arm_compute v17.12
diff --git a/examples/graph_alexnet.cpp b/examples/graph_alexnet.cpp
index bb5905e..0d5531f 100644
--- a/examples/graph_alexnet.cpp
+++ b/examples/graph_alexnet.cpp
@@ -21,16 +21,8 @@
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
-#ifndef ARM_COMPUTE_CL /* Needed by Utils.cpp to handle OpenCL exceptions properly */
-#error "This example needs to be built with -DARM_COMPUTE_CL"
-#endif /* ARM_COMPUTE_CL */
-
-#include "arm_compute/core/Logger.h"
 #include "arm_compute/graph/Graph.h"
 #include "arm_compute/graph/Nodes.h"
-#include "arm_compute/runtime/CL/CLScheduler.h"
-#include "arm_compute/runtime/CPP/CPPScheduler.h"
-#include "arm_compute/runtime/Scheduler.h"
 #include "support/ToolchainSupport.h"
 #include "utils/GraphUtils.h"
 #include "utils/Utils.h"
@@ -42,76 +34,10 @@
 using namespace arm_compute::graph;
 using namespace arm_compute::graph_utils;
 
-/** Generates appropriate accessor according to the specified path
- *
- * @note If path is empty will generate a DummyAccessor else will generate a NumPyBinLoader
- *
- * @param[in] path      Path to the data files
- * @param[in] data_file Relative path to the data files from path
- *
- * @return An appropriate tensor accessor
- */
-std::unique_ptr<ITensorAccessor> get_accessor(const std::string &path, const std::string &data_file)
-{
-    if(path.empty())
-    {
-        return arm_compute::support::cpp14::make_unique<DummyAccessor>();
-    }
-    else
-    {
-        return arm_compute::support::cpp14::make_unique<NumPyBinLoader>(path + data_file);
-    }
-}
-
-/** Generates appropriate input accessor according to the specified ppm_path
- *
- * @note If ppm_path is empty will generate a DummyAccessor else will generate a PPMAccessor
- *
- * @param[in] ppm_path Path to PPM file
- * @param[in] mean_r   Red mean value to be subtracted from red channel
- * @param[in] mean_g   Green mean value to be subtracted from green channel
- * @param[in] mean_b   Blue mean value to be subtracted from blue channel
- *
- * @return An appropriate tensor accessor
- */
-std::unique_ptr<ITensorAccessor> get_input_accessor(const std::string &ppm_path, float mean_r, float mean_g, float mean_b)
-{
-    if(ppm_path.empty())
-    {
-        return arm_compute::support::cpp14::make_unique<DummyAccessor>();
-    }
-    else
-    {
-        return arm_compute::support::cpp14::make_unique<PPMAccessor>(ppm_path, true, mean_r, mean_g, mean_b);
-    }
-}
-
-/** Generates appropriate output accessor according to the specified labels_path
- *
- * @note If labels_path is empty will generate a DummyAccessor else will generate a TopNPredictionsAccessor
- *
- * @param[in]  labels_path   Path to labels text file
- * @param[in]  top_n         (Optional) Number of output classes to print
- * @param[out] output_stream (Optional) Output stream
- *
- * @return An appropriate tensor accessor
- */
-std::unique_ptr<ITensorAccessor> get_output_accessor(const std::string &labels_path, size_t top_n = 5, std::ostream &output_stream = std::cout)
-{
-    if(labels_path.empty())
-    {
-        return arm_compute::support::cpp14::make_unique<DummyAccessor>();
-    }
-    else
-    {
-        return arm_compute::support::cpp14::make_unique<TopNPredictionsAccessor>(labels_path, top_n, output_stream);
-    }
-}
-
 /** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] image, [optional] labels )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels )
  */
 void main_graph_alexnet(int argc, const char **argv)
 {
@@ -123,62 +49,62 @@
     constexpr float mean_g = 116.67f; /* Mean value to subtract from green channel */
     constexpr float mean_b = 104.01f; /* Mean value to subtract from blue channel */
 
+    // Set target. 0 (NEON), 1 (OpenCL). By default it is NEON
+    TargetHint            target_hint      = set_target_hint(argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0);
+    ConvolutionMethodHint convolution_hint = target_hint == TargetHint::NEON ? ConvolutionMethodHint::GEMM : ConvolutionMethodHint::DIRECT;
+
     // Parse arguments
     if(argc < 2)
     {
         // Print help
-        std::cout << "Usage: " << argv[0] << " [path_to_data] [image] [labels]\n\n";
+        std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n";
         std::cout << "No data folder provided: using random values\n\n";
     }
     else if(argc == 2)
     {
-        data_path = argv[1];
-        std::cout << "Usage: " << argv[0] << " " << argv[1] << " [image] [labels]\n\n";
-        std::cout << "No image provided: using random values\n\n";
+        std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n";
+        std::cout << "No data folder provided: using random values\n\n";
     }
     else if(argc == 3)
     {
-        data_path = argv[1];
-        image     = argv[2];
-        std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [labels]\n\n";
+        data_path = argv[2];
+        std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n";
+        std::cout << "No image provided: using random values\n\n";
+    }
+    else if(argc == 4)
+    {
+        data_path = argv[2];
+        image     = argv[3];
+        std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n";
         std::cout << "No text file with labels provided: skipping output accessor\n\n";
     }
     else
     {
-        data_path = argv[1];
-        image     = argv[2];
-        label     = argv[3];
-    }
-
-    // Check if OpenCL is available and initialize the scheduler
-    TargetHint hint = TargetHint::NEON;
-    if(arm_compute::opencl_is_available())
-    {
-        arm_compute::CLScheduler::get().default_init();
-        hint = TargetHint::OPENCL;
+        data_path = argv[2];
+        image     = argv[3];
+        label     = argv[4];
     }
 
     Graph graph;
-    arm_compute::Logger::get().set_logger(std::cout, arm_compute::LoggerVerbosity::INFO);
 
-    graph << hint
+    graph << target_hint
           << Tensor(TensorInfo(TensorShape(227U, 227U, 3U, 1U), 1, DataType::F32),
                     get_input_accessor(image, mean_r, mean_g, mean_b))
           // Layer 1
           << ConvolutionLayer(
               11U, 11U, 96U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
               PadStrideInfo(4, 4, 0, 0))
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
           << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)))
           // Layer 2
-          << ConvolutionMethodHint::DIRECT
+          << convolution_hint
           << ConvolutionLayer(
               5U, 5U, 256U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
               PadStrideInfo(1, 1, 2, 2), 2)
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
@@ -186,42 +112,42 @@
           // Layer 3
           << ConvolutionLayer(
               3U, 3U, 384U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
               PadStrideInfo(1, 1, 1, 1))
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           // Layer 4
           << ConvolutionLayer(
               3U, 3U, 384U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
               PadStrideInfo(1, 1, 1, 1), 2)
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           // Layer 5
           << ConvolutionLayer(
               3U, 3U, 256U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
               PadStrideInfo(1, 1, 1, 1), 2)
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)))
           // Layer 6
           << FullyConnectedLayer(
               4096U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           // Layer 7
           << FullyConnectedLayer(
               4096U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
           << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
           // Layer 8
           << FullyConnectedLayer(
               1000U,
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy"),
-              get_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy"),
+              get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
           // Softmax
           << SoftmaxLayer()
           << Tensor(get_output_accessor(label, 5));
@@ -233,7 +159,7 @@
 /** Main program for AlexNet
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Path to the weights folder, [optional] image, [optional] labels )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels )
  */
 int main(int argc, const char **argv)
 {