arm_compute v17.12
diff --git a/src/runtime/CL/functions/CLSoftmaxLayer.cpp b/src/runtime/CL/functions/CLSoftmaxLayer.cpp
index 7505a2c..7c96111 100644
--- a/src/runtime/CL/functions/CLSoftmaxLayer.cpp
+++ b/src/runtime/CL/functions/CLSoftmaxLayer.cpp
@@ -23,40 +23,59 @@
  */
 #include "arm_compute/runtime/CL/functions/CLSoftmaxLayer.h"
 
+#include "arm_compute/core/CL/CLHelpers.h"
+#include "arm_compute/core/CL/ICLKernel.h"
 #include "arm_compute/core/CL/kernels/CLSoftmaxLayerKernel.h"
 #include "arm_compute/core/Helpers.h"
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/Utils.h"
 #include "arm_compute/runtime/CL/CLMemoryGroup.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
 
 using namespace arm_compute;
 
 CLSoftmaxLayer::CLSoftmaxLayer(std::shared_ptr<IMemoryManager> memory_manager)
-    : _memory_group(std::move(memory_manager)), _max_kernel(), _shift_exp_sum_kernel(), _norm_kernel(), _max(), _sum(), _tmp()
+    : _memory_group(std::move(memory_manager)), _max_kernel(), _shift_exp_sum_kernel(), _max_shift_exp_sum_kernel(), _norm_kernel(), _max(), _sum(), _tmp(), _run_legacy_path(false)
 {
 }
 
-void CLSoftmaxLayer::configure(const ICLTensor *input, ICLTensor *output)
+void CLSoftmaxLayer::configure(const ICLTensor *input, ICLTensor *output, float beta)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
+    // Perform validation step
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input, output);
+    ARM_COMPUTE_ERROR_THROW_ON(CLSoftmaxLayer::validate(input->info(), output->info()));
 
     // Create intermediate tensors shapes
-    _tmp.allocator()->init(TensorInfo(input->info()->tensor_shape(), input->info()->num_channels(), input->info()->data_type(), input->info()->fixed_point_position()));
+    const TensorInfo input_info    = input->info()->clone()->reset_padding().set_is_resizable(true);
+    DataType         tmp_data_type = is_data_type_quantized_asymmetric(input->info()->data_type()) ? DataType::S32 : input->info()->data_type();
+    TensorInfo       tensor_info_tmp(input_info.clone()->set_data_type(tmp_data_type));
+    _tmp.allocator()->init(tensor_info_tmp);
 
-    TensorShape shape = input->info()->tensor_shape();
-    shape.set(0, 1);
-    TensorInfo tensor_info_max_sum(shape, input->info()->num_channels(), input->info()->data_type(), input->info()->fixed_point_position());
-    _max.allocator()->init(tensor_info_max_sum);
-    _sum.allocator()->init(tensor_info_max_sum);
+    TensorShape max_sum_shape = input->info()->tensor_shape();
+    max_sum_shape.set(0, 1);
+    _max.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape));
+    _sum.allocator()->init(input_info.clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type));
+
+    // Set GPU target to kernels
+    _max_shift_exp_sum_kernel.set_target(CLScheduler::get().target());
 
     // Manage intermediate buffers
     _memory_group.manage(&_tmp);
     _memory_group.manage(&_max);
     _memory_group.manage(&_sum);
 
-    // Configure Kernels
-    _max_kernel.configure(input, &_max);
-    _shift_exp_sum_kernel.configure(input, &_max, &_tmp, &_sum);
-    _norm_kernel.configure(&_tmp, &_sum, output);
+    // Configure kernels
+    _run_legacy_path = is_data_type_quantized_asymmetric(input->info()->data_type());
+    if(_run_legacy_path)
+    {
+        _max_kernel.configure(input, &_max);
+        _shift_exp_sum_kernel.configure(input, &_max, &_tmp, &_sum, beta);
+    }
+    else
+    {
+        _max_shift_exp_sum_kernel.configure(input, &_max, &_tmp, &_sum, beta);
+    }
+    _norm_kernel.configure(&_tmp, &_sum, output, beta);
 
     // Allocate intermediate buffers
     _tmp.allocator()->allocate();
@@ -64,12 +83,48 @@
     _sum.allocator()->allocate();
 }
 
+Status CLSoftmaxLayer::validate(const ITensorInfo *input, const ITensorInfo *output)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, output);
+
+    // Create intermediate tensor info
+    DataType   tmp_data_type = is_data_type_quantized_asymmetric(input->data_type()) ? DataType::S32 : input->data_type();
+    TensorInfo tensor_info_tmp(input->clone()->set_data_type(tmp_data_type));
+
+    TensorShape max_sum_shape = input->tensor_shape();
+    max_sum_shape.set(0, 1);
+    TensorInfo tensor_info_max(input->clone()->set_tensor_shape(max_sum_shape));
+    TensorInfo tensor_info_sum(input->clone()->set_tensor_shape(max_sum_shape).set_data_type(tmp_data_type).set_quantization_info(QuantizationInfo()));
+
+    bool run_legacy_path = is_data_type_quantized_asymmetric(input->data_type());
+    if(run_legacy_path)
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxKernel::validate(input, &tensor_info_max));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum));
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DMaxShiftExpSumKernel::validate(input, &tensor_info_max, &tensor_info_tmp, &tensor_info_sum));
+    }
+    ARM_COMPUTE_RETURN_ON_ERROR(CLLogits1DNormKernel::validate(&tensor_info_tmp, &tensor_info_sum, output));
+
+    return Status{};
+}
+
 void CLSoftmaxLayer::run()
 {
     _memory_group.acquire();
 
-    CLScheduler::get().enqueue(_max_kernel, false);
-    CLScheduler::get().enqueue(_shift_exp_sum_kernel, false);
+    // Force to use the new fused kernel
+    if(_run_legacy_path)
+    {
+        CLScheduler::get().enqueue(_max_kernel, false);
+        CLScheduler::get().enqueue(_shift_exp_sum_kernel, false);
+    }
+    else
+    {
+        CLScheduler::get().enqueue(_max_shift_exp_sum_kernel, false);
+    }
     CLScheduler::get().enqueue(_norm_kernel);
 
     _memory_group.release();