arm_compute v17.12
diff --git a/src/graph/operations/NESimpleOperations.cpp b/src/graph/operations/NESimpleOperations.cpp
new file mode 100644
index 0000000..bb99e8d
--- /dev/null
+++ b/src/graph/operations/NESimpleOperations.cpp
@@ -0,0 +1,463 @@
+/*
+ * Copyright (c) 2017 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/core/Error.h"
+#include "arm_compute/core/ITensor.h"
+#include "arm_compute/graph/IOperation.h"
+#include "arm_compute/graph/NodeContext.h"
+#include "arm_compute/graph/OperationRegistrar.h"
+#include "arm_compute/graph/Types.h"
+#include "arm_compute/runtime/NEON/NEFunctions.h"
+#include "support/ToolchainSupport.h"
+#include "utils/GraphTypePrinter.h"
+#include "utils/TypePrinter.h"
+
+#include <memory>
+
+using namespace arm_compute::graph;
+
+/* Activation Layer */
+REGISTER_SIMPLE_OPERATION(NEActivationLayerOperation, NEON, OperationType::ActivationLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in       = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *out      = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto act_info = ctx.parameter<ActivationLayerInfo>("ActivationLayerInfo");
+
+    // Create and configure function
+    auto activation = arm_compute::support::cpp14::make_unique<arm_compute::NEActivationLayer>();
+    activation->configure(in, out, act_info);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEActivationLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Activation function: " << act_info.activation()
+                               << " a: " << act_info.a()
+                               << " b: " << act_info.b()
+                               << std::endl);
+
+    return std::move(activation);
+}
+
+/* Batch Normalization Layer */
+REGISTER_SIMPLE_OPERATION(NEBatchNormalizationLayerOperation, NEON, OperationType::BatchNormalizationLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 5);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(1)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(2)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(3)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(4)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in      = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *mean    = dynamic_cast<arm_compute::ITensor *>(ctx.input(1));
+    auto      *var     = dynamic_cast<arm_compute::ITensor *>(ctx.input(2));
+    auto      *beta    = dynamic_cast<arm_compute::ITensor *>(ctx.input(3));
+    auto      *gamma   = dynamic_cast<arm_compute::ITensor *>(ctx.input(4));
+    auto      *out     = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto epsilon = ctx.parameter<float>("epsilon");
+
+    // Create and configure function
+    auto batch_norm = arm_compute::support::cpp14::make_unique<arm_compute::NEBatchNormalizationLayer>();
+    batch_norm->configure(in, out, mean, var, beta, gamma, epsilon);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEBatchNormalizationLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Mean shape: " << mean->info()->tensor_shape()
+                               << " Var shape: " << var->info()->tensor_shape()
+                               << " Beta shape: " << beta->info()->tensor_shape()
+                               << " Gamma shape: " << gamma->info()->tensor_shape()
+                               << " Epsilon: " << epsilon
+                               << std::endl);
+
+    return std::move(batch_norm);
+}
+
+/* DepthConvertLayer Layer */
+REGISTER_SIMPLE_OPERATION(NEDepthConvertLayerOperation, NEON, OperationType::DepthConvertLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in          = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *out         = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto conv_policy = ctx.parameter<ConvertPolicy>("ConvertPolicy");
+    const auto shift       = ctx.parameter<uint32_t>("shift");
+
+    // Create and configure function
+    auto depthconvert = arm_compute::support::cpp14::make_unique<arm_compute::NEDepthConvertLayer>();
+    depthconvert->configure(in, out, conv_policy, shift);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEDepthConvertLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " shift: " << shift
+                               << std::endl);
+
+    return std::move(depthconvert);
+}
+
+/* DepthwiseConvolutionLayer Layer */
+REGISTER_SIMPLE_OPERATION(NEDepthwiseConvolutionOperation, NEON, OperationType::DepthwiseConvolutionLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 2 && ctx.num_inputs() != 3);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in        = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *weights   = dynamic_cast<arm_compute::ITensor *>(ctx.input(1));
+    auto      *biases    = ctx.num_inputs() == 3 ? dynamic_cast<arm_compute::ITensor *>(ctx.input(2)) : nullptr;
+    auto      *out       = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto conv_info = ctx.parameter<PadStrideInfo>("ConvolutionInfo");
+    const auto opt3x3    = ctx.parameter<bool>("Optimized3x3");
+
+    // Create and configure function
+    std::unique_ptr<arm_compute::IFunction> func;
+    bool                                    run_3x3_opt = opt3x3 && weights->info()->dimension(0) == 3;
+    if(run_3x3_opt)
+    {
+        auto depwthwise_conv = arm_compute::support::cpp14::make_unique<arm_compute::NEDepthwiseConvolutionLayer>();
+        depwthwise_conv->configure(in, weights, biases, out, conv_info);
+        func = std::move(depwthwise_conv);
+    }
+    else
+    {
+        auto depwthwise_conv = arm_compute::support::cpp14::make_unique<arm_compute::NEDepthwiseConvolutionLayer3x3>();
+        depwthwise_conv->configure(in, weights, biases, out, conv_info);
+        func = std::move(depwthwise_conv);
+    }
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEDepthwiseConvolutionLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Weights shape: " << weights->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape());
+    if(biases == nullptr)
+    {
+        ARM_COMPUTE_LOG_GRAPH_INFO(" Biases shape: No biases provided" << std::endl);
+    }
+    else
+    {
+        ARM_COMPUTE_LOG_GRAPH_INFO(" Biases shape: " << biases->info()->tensor_shape() << std::endl);
+    }
+
+    return func;
+}
+
+/* DeQuantizationLayer Layer */
+REGISTER_SIMPLE_OPERATION(NEDequantizationLayerOperation, NEON, OperationType::DequantizationLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 2);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(1)) == nullptr);
+
+    // Extract IO and info
+    auto *in      = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out     = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    auto *min_max = dynamic_cast<arm_compute::ITensor *>(ctx.output(1));
+
+    // Create and configure function
+    auto dequantization = arm_compute::support::cpp14::make_unique<arm_compute::NEDequantizationLayer>();
+    dequantization->configure(in, out, min_max);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEDequantizationLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Min max shape: " << min_max->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(dequantization);
+}
+
+/* Flatten Layer */
+REGISTER_SIMPLE_OPERATION(NEFlattenLayerOperation, NEON, OperationType::FlattenLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in  = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto flatten = arm_compute::support::cpp14::make_unique<arm_compute::NEFlattenLayer>();
+    flatten->configure(in, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEFlattenLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(flatten);
+}
+
+/* Floor Layer */
+REGISTER_SIMPLE_OPERATION(NEFloorLayerOperation, NEON, OperationType::FloorLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in  = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto floor = arm_compute::support::cpp14::make_unique<arm_compute::NEFloor>();
+    floor->configure(in, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEFloorLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(floor);
+}
+
+/* Fully Connected Layer */
+REGISTER_SIMPLE_OPERATION(NEFullyConnectedLayer, NEON, OperationType::FullyConnectedLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 3);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(1)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(2)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in      = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *weights = dynamic_cast<arm_compute::ITensor *>(ctx.input(1));
+    auto *biases  = dynamic_cast<arm_compute::ITensor *>(ctx.input(2));
+    auto *out     = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto fc = arm_compute::support::cpp14::make_unique<arm_compute::NEFullyConnectedLayer>();
+    fc->configure(in, weights, biases, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEFullyConnectedLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Weights shape: " << weights->info()->tensor_shape()
+                               << " Biases Shape: " << biases->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(fc);
+}
+
+/* L2 Normalize Layer */
+REGISTER_SIMPLE_OPERATION(NEL2NormalizeLayerOperation, NEON, OperationType::L2NormalizeLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in      = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *out     = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto axis    = ctx.parameter<unsigned int>("axis");
+    const auto epsilon = ctx.parameter<float>("epsilon");
+
+    // Create and configure function
+    auto l2_norm = arm_compute::support::cpp14::make_unique<arm_compute::NEL2NormalizeLayer>();
+    l2_norm->configure(in, out, axis, epsilon);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEL2NormalizeLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Axis: " << axis
+                               << " Epsilon: " << epsilon
+                               << std::endl);
+
+    return std::move(l2_norm);
+}
+
+/* Normalization Layer */
+REGISTER_SIMPLE_OPERATION(NENormalizationLayerOperation, NEON, OperationType::NormalizationLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in        = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *out       = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto norm_info = ctx.parameter<NormalizationLayerInfo>("NormalizationLayerInfo");
+
+    // Create and configure function
+    auto norm = arm_compute::support::cpp14::make_unique<arm_compute::NENormalizationLayer>();
+    norm->configure(in, out, norm_info);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NENormalizationLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Normalization info: " << norm_info
+                               << std::endl);
+
+    return std::move(norm);
+}
+
+/* Pooling Layer */
+REGISTER_SIMPLE_OPERATION(NEPoolingLayerOperation, NEON, OperationType::PoolingLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto      *in        = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto      *out       = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+    const auto pool_info = ctx.parameter<PoolingLayerInfo>("PoolingLayerInfo");
+
+    // Create and configure function
+    auto pool = arm_compute::support::cpp14::make_unique<arm_compute::NEPoolingLayer>();
+    pool->configure(in, out, pool_info);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEPoolingLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << " Pooling info: " << pool_info
+                               << std::endl);
+
+    return std::move(pool);
+}
+
+/* Quantization Layer */
+REGISTER_SIMPLE_OPERATION(NEQuantizationLayerOperation, NEON, OperationType::QuantizationLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in  = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto quantization = arm_compute::support::cpp14::make_unique<arm_compute::NEQuantizationLayer>();
+    quantization->configure(in, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEQuantizationLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(quantization);
+}
+
+/* Reshape Layer */
+REGISTER_SIMPLE_OPERATION(NEReshapeLayerOperation, NEON, OperationType::ReshapeLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in  = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto reshape = arm_compute::support::cpp14::make_unique<arm_compute::NEReshapeLayer>();
+    reshape->configure(in, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NEReshapeLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(reshape);
+}
+
+/* Softmax Layer */
+REGISTER_SIMPLE_OPERATION(NESoftmaxLayerOperation, NEON, OperationType::SoftmaxLayer)
+{
+    ARM_COMPUTE_ERROR_ON(ctx.num_inputs() != 1);
+    ARM_COMPUTE_ERROR_ON(ctx.num_outputs() != 1);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.input(0)) == nullptr);
+    ARM_COMPUTE_ERROR_ON(dynamic_cast<arm_compute::ITensor *>(ctx.output(0)) == nullptr);
+
+    // Extract IO and info
+    auto *in  = dynamic_cast<arm_compute::ITensor *>(ctx.input(0));
+    auto *out = dynamic_cast<arm_compute::ITensor *>(ctx.output(0));
+
+    // Create and configure function
+    auto smx = arm_compute::support::cpp14::make_unique<arm_compute::NESoftmaxLayer>();
+    smx->configure(in, out);
+
+    // Log info
+    ARM_COMPUTE_LOG_GRAPH_INFO("Instantiating NESoftmaxLayer"
+                               << " Data Type: " << in->info()->data_type()
+                               << " Input shape: " << in->info()->tensor_shape()
+                               << " Output shape: " << out->info()->tensor_shape()
+                               << std::endl);
+
+    return std::move(smx);
+}
\ No newline at end of file