db7e16f1130f5efe0cc4363b86b28"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">LeNet5ConvolutionLayer </td>
+ <td class="paramtype">LeNet5FullyConnectedLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5495,7 +7047,45 @@
</div>
</div>
-<a class="anchor" id="a27446bd5b343d26d6028cd2ab34065a6"></a>
+<a class="anchor" id="a0a1da94fb11977ec74784861c2c56246"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">LeNet5PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9b660449f326a011fc5ad2d2618b2cc7"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -5508,20 +7098,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5546,20 +7136,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="addf51f08a1f8f5c0db21e29fce9d8262"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5584,20 +7212,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::ALL </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make("Batches", 1) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5622,20 +7250,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9c30ac20d9eae69db3b004f36d8efaca"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5660,20 +7326,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5685,33 +7351,33 @@
</div>
</div>
-<a class="anchor" id="a13170587db62e123a041d2b8cab82ef8"></a>
+<a class="anchor" id="a27446bd5b343d26d6028cd2ab34065a6"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
+ <td class="paramtype">GoogLeNetInceptionV4DirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_direct_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4DirectConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5736,58 +7402,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a3df552423cbf598c725b9dc615f06315"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_fully_connected_layer_dataset.xhtml">datasets::LeNet5FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5812,20 +7440,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_activation_layer_dataset.xhtml">datasets::AlexNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a8f20a93ea27547491d22070ce2942281"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5850,58 +7516,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="ae88c882e06dad040d2bb6278ef8c4c84"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5926,20 +7554,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -5951,33 +7579,109 @@
</div>
</div>
-<a class="anchor" id="a6773bc983eece85b34d67c4ba3c09554"></a>
+<a class="anchor" id="a250a8029fcac0c0ce944ac23402ded7e"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
+ <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ae88c882e06dad040d2bb6278ef8c4c84"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="abe4e6a4ff5c68a5403ec4dc38149d097"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6002,20 +7706,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::AlexNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a13170587db62e123a041d2b8cab82ef8"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetDirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a6773bc983eece85b34d67c4ba3c09554"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a9ee9ba7638c961aa1bd557a5dc8c4fba"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetPoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_pooling_layer_dataset.xhtml">datasets::AlexNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6040,96 +7858,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5ActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a4470fc8180788f756fccdb77f9a25886"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a1f92978c7363135053baa95b94501676"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">VGG16DirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_activation_layer_dataset.xhtml">datasets::LeNet5ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6154,20 +7896,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6179,7 +7921,7 @@
</div>
</div>
-<a class="anchor" id="adeee41f0a436718ca296fc99f2e2a151"></a>
+<a class="anchor" id="a5ae8d8668836305ebff7acd820dc4aa2"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -6192,20 +7934,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_fully_connected_layer_dataset.xhtml">datasets::VGG16FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6230,20 +7972,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="ad4188172c26fc647ddfdf222b8d33ad2"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a2cb4a87cb9ff411d586d9e8a733cb226"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6268,20 +8086,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="afae7c1fa456ae3e126f9a5329b28dca4"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 2})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a2a91a938df2a246bb92811fe90bf5ee0"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfa5fb1f955b45e38e31789286a1790398d">framework::DatasetMode::ALL</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches", 1)) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="afcaaee96f26340bdfe7a841f158453b8"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6306,134 +8238,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a164c7e1e8e2e4de0ce6282d2b0835dd0"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">GoogLeNetInceptionV1ActivationLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1ActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="af3310a6693b1d28b4d474e2a025b8777"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">YOLOV2DirectConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a9adba78f24e5c87b2c95a1c5e23883e9"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">VGG16PoolingLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6458,20 +8276,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::LeNet5PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6483,33 +8301,71 @@
</div>
</div>
-<a class="anchor" id="a029d80ad64be335749e827cc64efd88c"></a>
+<a class="anchor" id="a4c1a4a25d083c88cbf4b5704478e943b"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">SqueezeNetConvolutionLayer </td>
+ <td class="paramtype">LeNet5PoolingLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_pooling_layer_dataset.xhtml">datasets::LeNet5PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a164c7e1e8e2e4de0ce6282d2b0835dd0"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ActivationLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6534,20 +8390,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6559,7 +8415,7 @@
</div>
</div>
-<a class="anchor" id="ad5d101b25bb35a8d9b1efc70102bb3a4"></a>
+<a class="anchor" id="a4d90ba1ed4109f6e9debfe6021933cbe"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -6572,20 +8428,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a24e2d47432cc0b346147bbbc3964e6c8">GCFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6610,20 +8466,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aafcc5ee5a13d9ed18d31591bb1d50fb0">NEPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6635,7 +8491,45 @@
</div>
</div>
-<a class="anchor" id="aabdb95f3f541376f38e03d63957cd0af"></a>
+<a class="anchor" id="ad5d101b25bb35a8d9b1efc70102bb3a4"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4FullyConnectedLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a4c33955ce3f6ed3a4d756cdebf6c8b3a">CLFullyConnectedLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="af3310a6693b1d28b4d474e2a025b8777"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -6648,20 +8542,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6686,20 +8580,172 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4ActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_activation_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a8c86e43926d24040dbbc73e5ad638dea"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">AlexNetConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_alex_net_convolution_layer_dataset.xhtml">datasets::AlexNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a12c42b639978f49f819b6bc4f9cc2ee1"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#afb74db03ceee9fb272663c68133771f2">GCConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="aabdb95f3f541376f38e03d63957cd0af"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2DirectConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a064d32deb294293817fb405592241e0e"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6724,20 +8770,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6762,58 +8808,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV1PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
- </tr>
- <tr>
- <td></td>
- <td>)</td>
- <td></td><td></td>
- </tr>
- </table>
-</div><div class="memdoc">
-
-</div>
-</div>
-<a class="anchor" id="a68166bcb788035f5a6c17fe0c68ae730"></a>
-<div class="memitem">
-<div class="memproto">
- <table class="memname">
- <tr>
- <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
- <td>(</td>
- <td class="paramtype">VGG16ConvolutionLayer </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
- <td class="paramname">, </td>
- </tr>
- <tr>
- <td class="paramkey"></td>
- <td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6838,20 +8846,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEFullyConnectedLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a0b4f7a523ddb2b823750ff5bdc03470c">NEFullyConnectedLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_fully_connected_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4FullyConnectedLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6876,20 +8884,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_activation_layer_dataset.xhtml">datasets::SqueezeNetActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6901,33 +8909,33 @@
</div>
</div>
-<a class="anchor" id="a0ca04d4de125be45c16b579b43d53835"></a>
+<a class="anchor" id="a11c4e187683f0687472d48d8f279c8fc"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">YOLOV2ConvolutionLayer </td>
+ <td class="paramtype">LeNet5ConvolutionLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_le_net5_convolution_layer_dataset.xhtml">datasets::LeNet5ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6952,20 +8960,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::GoogLeNetInceptionV4PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a5d23224b64dfe75913aa5e404c19e564"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_pooling_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -6990,20 +9036,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7015,7 +9061,7 @@
</div>
</div>
-<a class="anchor" id="a26e3678291b5f879d82808eda0d39bc2"></a>
+<a class="anchor" id="a03bf42b30d3055f61780d2267f91b7a6"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
@@ -7028,20 +9074,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16ActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_activation_layer_dataset.xhtml">datasets::VGG16ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{2})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a3df552423cbf598c725b9dc615f06315"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV1ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v1_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV1ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7066,20 +9150,20 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::SqueezeNetPoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7091,33 +9175,71 @@
</div>
</div>
-<a class="anchor" id="a7473924d4fdf2b5dec0d8ee9aa11e25d"></a>
+<a class="anchor" id="a7bb1c4420640a128c86a4c50771ea8ff"></a>
<div class="memitem">
<div class="memproto">
<table class="memname">
<tr>
<td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
<td>(</td>
- <td class="paramtype">YOLOV2ConvolutionLayer </td>
+ <td class="paramtype">SqueezeNetPoolingLayer </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLConvolutionLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ConvolutionLayerDataset(), data_types), framework::dataset::make("Batches",{1, 4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_pooling_layer_dataset.xhtml">datasets::SqueezeNetPoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a4470fc8180788f756fccdb77f9a25886"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">GoogLeNetInceptionV4ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_goog_le_net_inception_v4_convolution_layer_dataset.xhtml">datasets::GoogLeNetInceptionV4ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7142,20 +9264,96 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">NEActivationLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#aeded391cb7ec7a44c41eb23544265894">NEActivationLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2ActivationLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_activation_layer_dataset.xhtml">datasets::YOLOV2ActivationLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a7473924d4fdf2b5dec0d8ee9aa11e25d"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#ad275d75e1b63f91fdc59afe026688b12">CLConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a029d80ad64be335749e827cc64efd88c"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">SqueezeNetConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_squeeze_net_convolution_layer_dataset.xhtml">datasets::SqueezeNetConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7180,20 +9378,58 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::VGG16PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="add14d596aac62405e78dc4e21797b469"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_pooling_layer_dataset.xhtml">datasets::VGG16PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7218,20 +9454,134 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">CLPoolingLayerFixture </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a9c81648f3199d0d1c3f34a29a7a2bb8d">CLPoolingLayerFixture</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::DatasetMode::NIGHTLY </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
<td class="paramname">, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">framework::dataset:: </td>
- <td class="paramname"><em>combine</em>framework::dataset::combine(datasets::YOLOV2PoolingLayerDataset(), data_types), framework::dataset::make("Batches",{4, 8}) </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a07da1bf46f895627de5c87fddea485e2"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">VGG16ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_v_g_g16_convolution_layer_dataset.xhtml">datasets::VGG16ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 2})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a32669e484b5d18ddb6400f7fd97eb16f"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2PoolingLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a1221a94382ab38693543c527d6cf6827">GCPoolingLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_pooling_layer_dataset.xhtml">datasets::YOLOV2PoolingLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{4, 8})) </td>
+ <td class="paramname"> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+</div><div class="memdoc">
+
+</div>
+</div>
+<a class="anchor" id="a0ca04d4de125be45c16b579b43d53835"></a>
+<div class="memitem">
+<div class="memproto">
+ <table class="memname">
+ <tr>
+ <td class="memname">arm_compute::test::REGISTER_FIXTURE_DATA_TEST_CASE </td>
+ <td>(</td>
+ <td class="paramtype">YOLOV2ConvolutionLayer </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test.xhtml#a3168ad22b6ac1e9a6996b53e5038a7a2">NEConvolutionLayerFixture</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework.xhtml#a7edf31944a6144ffd493d2f9a7bfb5cfad791cd54143e331164a2b216451a5dd3">framework::DatasetMode::NIGHTLY</a> </td>
+ <td class="paramname">, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a6f4fa4bb0583f29e77138fb1e7d77411">framework::dataset::combine</a>(<a class="el" href="classarm__compute_1_1test_1_1datasets_1_1_y_o_l_o_v2_convolution_layer_dataset.xhtml">datasets::YOLOV2ConvolutionLayerDataset</a>(), <a class="el" href="namespacearm__compute_1_1test.xhtml#aab9a2ff74a27ae837d32a79a38952228">data_types</a>), <a class="el" href="namespacearm__compute_1_1test_1_1framework_1_1dataset.xhtml#a352791fb808d42a82ad70df5efa3508b">framework::dataset::make</a>("Batches",{1, 4, 8})) </td>
+ <td class="paramname"> </td>
</tr>
<tr>
<td></td>
@@ -7287,28 +9637,12 @@
<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00069">69</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00914">arm_compute::test::fixed_point_arithmetic::detail::abs()</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00259">arm_compute::support::cpp11::copysign()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00228">arm_compute::support::cpp11::round()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00070"></a><span class="lineno"> 70</span> {</div>
-<div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  T positive_value = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
-<div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  T ipart = 0;</div>
-<div class="line"><a name="l00073"></a><span class="lineno"> 73</span>  std::modf(positive_value, &ipart);</div>
-<div class="line"><a name="l00074"></a><span class="lineno"> 74</span>  <span class="comment">// If 'value' is exactly halfway between two integers</span></div>
-<div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  <span class="keywordflow">if</span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(positive_value - (ipart + 0.5f)) < epsilon)</div>
-<div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  {</div>
-<div class="line"><a name="l00077"></a><span class="lineno"> 77</span>  <span class="comment">// If 'ipart' is even then return 'ipart'</span></div>
-<div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  <span class="keywordflow">if</span>(std::fmod(ipart, 2.f) < epsilon)</div>
-<div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  {</div>
-<div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(ipart, <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
-<div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  }</div>
-<div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  <span class="comment">// Else return the nearest even integer</span></div>
-<div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(std::ceil(ipart + 0.5f), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
-<div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  }</div>
-<div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  <span class="comment">// Otherwise use the usual round to closest</span></div>
-<div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(<a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#ab71c35ca207b916a9f8b0336ab88484e">support::cpp11::round</a>(positive_value), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div>
-<div class="line"><a name="l00087"></a><span class="lineno"> 87</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_a28096f8372c0ad762864c790917375e2"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">arm_compute::support::cpp11::copysign</a></div><div class="ttdeci">T copysign(T x, T y)</div><div class="ttdoc">Composes a floating point value with the magnitude of x and the sign of y. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00259">ToolchainSupport.h:259</a></div></div>
+<p>References <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00914">arm_compute::test::fixed_point_arithmetic::detail::abs()</a>, <a class="el" href="_toolchain_support_8h_source.xhtml#l00278">arm_compute::support::cpp11::copysign()</a>, and <a class="el" href="_toolchain_support_8h_source.xhtml#l00247">arm_compute::support::cpp11::round()</a>.</p>
+
+<p>Referenced by <a class="el" href="tests_2validation_2_u_n_i_t_2_utils_8cpp_source.xhtml#l00047">DATA_TEST_CASE()</a>, and <a class="el" href="reference_2_pixel_wise_multiplication_8cpp_source.xhtml#l00045">arm_compute::test::validation::reference::pixel_wise_multiplication()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00070"></a><span class="lineno"> 70</span> {</div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span>  T positive_value = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span>  T ipart = 0;</div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span>  std::modf(positive_value, &ipart);</div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span>  <span class="comment">// If 'value' is exactly halfway between two integers</span></div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span>  <span class="keywordflow">if</span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">std::abs</a>(positive_value - (ipart + 0.5f)) < epsilon)</div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span>  {</div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span>  <span class="comment">// If 'ipart' is even then return 'ipart'</span></div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span>  <span class="keywordflow">if</span>(std::fmod(ipart, 2.f) < epsilon)</div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span>  {</div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(ipart, <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span>  }</div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span>  <span class="comment">// Else return the nearest even integer</span></div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(std::ceil(ipart + 0.5f), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span>  }</div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span>  <span class="comment">// Otherwise use the usual round to closest</span></div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">support::cpp11::copysign</a>(<a class="code" href="namespacearm__compute.xhtml#a6452ac376d4adb94d93a93d678bb6757">support::cpp11::round</a>(positive_value), <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>);</div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span> }</div><div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_a28096f8372c0ad762864c790917375e2"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#a28096f8372c0ad762864c790917375e2">arm_compute::support::cpp11::copysign</a></div><div class="ttdeci">T copysign(T x, T y)</div><div class="ttdoc">Composes a floating point value with the magnitude of x and the sign of y. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00278">ToolchainSupport.h:278</a></div></div>
<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1support_1_1cpp11_xhtml_ab71c35ca207b916a9f8b0336ab88484e"><div class="ttname"><a href="namespacearm__compute_1_1support_1_1cpp11.xhtml#ab71c35ca207b916a9f8b0336ab88484e">arm_compute::support::cpp11::round</a></div><div class="ttdeci">T round(T value)</div><div class="ttdoc">Round floating-point value with half value rounding away from zero. </div><div class="ttdef"><b>Definition:</b> <a href="_toolchain_support_8h_source.xhtml#l00228">ToolchainSupport.h:228</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_a6452ac376d4adb94d93a93d678bb6757"><div class="ttname"><a href="namespacearm__compute.xhtml#a6452ac376d4adb94d93a93d678bb6757">arm_compute::round</a></div><div class="ttdeci">int round(float x, RoundingPolicy rounding_policy)</div><div class="ttdoc">Return a rounded value of x. </div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ae115fc750a92fb6a5e094998b56fcc56"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ae115fc750a92fb6a5e094998b56fcc56">arm_compute::test::fixed_point_arithmetic::detail::abs</a></div><div class="ttdeci">fixed_point< T > abs(fixed_point< T > x)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00914">FixedPoint.h:914</a></div></div>
</div><!-- fragment -->
</div>
@@ -7345,10 +9679,11 @@
<dl class="section return"><dt>Returns</dt><dd>Floating-point value of rounded <code>value</code>. </dd></dl>
<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00056">56</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<div class="fragment"><div class="line"><a name="l00057"></a><span class="lineno"> 57</span> {</div>
-<div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  <span class="keywordflow">return</span> std::floor(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a> + 0.5f);</div>
-<div class="line"><a name="l00059"></a><span class="lineno"> 59</span> }</div>
-<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
+
+<p>References <a class="el" href="caffe__data__extractor_8py_source.xhtml#l00019">caffe_data_extractor::type</a>, and <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
+
+<p>Referenced by <a class="el" href="tests_2validation_2_u_n_i_t_2_utils_8cpp_source.xhtml#l00040">DATA_TEST_CASE()</a>, and <a class="el" href="reference_2_pixel_wise_multiplication_8cpp_source.xhtml#l00045">arm_compute::test::validation::reference::pixel_wise_multiplication()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00057"></a><span class="lineno"> 57</span> {</div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span>  <span class="keywordflow">return</span> std::floor(<a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a> + 0.5f);</div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span> }</div><div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -7375,23 +9710,12 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>saturated value. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00278">278</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00344">344</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
<p>References <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>.</p>
-<p>Referenced by <a class="el" href="validation_2_c_p_p_2_depthwise_convolution_8cpp_source.xhtml#l00048">arm_compute::test::validation::reference::depthwise_convolution()</a>, and <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00279"></a><span class="lineno"> 279</span> {</div>
-<div class="line"><a name="l00280"></a><span class="lineno"> 280</span>  <span class="keywordflow">if</span>(val > static_cast<T>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits<U>::max</a>()))</div>
-<div class="line"><a name="l00281"></a><span class="lineno"> 281</span>  {</div>
-<div class="line"><a name="l00282"></a><span class="lineno"> 282</span>  val = <span class="keyword">static_cast<</span>T<span class="keyword">></span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits<U>::max</a>());</div>
-<div class="line"><a name="l00283"></a><span class="lineno"> 283</span>  }</div>
-<div class="line"><a name="l00284"></a><span class="lineno"> 284</span>  <span class="keywordflow">if</span>(val < static_cast<T>(std::numeric_limits<U>::lowest()))</div>
-<div class="line"><a name="l00285"></a><span class="lineno"> 285</span>  {</div>
-<div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  val = <span class="keyword">static_cast<</span>T<span class="keyword">></span>(std::numeric_limits<U>::lowest());</div>
-<div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  }</div>
-<div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  <span class="keywordflow">return</span> val;</div>
-<div class="line"><a name="l00289"></a><span class="lineno"> 289</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point< T > max(fixed_point< T > x, fixed_point< T > y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
+<p>Referenced by <a class="el" href="reference_2_absolute_difference_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::absolute_difference()</a>, <a class="el" href="reference_2_accumulate_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::accumulate()</a>, <a class="el" href="reference_2_accumulate_8cpp_source.xhtml#l00077">arm_compute::test::validation::reference::accumulate_squared()</a>, <a class="el" href="validation_2reference_2_depthwise_convolution_layer_8cpp_source.xhtml#l00053">arm_compute::test::validation::reference::depthwise_convolution()</a>, <a class="el" href="reference_2_magnitude_8cpp_source.xhtml#l00035">arm_compute::test::validation::reference::magnitude()</a>, <a class="el" href="reference_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, and <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00337">constant_expr< T >::to_fixed()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00345"></a><span class="lineno"> 345</span> {</div><div class="line"><a name="l00346"></a><span class="lineno"> 346</span>  <span class="keywordflow">if</span>(val > static_cast<T>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits<U>::max</a>()))</div><div class="line"><a name="l00347"></a><span class="lineno"> 347</span>  {</div><div class="line"><a name="l00348"></a><span class="lineno"> 348</span>  val = <span class="keyword">static_cast<</span>T<span class="keyword">></span>(<a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::numeric_limits<U>::max</a>());</div><div class="line"><a name="l00349"></a><span class="lineno"> 349</span>  }</div><div class="line"><a name="l00350"></a><span class="lineno"> 350</span>  <span class="keywordflow">if</span>(val < static_cast<T>(std::numeric_limits<U>::lowest()))</div><div class="line"><a name="l00351"></a><span class="lineno"> 351</span>  {</div><div class="line"><a name="l00352"></a><span class="lineno"> 352</span>  val = <span class="keyword">static_cast<</span>T<span class="keyword">></span>(std::numeric_limits<U>::lowest());</div><div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  }</div><div class="line"><a name="l00354"></a><span class="lineno"> 354</span>  <span class="keywordflow">return</span> val;</div><div class="line"><a name="l00355"></a><span class="lineno"> 355</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point< T > max(fixed_point< T > x, fixed_point< T > y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -7405,7 +9729,7 @@
<tr>
<td class="memname"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> arm_compute::test::shape_to_valid_region </td>
<td>(</td>
- <td class="paramtype">TensorShape </td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> </td>
<td class="paramname"><em>shape</em>, </td>
</tr>
<tr>
@@ -7417,8 +9741,8 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">BorderSize </td>
- <td class="paramname"><em>border_size</em> = <code>BorderSize(0)</code> </td>
+ <td class="paramtype"><a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a> </td>
+ <td class="paramname"><em>border_size</em> = <code><a class="el" href="structarm__compute_1_1_border_size.xhtml">BorderSize</a>(0)</code> </td>
</tr>
<tr>
<td></td>
@@ -7444,33 +9768,72 @@
</dl>
<dl class="section return"><dt>Returns</dt><dd>A valid region starting at (0, 0, ...) with size of <code>shape</code> if <code>border_undefined</code> is false; otherwise return A valid region starting at (<code>border_size.left</code>, <code>border_size.top</code>, ...) with reduced size of <code>shape</code>. </dd></dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00193">193</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00197">197</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00124">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00109">Dimensions< T >::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00074">Dimensions< T >::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00115">Dimensions< T >::set_num_dimensions()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions< T >::x()</a>, and <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions< T >::y()</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00306">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00122">Dimensions< T >::num_dimensions()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00074">Dimensions< T >::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00128">Dimensions< T >::set_num_dimensions()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions< T >::x()</a>, and <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions< T >::y()</a>.</p>
-<p>Referenced by <a class="el" href="validation_2_c_l_2_convolution_layer_8cpp_source.xhtml#l00064">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_c_l_2_box3x3_8cpp_source.xhtml#l00091">arm_compute::test::validation::FIXTURE_DATA_TEST_CASE()</a>, <a class="el" href="_c_p_p_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="_c_p_p_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00312">arm_compute::test::validation::validate()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00194"></a><span class="lineno"> 194</span> {</div>
-<div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  Coordinates anchor;</div>
-<div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  anchor.set_num_dimensions(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions());</div>
-<div class="line"><a name="l00197"></a><span class="lineno"> 197</span> </div>
-<div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  <span class="keywordflow">if</span>(border_undefined)</div>
-<div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  {</div>
-<div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <a class="code" href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() < 2);</div>
-<div class="line"><a name="l00201"></a><span class="lineno"> 201</span> </div>
-<div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  anchor.set(0, border_size.left);</div>
-<div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  anchor.set(1, border_size.top);</div>
-<div class="line"><a name="l00204"></a><span class="lineno"> 204</span> </div>
-<div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_x = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x()) - static_cast<int>(border_size.left) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(border_size.right));</div>
-<div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_y = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y()) - static_cast<int>(border_size.top) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(border_size.bottom));</div>
-<div class="line"><a name="l00207"></a><span class="lineno"> 207</span> </div>
-<div class="line"><a name="l00208"></a><span class="lineno"> 208</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(0, valid_shape_x);</div>
-<div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(1, valid_shape_y);</div>
-<div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  }</div>
-<div class="line"><a name="l00211"></a><span class="lineno"> 211</span> </div>
-<div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  <span class="keywordflow">return</span> ValidRegion(std::move(anchor), std::move(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>));</div>
-<div class="line"><a name="l00213"></a><span class="lineno"> 213</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
-<div class="ttc" id="_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00124">Error.h:124</a></div></div>
+<p>Referenced by <a class="el" href="validation_2_c_l_2_activation_layer_8cpp_source.xhtml#l00114">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_c_l_2_accumulate_8cpp_source.xhtml#l00131">arm_compute::test::validation::FIXTURE_DATA_TEST_CASE()</a>, <a class="el" href="reference_2_non_linear_filter_8cpp_source.xhtml#l00036">arm_compute::test::validation::reference::non_linear_filter()</a>, <a class="el" href="_non_maxima_suppression_8cpp_source.xhtml#l00038">arm_compute::test::validation::reference::non_maxima_suppression()</a>, <a class="el" href="reference_2_scharr_8cpp_source.xhtml#l00062">arm_compute::test::validation::reference::scharr()</a>, <a class="el" href="reference_2_sobel_8cpp_source.xhtml#l00106">arm_compute::test::validation::reference::sobel()</a>, <a class="el" href="_validation_8h_source.xhtml#l00314">arm_compute::test::validation::validate()</a>, and <a class="el" href="_validation_8h_source.xhtml#l00321">arm_compute::test::validation::validate_wrap()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00198"></a><span class="lineno"> 198</span> {</div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span>  Coordinates anchor;</div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  anchor.set_num_dimensions(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions());</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span> </div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  <span class="keywordflow">if</span>(border_undefined)</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  {</div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  <a class="code" href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() < 2);</div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span> </div><div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  anchor.set(0, border_size.left);</div><div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  anchor.set(1, border_size.top);</div><div class="line"><a name="l00208"></a><span class="lineno"> 208</span> </div><div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_x = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.x()) - static_cast<int>(border_size.left) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(border_size.right));</div><div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_y = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.y()) - static_cast<int>(border_size.top) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(border_size.bottom));</div><div class="line"><a name="l00211"></a><span class="lineno"> 211</span> </div><div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(0, valid_shape_x);</div><div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.set(1, valid_shape_y);</div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  }</div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span> </div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  <span class="keywordflow">return</span> ValidRegion(std::move(anchor), std::move(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>));</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00306">Error.h:306</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point< T > max(fixed_point< T > x, fixed_point< T > y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
+</div><!-- fragment -->
+</div>
+</div>
+<a class="anchor" id="a0c848c53c05bedad63a7cc1bfa0b9725"></a>
+<div class="memitem">
+<div class="memproto">
+<table class="mlabels">
+ <tr>
+ <td class="mlabels-left">
+ <table class="memname">
+ <tr>
+ <td class="memname"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> arm_compute::test::shape_to_valid_region_gaussian_pyramid_half </td>
+ <td>(</td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> </td>
+ <td class="paramname"><em>shape</em>, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype"><a class="el" href="structarm__compute_1_1_valid_region.xhtml">ValidRegion</a> </td>
+ <td class="paramname"><em>valid_region</em>, </td>
+ </tr>
+ <tr>
+ <td class="paramkey"></td>
+ <td></td>
+ <td class="paramtype">bool </td>
+ <td class="paramname"><em>border_undefined</em> = <code>false</code> </td>
+ </tr>
+ <tr>
+ <td></td>
+ <td>)</td>
+ <td></td><td></td>
+ </tr>
+ </table>
+ </td>
+ <td class="mlabels-right">
+<span class="mlabels"><span class="mlabel">inline</span></span> </td>
+ </tr>
+</table>
+</div><div class="memdoc">
+
+<p>Create a valid region for Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half based on tensor shape and valid region at level "i - 1" and border mode. </p>
+<dl class="section note"><dt>Note</dt><dd>The border size is 2 in case of Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half</dd></dl>
+<dl class="params"><dt>Parameters</dt><dd>
+ <table class="params">
+ <tr><td class="paramdir">[in]</td><td class="paramname">shape</td><td>Shape used at level "i - 1" of Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half </td></tr>
+ <tr><td class="paramdir">[in]</td><td class="paramname">valid_region</td><td>Valid region used at level "i - 1" of Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half </td></tr>
+ <tr><td class="paramdir">[in]</td><td class="paramname">border_undefined</td><td>(Optional) Boolean indicating if the border mode is undefined.</td></tr>
+ </table>
+ </dd>
+</dl>
+<p>return The valid region for the level "i" of Gaussian <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a> Half </p>
+
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00229">229</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+
+<p>References <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00185">ValidRegion::anchor</a>, <a class="el" href="core_2_error_8h_source.xhtml#l00306">ARM_COMPUTE_ERROR_ON</a>, <a class="el" href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">arm_compute::test::fixed_point_arithmetic::detail::max()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00122">Dimensions< T >::num_dimensions()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00074">Dimensions< T >::set()</a>, <a class="el" href="_tensor_shape_8h_source.xhtml#l00074">TensorShape::set()</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00128">Dimensions< T >::set_num_dimensions()</a>, <a class="el" href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">arm_compute::test::validation::shape</a>, <a class="el" href="arm__compute_2core_2_types_8h_source.xhtml#l00186">ValidRegion::shape</a>, <a class="el" href="_dimensions_8h_source.xhtml#l00081">Dimensions< T >::x()</a>, and <a class="el" href="_dimensions_8h_source.xhtml#l00086">Dimensions< T >::y()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00230"></a><span class="lineno"> 230</span> {</div><div class="line"><a name="l00231"></a><span class="lineno"> 231</span>  constexpr <span class="keywordtype">int</span> border_size = 2;</div><div class="line"><a name="l00232"></a><span class="lineno"> 232</span>  Coordinates anchor;</div><div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  anchor.set_num_dimensions(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions());</div><div class="line"><a name="l00234"></a><span class="lineno"> 234</span> </div><div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  <span class="comment">// Compute tensor shape for level "i" of Gaussian Pyramid Half</span></div><div class="line"><a name="l00236"></a><span class="lineno"> 236</span>  <span class="comment">// dst_width = (src_width + 1) * 0.5f</span></div><div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  <span class="comment">// dst_height = (src_height + 1) * 0.5f</span></div><div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  TensorShape dst_shape = <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>;</div><div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  dst_shape.set(0, (<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[0] + 1) * 0.5f);</div><div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  dst_shape.set(1, (<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[1] + 1) * 0.5f);</div><div class="line"><a name="l00241"></a><span class="lineno"> 241</span> </div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  <span class="keywordflow">if</span>(border_undefined)</div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  {</div><div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  <a class="code" href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>.num_dimensions() < 2);</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span> </div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span>  <span class="comment">// Compute the left and top invalid borders</span></div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span>  <span class="keywordtype">float</span> invalid_border_left = <span class="keyword">static_cast<</span><span class="keywordtype">float</span><span class="keyword">></span>(valid_region.anchor.x() + border_size) / 2.0f;</div><div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  <span class="keywordtype">float</span> invalid_border_top = <span class="keyword">static_cast<</span><span class="keywordtype">float</span><span class="keyword">></span>(valid_region.anchor.y() + border_size) / 2.0f;</div><div class="line"><a name="l00249"></a><span class="lineno"> 249</span> </div><div class="line"><a name="l00250"></a><span class="lineno"> 250</span>  <span class="comment">// For the new anchor point we can have 2 cases:</span></div><div class="line"><a name="l00251"></a><span class="lineno"> 251</span>  <span class="comment">// 1) If the width/height of the tensor shape is odd, we have to take the ceil value of (valid_region.anchor.x() + border_size) / 2.0f or (valid_region.anchor.y() + border_size / 2.0f</span></div><div class="line"><a name="l00252"></a><span class="lineno"> 252</span>  <span class="comment">// 2) If the width/height of the tensor shape is even, we have to take the floor value of (valid_region.anchor.x() + border_size) / 2.0f or (valid_region.anchor.y() + border_size) / 2.0f</span></div><div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  <span class="comment">// In this manner we should be able to propagate correctly the valid region along all levels of the pyramid</span></div><div class="line"><a name="l00254"></a><span class="lineno"> 254</span>  invalid_border_left = (<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[0] % 2) ? std::ceil(invalid_border_left) : std::floor(invalid_border_left);</div><div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  invalid_border_top = (<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[1] % 2) ? std::ceil(invalid_border_top) : std::floor(invalid_border_top);</div><div class="line"><a name="l00256"></a><span class="lineno"> 256</span> </div><div class="line"><a name="l00257"></a><span class="lineno"> 257</span>  <span class="comment">// Set the anchor point</span></div><div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  anchor.set(0, static_cast<int>(invalid_border_left));</div><div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  anchor.set(1, static_cast<int>(invalid_border_top));</div><div class="line"><a name="l00260"></a><span class="lineno"> 260</span> </div><div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  <span class="comment">// Compute shape</span></div><div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  <span class="comment">// Calculate the right and bottom invalid borders at the previous level of the pyramid</span></div><div class="line"><a name="l00263"></a><span class="lineno"> 263</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> prev_invalid_border_right = <span class="keyword">static_cast<</span><span class="keywordtype">float</span><span class="keyword">></span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[0] - (valid_region.anchor.x() + valid_region.shape[0]));</div><div class="line"><a name="l00264"></a><span class="lineno"> 264</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> prev_invalid_border_bottom = <span class="keyword">static_cast<</span><span class="keywordtype">float</span><span class="keyword">></span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>[1] - (valid_region.anchor.y() + valid_region.shape[1]));</div><div class="line"><a name="l00265"></a><span class="lineno"> 265</span> </div><div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  <span class="comment">// Calculate the right and bottom invalid borders at the current level of the pyramid</span></div><div class="line"><a name="l00267"></a><span class="lineno"> 267</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> invalid_border_right = std::ceil((prev_invalid_border_right + static_cast<float>(border_size)) / 2.0f);</div><div class="line"><a name="l00268"></a><span class="lineno"> 268</span>  <span class="keyword">const</span> <span class="keywordtype">float</span> invalid_border_bottom = std::ceil((prev_invalid_border_bottom + static_cast<float>(border_size)) / 2.0f);</div><div class="line"><a name="l00269"></a><span class="lineno"> 269</span> </div><div class="line"><a name="l00270"></a><span class="lineno"> 270</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_x = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(dst_shape.x()) - static_cast<int>(invalid_border_left) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(invalid_border_right));</div><div class="line"><a name="l00271"></a><span class="lineno"> 271</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> valid_shape_y = <a class="code" href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">std::max</a>(0, static_cast<int>(dst_shape.y()) - static_cast<int>(invalid_border_top) - <span class="keyword">static_cast<</span><span class="keywordtype">int</span><span class="keyword">></span>(invalid_border_bottom));</div><div class="line"><a name="l00272"></a><span class="lineno"> 272</span> </div><div class="line"><a name="l00273"></a><span class="lineno"> 273</span>  dst_shape.set(0, valid_shape_x);</div><div class="line"><a name="l00274"></a><span class="lineno"> 274</span>  dst_shape.set(1, valid_shape_y);</div><div class="line"><a name="l00275"></a><span class="lineno"> 275</span>  }</div><div class="line"><a name="l00276"></a><span class="lineno"> 276</span> </div><div class="line"><a name="l00277"></a><span class="lineno"> 277</span>  <span class="keywordflow">return</span> ValidRegion(std::move(anchor), std::move(dst_shape));</div><div class="line"><a name="l00278"></a><span class="lineno"> 278</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="core_2_error_8h_xhtml_a54a6080c9f4df1f908e57a9bbb46f5da"><div class="ttname"><a href="core_2_error_8h.xhtml#a54a6080c9f4df1f908e57a9bbb46f5da">ARM_COMPUTE_ERROR_ON</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR_ON(cond)</div><div class="ttdoc">If the condition is true then an error message is printed and an exception thrown. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00306">Error.h:306</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail_xhtml_ad91bb73431b4de1f4946ed949d444849"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1fixed__point__arithmetic_1_1detail.xhtml#ad91bb73431b4de1f4946ed949d444849">arm_compute::test::fixed_point_arithmetic::detail::max</a></div><div class="ttdeci">fixed_point< T > max(fixed_point< T > x, fixed_point< T > y)</div><div class="ttdef"><b>Definition:</b> <a href="tests_2validation_2_fixed_point_8h_source.xhtml#l00889">FixedPoint.h:889</a></div></div>
</div><!-- fragment -->
</div>
@@ -7494,7 +9857,7 @@
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">DataType </td>
+ <td class="paramtype"><a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a> </td>
<td class="paramname"><em>data_type</em> </td>
</tr>
<tr>
@@ -7516,58 +9879,13 @@
</dd>
</dl>
-<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00224">224</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
+<p>Definition at line <a class="el" href="tests_2_utils_8h_source.xhtml#l00289">289</a> of file <a class="el" href="tests_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>References <a class="el" href="_error_8h_source.xhtml#l00031">ARM_COMPUTE_ERROR</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">arm_compute::F16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a48d877702a2957f5a932c43a357866f9">arm_compute::QS16</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a11cde4d3551db3f9498d339a67189543">arm_compute::QS8</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
+<p>References <a class="el" href="core_2_error_8h_source.xhtml#l00238">ARM_COMPUTE_ERROR</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">arm_compute::F16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a1ad5f6f3069070ec4cbbdc94d5e61e0e">arm_compute::F64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6af14462d71aa842202c3e4b272c7ec924">arm_compute::QASYMM8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a48d877702a2957f5a932c43a357866f9">arm_compute::QS16</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a11cde4d3551db3f9498d339a67189543">arm_compute::QS8</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6e0b0886efb94aec797f6b830329b72c">arm_compute::S16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aa1e28eee0339658d39a8b4d325b56e9c">arm_compute::S32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a115dca124dc6423c7a400b8a8a0270cc">arm_compute::S64</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6aafb0fced528eaac5fe170b763cda5975">arm_compute::S8</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6abd7ef6d4f35bc7d05c559b65032f15d1">arm_compute::SIZET</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58aef9ef3ebca4d2b64b6ec83808bafa5f2">arm_compute::U16</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58ac8bd5bedff8ef192d39a962afc0e19ee">arm_compute::U32</a>, <a class="el" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6a31d65cccd6593e4101db93fb878abcaa">arm_compute::U64</a>, and <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a6669348b484e3008dca2bfa8e85e40b5">arm_compute::U8</a>.</p>
-<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00403">AssetsLibrary::fill()</a>, and <a class="el" href="_assets_library_8h_source.xhtml#l00377">AssetsLibrary::fill_borders_with_garbage()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00225"></a><span class="lineno"> 225</span> {</div>
-<div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div>
-<div class="line"><a name="l00227"></a><span class="lineno"> 227</span>  {</div>
-<div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  <span class="keywordflow">case</span> DataType::U8:</div>
-<div class="line"><a name="l00229"></a><span class="lineno"> 229</span>  *<span class="keyword">reinterpret_cast<</span>uint8_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00231"></a><span class="lineno"> 231</span>  <span class="keywordflow">case</span> DataType::S8:</div>
-<div class="line"><a name="l00232"></a><span class="lineno"> 232</span>  <span class="keywordflow">case</span> DataType::QS8:</div>
-<div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  *<span class="keyword">reinterpret_cast<</span>int8_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00235"></a><span class="lineno"> 235</span>  <span class="keywordflow">case</span> DataType::U16:</div>
-<div class="line"><a name="l00236"></a><span class="lineno"> 236</span>  *<span class="keyword">reinterpret_cast<</span>uint16_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  <span class="keywordflow">case</span> DataType::S16:</div>
-<div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  <span class="keywordflow">case</span> DataType::QS16:</div>
-<div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  *<span class="keyword">reinterpret_cast<</span>int16_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  <span class="keywordflow">case</span> DataType::U32:</div>
-<div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  *<span class="keyword">reinterpret_cast<</span>uint32_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00245"></a><span class="lineno"> 245</span>  <span class="keywordflow">case</span> DataType::S32:</div>
-<div class="line"><a name="l00246"></a><span class="lineno"> 246</span>  *<span class="keyword">reinterpret_cast<</span>int32_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00247"></a><span class="lineno"> 247</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00248"></a><span class="lineno"> 248</span>  <span class="keywordflow">case</span> DataType::U64:</div>
-<div class="line"><a name="l00249"></a><span class="lineno"> 249</span>  *<span class="keyword">reinterpret_cast<</span>uint64_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00250"></a><span class="lineno"> 250</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00251"></a><span class="lineno"> 251</span>  <span class="keywordflow">case</span> DataType::S64:</div>
-<div class="line"><a name="l00252"></a><span class="lineno"> 252</span>  *<span class="keyword">reinterpret_cast<</span>int64_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00253"></a><span class="lineno"> 253</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00254"></a><span class="lineno"> 254</span>  <span class="keywordflow">case</span> DataType::F16:</div>
-<div class="line"><a name="l00255"></a><span class="lineno"> 255</span>  *<span class="keyword">reinterpret_cast<</span><a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half</a> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00256"></a><span class="lineno"> 256</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00257"></a><span class="lineno"> 257</span>  <span class="keywordflow">case</span> DataType::F32:</div>
-<div class="line"><a name="l00258"></a><span class="lineno"> 258</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">float</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00259"></a><span class="lineno"> 259</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00260"></a><span class="lineno"> 260</span>  <span class="keywordflow">case</span> DataType::F64:</div>
-<div class="line"><a name="l00261"></a><span class="lineno"> 261</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">double</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00262"></a><span class="lineno"> 262</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00263"></a><span class="lineno"> 263</span>  <span class="keywordflow">case</span> DataType::SIZET:</div>
-<div class="line"><a name="l00264"></a><span class="lineno"> 264</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">size_t</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div>
-<div class="line"><a name="l00265"></a><span class="lineno"> 265</span>  <span class="keywordflow">break</span>;</div>
-<div class="line"><a name="l00266"></a><span class="lineno"> 266</span>  <span class="keywordflow">default</span>:</div>
-<div class="line"><a name="l00267"></a><span class="lineno"> 267</span>  <a class="code" href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">"NOT SUPPORTED!"</span>);</div>
-<div class="line"><a name="l00268"></a><span class="lineno"> 268</span>  }</div>
-<div class="line"><a name="l00269"></a><span class="lineno"> 269</span> }</div>
-<div class="ttc" id="_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00031">Error.h:31</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_a73e2825fd61d349c5ca2f5313e3c8ea1"><div class="ttname"><a href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">arm_compute::half</a></div><div class="ttdeci">half_float::half half</div><div class="ttdoc">16-bit floating point type </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00039">Types.h:39</a></div></div>
+<p>Referenced by <a class="el" href="_assets_library_8h_source.xhtml#l00406">AssetsLibrary::fill()</a>, and <a class="el" href="_assets_library_8h_source.xhtml#l00377">AssetsLibrary::fill_borders_with_garbage()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00290"></a><span class="lineno"> 290</span> {</div><div class="line"><a name="l00291"></a><span class="lineno"> 291</span>  <span class="keywordflow">switch</span>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>)</div><div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  {</div><div class="line"><a name="l00293"></a><span class="lineno"> 293</span>  <span class="keywordflow">case</span> DataType::U8:</div><div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <span class="keywordflow">case</span> DataType::QASYMM8:</div><div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  *<span class="keyword">reinterpret_cast<</span>uint8_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span>  <span class="keywordflow">case</span> DataType::S8:</div><div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  <span class="keywordflow">case</span> DataType::QS8:</div><div class="line"><a name="l00299"></a><span class="lineno"> 299</span>  *<span class="keyword">reinterpret_cast<</span>int8_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00300"></a><span class="lineno"> 300</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  <span class="keywordflow">case</span> DataType::U16:</div><div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  *<span class="keyword">reinterpret_cast<</span>uint16_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00303"></a><span class="lineno"> 303</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  <span class="keywordflow">case</span> DataType::S16:</div><div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  <span class="keywordflow">case</span> DataType::QS16:</div><div class="line"><a name="l00306"></a><span class="lineno"> 306</span>  *<span class="keyword">reinterpret_cast<</span>int16_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  <span class="keywordflow">case</span> DataType::U32:</div><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  *<span class="keyword">reinterpret_cast<</span>uint32_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  <span class="keywordflow">case</span> DataType::S32:</div><div class="line"><a name="l00312"></a><span class="lineno"> 312</span>  *<span class="keyword">reinterpret_cast<</span>int32_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  <span class="keywordflow">case</span> DataType::U64:</div><div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  *<span class="keyword">reinterpret_cast<</span>uint64_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00316"></a><span class="lineno"> 316</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00317"></a><span class="lineno"> 317</span>  <span class="keywordflow">case</span> DataType::S64:</div><div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  *<span class="keyword">reinterpret_cast<</span>int64_t *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00319"></a><span class="lineno"> 319</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  <span class="keywordflow">case</span> DataType::F16:</div><div class="line"><a name="l00321"></a><span class="lineno"> 321</span>  *<span class="keyword">reinterpret_cast<</span><a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half</a> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00322"></a><span class="lineno"> 322</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  <span class="keywordflow">case</span> DataType::F32:</div><div class="line"><a name="l00324"></a><span class="lineno"> 324</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">float</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00325"></a><span class="lineno"> 325</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00326"></a><span class="lineno"> 326</span>  <span class="keywordflow">case</span> DataType::F64:</div><div class="line"><a name="l00327"></a><span class="lineno"> 327</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">double</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00328"></a><span class="lineno"> 328</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00329"></a><span class="lineno"> 329</span>  <span class="keywordflow">case</span> DataType::SIZET:</div><div class="line"><a name="l00330"></a><span class="lineno"> 330</span>  *<span class="keyword">reinterpret_cast<</span><span class="keywordtype">size_t</span> *<span class="keyword">></span>(ptr) = <a class="code" href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a>;</div><div class="line"><a name="l00331"></a><span class="lineno"> 331</span>  <span class="keywordflow">break</span>;</div><div class="line"><a name="l00332"></a><span class="lineno"> 332</span>  <span class="keywordflow">default</span>:</div><div class="line"><a name="l00333"></a><span class="lineno"> 333</span>  <a class="code" href="core_2_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a>(<span class="stringliteral">"NOT SUPPORTED!"</span>);</div><div class="line"><a name="l00334"></a><span class="lineno"> 334</span>  }</div><div class="line"><a name="l00335"></a><span class="lineno"> 335</span> }</div><div class="ttc" id="core_2_error_8h_xhtml_a05b19c75afe9c24200a62b9724734bbd"><div class="ttname"><a href="core_2_error_8h.xhtml#a05b19c75afe9c24200a62b9724734bbd">ARM_COMPUTE_ERROR</a></div><div class="ttdeci">#define ARM_COMPUTE_ERROR(...)</div><div class="ttdoc">Print the given message then throw an std::runtime_error. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00238">Error.h:238</a></div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_a73e2825fd61d349c5ca2f5313e3c8ea1"><div class="ttname"><a href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">arm_compute::half</a></div><div class="ttdeci">half_float::half half</div><div class="ttdoc">16-bit floating point type </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00043">Types.h:43</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00090">MinMaxLocation.cpp:90</a></div></div>
<div class="ttc" id="hwc_8hpp_xhtml_a0f61d63b009d0880a89c843bd50d8d76"><div class="ttname"><a href="hwc_8hpp.xhtml#a0f61d63b009d0880a89c843bd50d8d76">value</a></div><div class="ttdeci">void * value</div><div class="ttdef"><b>Definition:</b> <a href="hwc_8hpp_source.xhtml#l00269">hwc.hpp:269</a></div></div>
</div><!-- fragment -->
@@ -7580,13 +9898,13 @@
<tr>
<td class="memname">void arm_compute::test::swap </td>
<td>(</td>
- <td class="paramtype">SimpleTensor< U > & </td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a>< U > & </td>
<td class="paramname"><em>tensor1</em>, </td>
</tr>
<tr>
<td class="paramkey"></td>
<td></td>
- <td class="paramtype">SimpleTensor< U > & </td>
+ <td class="paramtype"><a class="el" href="classarm__compute_1_1test_1_1_simple_tensor.xhtml">SimpleTensor</a>< U > & </td>
<td class="paramname"><em>tensor2</em> </td>
</tr>
<tr>
@@ -7604,20 +9922,10 @@
</dd>
</dl>
-<p>Definition at line <a class="el" href="_simple_tensor_8h_source.xhtml#l00335">335</a> of file <a class="el" href="_simple_tensor_8h_source.xhtml">SimpleTensor.h</a>.</p>
+<p>Definition at line <a class="el" href="_simple_tensor_8h_source.xhtml#l00351">351</a> of file <a class="el" href="_simple_tensor_8h_source.xhtml">SimpleTensor.h</a>.</p>
-<p>Referenced by <a class="el" href="_simple_tensor_8h_source.xhtml#l00214">SimpleTensor< T >::operator=()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00336"></a><span class="lineno"> 336</span> {</div>
-<div class="line"><a name="l00337"></a><span class="lineno"> 337</span>  <span class="comment">// Use unqualified call to swap to enable ADL. But make std::swap available</span></div>
-<div class="line"><a name="l00338"></a><span class="lineno"> 338</span>  <span class="comment">// as backup.</span></div>
-<div class="line"><a name="l00339"></a><span class="lineno"> 339</span>  <span class="keyword">using</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">std::swap</a>;</div>
-<div class="line"><a name="l00340"></a><span class="lineno"> 340</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._shape, tensor2._shape);</div>
-<div class="line"><a name="l00341"></a><span class="lineno"> 341</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._format, tensor2._format);</div>
-<div class="line"><a name="l00342"></a><span class="lineno"> 342</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._data_type, tensor2._data_type);</div>
-<div class="line"><a name="l00343"></a><span class="lineno"> 343</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._num_channels, tensor2._num_channels);</div>
-<div class="line"><a name="l00344"></a><span class="lineno"> 344</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._buffer, tensor2._buffer);</div>
-<div class="line"><a name="l00345"></a><span class="lineno"> 345</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a28edc8880596d14c099f3c2509efc8b3"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">arm_compute::test::swap</a></div><div class="ttdeci">void swap(SimpleTensor< U > &tensor1, SimpleTensor< U > &tensor2)</div><div class="ttdef"><b>Definition:</b> <a href="_simple_tensor_8h_source.xhtml#l00335">SimpleTensor.h:335</a></div></div>
+<p>References <a class="el" href="_simple_tensor_8h_source.xhtml#l00351">SimpleTensor< T >::swap</a>.</p>
+<div class="fragment"><div class="line"><a name="l00352"></a><span class="lineno"> 352</span> {</div><div class="line"><a name="l00353"></a><span class="lineno"> 353</span>  <span class="comment">// Use unqualified call to swap to enable ADL. But make std::swap available</span></div><div class="line"><a name="l00354"></a><span class="lineno"> 354</span>  <span class="comment">// as backup.</span></div><div class="line"><a name="l00355"></a><span class="lineno"> 355</span>  <span class="keyword">using</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">std::swap</a>;</div><div class="line"><a name="l00356"></a><span class="lineno"> 356</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._shape, tensor2._shape);</div><div class="line"><a name="l00357"></a><span class="lineno"> 357</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._format, tensor2._format);</div><div class="line"><a name="l00358"></a><span class="lineno"> 358</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._data_type, tensor2._data_type);</div><div class="line"><a name="l00359"></a><span class="lineno"> 359</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._num_channels, tensor2._num_channels);</div><div class="line"><a name="l00360"></a><span class="lineno"> 360</span>  <a class="code" href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">swap</a>(tensor1._buffer, tensor2._buffer);</div><div class="line"><a name="l00361"></a><span class="lineno"> 361</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_xhtml_a28edc8880596d14c099f3c2509efc8b3"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a28edc8880596d14c099f3c2509efc8b3">arm_compute::test::swap</a></div><div class="ttdeci">void swap(SimpleTensor< U > &tensor1, SimpleTensor< U > &tensor2)</div><div class="ttdef"><b>Definition:</b> <a href="_simple_tensor_8h_source.xhtml#l00351">SimpleTensor.h:351</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -7654,15 +9962,11 @@
<p>Definition at line <a class="el" href="tests_2framework_2_utils_8h_source.xhtml#l00147">147</a> of file <a class="el" href="tests_2framework_2_utils_8h_source.xhtml">Utils.h</a>.</p>
-<p>Referenced by <a class="el" href="_u_n_i_t_2_fixed_point_8cpp_source.xhtml#l00067">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_dataset_modes_8cpp_source.xhtml#l00036">arm_compute::test::framework::dataset_mode_from_name()</a>, <a class="el" href="_instruments_8cpp_source.xhtml#l00037">arm_compute::test::framework::instrument_type_from_name()</a>, <a class="el" href="_printers_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_format_from_name()</a>, and <a class="el" href="_exceptions_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_level_from_name()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00148"></a><span class="lineno"> 148</span> {</div>
-<div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  std::transform(<span class="keywordtype">string</span>.begin(), <span class="keywordtype">string</span>.end(), <span class="keywordtype">string</span>.begin(), [](<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span> c)</div>
-<div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  {</div>
-<div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">std::tolower</a>(c);</div>
-<div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  });</div>
-<div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  <span class="keywordflow">return</span> string;</div>
-<div class="line"><a name="l00154"></a><span class="lineno"> 154</span> }</div>
-<div class="ttc" id="namespacearm__compute_1_1test_xhtml_a5b67cbf475b1e1d3bec9b0b937fdafac"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">arm_compute::test::tolower</a></div><div class="ttdeci">std::string tolower(std::string string)</div><div class="ttdoc">Convert string to lower case. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00147">Utils.h:147</a></div></div>
+<p>References <a class="el" href="validation_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml#l00117">arm_compute::test::validation::c</a>, and <a class="el" href="hwc_8hpp_source.xhtml#l00269">value</a>.</p>
+
+<p>Referenced by <a class="el" href="_u_n_i_t_2_fixed_point_8cpp_source.xhtml#l00067">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_dataset_modes_8cpp_source.xhtml#l00036">arm_compute::test::framework::dataset_mode_from_name()</a>, <a class="el" href="_instruments_8cpp_source.xhtml#l00037">arm_compute::test::framework::instrument_type_from_name()</a>, <a class="el" href="_printers_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_format_from_name()</a>, <a class="el" href="_exceptions_8cpp_source.xhtml#l00037">arm_compute::test::framework::log_level_from_name()</a>, and <a class="el" href="_command_line_parser_8cpp_source.xhtml#l00035">CommandLineParser::parse()</a>.</p>
+<div class="fragment"><div class="line"><a name="l00148"></a><span class="lineno"> 148</span> {</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  std::transform(<span class="keywordtype">string</span>.begin(), <span class="keywordtype">string</span>.end(), <span class="keywordtype">string</span>.begin(), [](<span class="keywordtype">unsigned</span> <span class="keywordtype">char</span> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a497347573faa3778743ddf277f861094">c</a>)</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  {</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">std::tolower</a>(c);</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  });</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  <span class="keywordflow">return</span> string;</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span> }</div><div class="ttc" id="namespacearm__compute_1_1test_xhtml_a5b67cbf475b1e1d3bec9b0b937fdafac"><div class="ttname"><a href="namespacearm__compute_1_1test.xhtml#a5b67cbf475b1e1d3bec9b0b937fdafac">arm_compute::test::tolower</a></div><div class="ttdeci">std::string tolower(std::string string)</div><div class="ttdoc">Convert string to lower case. </div><div class="ttdef"><b>Definition:</b> <a href="tests_2framework_2_utils_8h_source.xhtml#l00147">Utils.h:147</a></div></div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a497347573faa3778743ddf277f861094"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a497347573faa3778743ddf277f861094">arm_compute::test::validation::c</a></div><div class="ttdeci">Tensor c</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_n_e_o_n_2_g_e_m_m_8cpp_source.xhtml#l00117">GEMM.cpp:117</a></div></div>
</div><!-- fragment -->
</div>
</div>
@@ -7677,7 +9981,7 @@
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml#l00040">40</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_8cpp_source.xhtml">DepthwiseConvolution.cpp</a>.</p>
+<p>Definition at line <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_layer_8cpp_source.xhtml#l00040">40</a> of file <a class="el" href="benchmark_2_c_l_2_depthwise_convolution_layer_8cpp_source.xhtml">DepthwiseConvolutionLayer.cpp</a>.</p>
</div>
</div>
@@ -7691,9 +9995,9 @@
</table>
</div><div class="memdoc">
-<p>Definition at line <a class="el" href="main_8cpp_source.xhtml#l00055">55</a> of file <a class="el" href="main_8cpp_source.xhtml">main.cpp</a>.</p>
+<p>Definition at line <a class="el" href="main_8cpp_source.xhtml#l00058">58</a> of file <a class="el" href="main_8cpp_source.xhtml">main.cpp</a>.</p>
-<p>Referenced by <a class="el" href="_c_l_2_fill_border_8cpp_source.xhtml#l00052">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00152">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::feed()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00413">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::feed()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00136">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00396">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill()</a>, <a class="el" href="tests_2validation_2_helpers_8h_source.xhtml#l00169">arm_compute::test::validation::fill_lookuptable()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00032">arm_compute::test::validation::fill_mask_from_pattern()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00120">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill_random()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00346">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill_random()</a>, <a class="el" href="_helper_8h_source.xhtml#l00039">fill_tensors()</a>, <a class="el" href="tests_2validation_2_c_p_p_2_utils_8h_source.xhtml#l00109">arm_compute::test::validation::fill_warp_matrix()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00098">arm_compute::test::validation::harris_corners_parameters()</a>, <a class="el" href="main_8cpp_source.xhtml#l00059">main()</a>, <a class="el" href="benchmark_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00043">ConvolutionLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_batch_normalization_layer_fixture_8h_source.xhtml#l00043">BatchNormalizationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_fully_connected_layer_fixture_8h_source.xhtml#l00043">FullyConnectedLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_floor_fixture_8h_source.xhtml#l00043">FloorFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_g_e_m_m_fixture_8h_source.xhtml#l00043">GEMMFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_normalization_layer_fixture_8h_source.xhtml#l00043">NormalizationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_activation_layer_fixture_8h_source.xhtml#l00043">ActivationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_convolution_fixture_8h_source.xhtml#l00043">DepthwiseConvolutionFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_pooling_layer_fixture_8h_source.xhtml#l00043">PoolingLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_separable_convolution_layer_fixture_8h_source.xhtml#l00043">DepthwiseSeparableConvolutionLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture< TensorType, Function, Accessor, Array_T, ArrayAccessor >::setup()</a>, <a class="el" href="_scale_fixture_8h_source.xhtml#l00047">ScaleValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_non_linear_filter_fixture_8h_source.xhtml#l00048">NonLinearFilterValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_box3x3_fixture_8h_source.xhtml#l00049">Box3x3ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_gaussian5x5_fixture_8h_source.xhtml#l00049">Gaussian5x5ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_gaussian3x3_fixture_8h_source.xhtml#l00049">Gaussian3x3ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_depth_concatenate_layer_fixture_8h_source.xhtml#l00050">DepthConcatenateValidationFixture< TensorType, ITensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_warp_affine_fixture_8h_source.xhtml#l00050">WarpAffineValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_warp_perspective_fixture_8h_source.xhtml#l00050">WarpPerspectiveValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, and <a class="el" href="_sobel_fixture_8h_source.xhtml#l00105">SobelValidationFixture< TensorType, AccessorType, FunctionType, T, U >::setup()</a>.</p>
+<p>Referenced by <a class="el" href="reference_2_accumulate_8cpp_source.xhtml#l00039">arm_compute::test::validation::reference::accumulate()</a>, <a class="el" href="reference_2_accumulate_8cpp_source.xhtml#l00077">arm_compute::test::validation::reference::accumulate_squared()</a>, <a class="el" href="reference_2_accumulate_8cpp_source.xhtml#l00057">arm_compute::test::validation::reference::accumulate_weighted()</a>, <a class="el" href="_g_l_e_s___c_o_m_p_u_t_e_2_helper_8h_source.xhtml#l00064">arm_compute::test::gles_compute::create_tensor()</a>, <a class="el" href="_c_l_2_accumulate_8cpp_source.xhtml#l00097">arm_compute::test::validation::DATA_TEST_CASE()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00152">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::feed()</a>, <a class="el" href="_mobile_net_network_8h_source.xhtml#l00161">MobileNetNetwork< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, DepthwiseConvolutionLayerFunction, ReshapeFunction, PoolingLayerFunction >::feed()</a>, <a class="el" href="_mobile_net_v1_network_8h_source.xhtml#l00196">MobileNetV1Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, BatchNormalizationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, DepthwiseConvolutionFunction, ReshapeFunction, PoolingLayerFunction, SoftmaxLayerFunction >::feed()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00413">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::feed()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00136">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00396">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill()</a>, <a class="el" href="tests_2validation_2_helpers_8h_source.xhtml#l00169">arm_compute::test::validation::fill_lookuptable()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00032">arm_compute::test::validation::fill_mask_from_pattern()</a>, <a class="el" href="_le_net5_network_8h_source.xhtml#l00120">LeNet5Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, FullyConnectedLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill_random()</a>, <a class="el" href="_mobile_net_network_8h_source.xhtml#l00137">MobileNetNetwork< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, DepthwiseConvolutionLayerFunction, ReshapeFunction, PoolingLayerFunction >::fill_random()</a>, <a class="el" href="_mobile_net_v1_network_8h_source.xhtml#l00162">MobileNetV1Network< TensorType, arm_compute::test::Accessor, ActivationLayerFunction, BatchNormalizationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, DepthwiseConvolutionFunction, ReshapeFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill_random()</a>, <a class="el" href="_alex_net_network_8h_source.xhtml#l00346">AlexNetNetwork< ITensorType, TensorType, SubTensorType, arm_compute::test::Accessor, ActivationLayerFunction, ConvolutionLayerFunction, DirectConvolutionLayerFunction, FullyConnectedLayerFunction, NormalizationLayerFunction, PoolingLayerFunction, SoftmaxLayerFunction >::fill_random()</a>, <a class="el" href="_n_e_o_n_2_helper_8h_source.xhtml#l00041">fill_tensors()</a>, <a class="el" href="tests_2validation_2reference_2_utils_8h_source.xhtml#l00124">arm_compute::test::validation::fill_warp_matrix()</a>, <a class="el" href="_c_l_2_accumulate_8cpp_source.xhtml#l00131">arm_compute::test::validation::FIXTURE_DATA_TEST_CASE()</a>, <a class="el" href="_helpers_8cpp_source.xhtml#l00098">arm_compute::test::validation::harris_corners_parameters()</a>, <a class="el" href="main_8cpp_source.xhtml#l00062">main()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_convolution_layer_fixture_8h_source.xhtml#l00043">DepthwiseConvolutionLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_g_e_m_m_fixture_8h_source.xhtml#l00043">GEMMFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_g_e_m_m_lowp_fixture_8h_source.xhtml#l00043">GEMMLowpMatrixMultiplyCoreFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_depthwise_separable_convolution_layer_fixture_8h_source.xhtml#l00043">DepthwiseSeparableConvolutionLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_mean_std_dev_fixture_8h_source.xhtml#l00043">MeanStdDevValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_normalization_layer_fixture_8h_source.xhtml#l00043">NormalizationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_floor_fixture_8h_source.xhtml#l00043">FloorFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_pooling_layer_fixture_8h_source.xhtml#l00043">PoolingLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_activation_layer_fixture_8h_source.xhtml#l00043">ActivationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_threshold_fixture_8h_source.xhtml#l00045">ThresholdValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_r_o_i_pooling_layer_fixture_8h_source.xhtml#l00045">ROIPoolingLayerFixture< TensorType, Function, Accessor, Array_T, ArrayAccessor >::setup()</a>, <a class="el" href="_magnitude_fixture_8h_source.xhtml#l00046">MagnitudeValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_phase_fixture_8h_source.xhtml#l00046">PhaseValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_fixed_point_pixel_wise_multiplication_fixture_8h_source.xhtml#l00047">FixedPointPixelWiseMultiplicationValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_integral_image_fixture_8h_source.xhtml#l00047">IntegralImageValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_pixel_wise_multiplication_fixture_8h_source.xhtml#l00047">PixelWiseMultiplicationValidationFixture< TensorType, AccessorType, FunctionType, T1, T2 >::setup()</a>, <a class="el" href="_reshape_layer_fixture_8h_source.xhtml#l00047">ReshapeLayerValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_scale_fixture_8h_source.xhtml#l00047">ScaleValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_bitwise_and_fixture_8h_source.xhtml#l00047">BitwiseAndValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_bitwise_not_fixture_8h_source.xhtml#l00047">BitwiseNotValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_bitwise_or_fixture_8h_source.xhtml#l00047">BitwiseOrValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_bitwise_xor_fixture_8h_source.xhtml#l00047">BitwiseXorValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_fixed_point_fixture_8h_source.xhtml#l00048">FixedPointValidationFixture< TensorType, AccessorType, T >::setup()</a>, <a class="el" href="_transpose_fixture_8h_source.xhtml#l00048">TransposeValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_l2_normalize_layer_fixture_8h_source.xhtml#l00048">L2NormalizeLayerValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_non_linear_filter_fixture_8h_source.xhtml#l00048">NonLinearFilterValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_reduction_operation_fixture_8h_source.xhtml#l00048">ReductionOperationValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_absolute_difference_fixture_8h_source.xhtml#l00048">AbsoluteDifferenceValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_accumulate_fixture_8h_source.xhtml#l00048">AccumulateBaseValidationFixture< TensorType, AccessorType, FunctionType, T1, T2 >::setup()</a>, <a class="el" href="_arithmetic_addition_fixture_8h_source.xhtml#l00048">ArithmeticAdditionValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_arithmetic_subtraction_fixture_8h_source.xhtml#l00048">ArithmeticSubtractionValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T1, T2, T3 >::setup()</a>, <a class="el" href="validation_2fixtures_2_batch_normalization_layer_fixture_8h_source.xhtml#l00048">BatchNormalizationLayerValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_depth_convert_layer_fixture_8h_source.xhtml#l00048">DepthConvertLayerValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T1, T2 >::setup()</a>, <a class="el" href="validation_2fixtures_2_floor_fixture_8h_source.xhtml#l00048">FloorValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_permute_fixture_8h_source.xhtml#l00049">PermuteValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_table_lookup_fixture_8h_source.xhtml#l00049">TableLookupValidationFixture< TensorType, AccessorType, FunctionType, LutAccessorType, LutType, T >::setup()</a>, <a class="el" href="_erode_fixture_8h_source.xhtml#l00049">ErodeValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_min_max_location_fixture_8h_source.xhtml#l00049">MinMaxLocationValidationFixture< TensorType, AccessorType, ArrayType, ArrayAccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_gaussian3x3_fixture_8h_source.xhtml#l00049">Gaussian3x3ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_gaussian_pyramid_half_fixture_8h_source.xhtml#l00049">GaussianPyramidHalfValidationFixture< TensorType, AccessorType, FunctionType, T, PyramidType >::setup()</a>, <a class="el" href="_median3x3_fixture_8h_source.xhtml#l00049">Median3x3ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_gaussian5x5_fixture_8h_source.xhtml#l00049">Gaussian5x5ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_remap_fixture_8h_source.xhtml#l00049">RemapValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_batch_normalization_layer_fixture_8h_source.xhtml#l00049">BatchNormalizationLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_dilate_fixture_8h_source.xhtml#l00049">DilateValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_box3x3_fixture_8h_source.xhtml#l00049">Box3x3ValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_g_e_m_m_lowp_fixture_8h_source.xhtml#l00050">GEMMLowpMatrixMultiplyCoreValidationFixture< TensorType, AccessorType, FunctionType >::setup()</a>, <a class="el" href="_dropout_layer_fixture_8h_source.xhtml#l00050">DropoutLayerValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_quantization_layer_fixture_8h_source.xhtml#l00050">QuantizationValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_g_e_m_m_fixture_8h_source.xhtml#l00050">GEMMValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_normalization_layer_fixture_8h_source.xhtml#l00050">NormalizationValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_dequantization_layer_fixture_8h_source.xhtml#l00050">DequantizationValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_activation_layer_fixture_8h_source.xhtml#l00050">ActivationValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_warp_affine_fixture_8h_source.xhtml#l00050">WarpAffineValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00050">ConvolutionLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_g_e_m_m_interleave4x4_fixture_8h_source.xhtml#l00050">GEMMInterleave4x4ValidationFixedPointFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_pooling_layer_fixture_8h_source.xhtml#l00050">PoolingLayerValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_softmax_layer_fixture_8h_source.xhtml#l00050">SoftmaxValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_histogram_fixture_8h_source.xhtml#l00050">HistogramValidationFixture< TensorType, AccessorType, FunctionType, T, DistributionType >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_fully_connected_layer_fixture_8h_source.xhtml#l00050">FullyConnectedLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_harris_corners_fixture_8h_source.xhtml#l00050">HarrisCornersValidationFixture< TensorType, AccessorType, ArrayType, FunctionType, T >::setup()</a>, <a class="el" href="_warp_perspective_fixture_8h_source.xhtml#l00050">WarpPerspectiveValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_g_e_m_m_interleave_blocked_fixture_8h_source.xhtml#l00050">GEMMInterleaveBlockedValidationFixture< TensorType, AccessorType, FunctionType, Transposed >::setup()</a>, <a class="el" href="_g_e_m_m_lowp_assembly_fixture_8h_source.xhtml#l00050">GEMMLowpAssemblyFixture< TensorType, AccessorType, FunctionType, T2 >::setup()</a>, <a class="el" href="validation_2fixtures_2_depthwise_separable_convolution_layer_fixture_8h_source.xhtml#l00050">DepthwiseSeparableConvolutionValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_depth_concatenate_layer_fixture_8h_source.xhtml#l00050">DepthConcatenateLayerValidationFixture< TensorType, ITensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_flatten_layer_fixture_8h_source.xhtml#l00051">FlattenLayerValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="benchmark_2fixtures_2_softmax_layer_fixture_8h_source.xhtml#l00051">SoftmaxLayerFixture< TensorType, Function, Accessor >::setup()</a>, <a class="el" href="_deconvolution_layer_fixture_8h_source.xhtml#l00052">DeconvolutionLayerFixtureBase< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_depthwise_convolution_layer_fixture_8h_source.xhtml#l00053">DepthwiseConvolutionLayerValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_winograd_layer_fixture_8h_source.xhtml#l00054">WinogradLayerValidationFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="validation_2fixtures_2_fully_connected_layer_fixture_8h_source.xhtml#l00056">FullyConnectedLayerValidationGenericFixture< TensorType, AccessorType, FunctionType, T, run_interleave >::setup()</a>, <a class="el" href="validation_2fixtures_2_convolution_layer_fixture_8h_source.xhtml#l00057">ConvolutionValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_direct_convolution_layer_fixture_8h_source.xhtml#l00069">DirectConvolutionValidationGenericFixture< TensorType, AccessorType, FunctionType, T >::setup()</a>, <a class="el" href="_scharr_fixture_8h_source.xhtml#l00070">ScharrValidationFixture< TensorType, AccessorType, FunctionType, T, U >::setup()</a>, <a class="el" href="_sobel_fixture_8h_source.xhtml#l00105">SobelValidationFixture< TensorType, AccessorType, FunctionType, T, U >::setup()</a>, <a class="el" href="validation_2fixtures_2_g_e_m_m_lowp_fixture_8h_source.xhtml#l00125">GEMMLowpQuantizeDownInt32ToUint8ScaleValidationFixture< TensorType, AccessorType, FunctionType >::setup()</a>, <a class="el" href="_accumulate_fixture_8h_source.xhtml#l00140">AccumulateWeightedValidationFixture< TensorType, AccessorType, FunctionType, T1, T2 >::setup()</a>, <a class="el" href="_accumulate_fixture_8h_source.xhtml#l00168">AccumulateSquaredValidationFixture< TensorType, AccessorType, FunctionType, T1, T2 >::setup()</a>, <a class="el" href="validation_2fixtures_2_g_e_m_m_lowp_fixture_8h_source.xhtml#l00216">GEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointValidationFixture< TensorType, AccessorType, FunctionType >::setup()</a>, and <a class="el" href="_memory_manager_8cpp_source.xhtml#l00049">arm_compute::test::validation::TEST_CASE()</a>.</p>
</div>
</div>
@@ -7703,9 +10007,9 @@
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="navelem"><a class="el" href="namespacearm__compute.xhtml">arm_compute</a></li><li class="navelem"><a class="el" href="namespacearm__compute_1_1test.xhtml">test</a></li>
- <li class="footer">Generated on Thu Oct 12 2017 14:26:38 for Compute Library by
+ <li class="footer">Generated on Thu Dec 14 2017 23:48:37 for Compute Library by
<a href="http://www.doxygen.org/index.html">
- <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
+ <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
</ul>
</div>
</body>