arm_compute v17.09

Change-Id: I4bf8f4e6e5f84ce0d5b6f5ba570d276879f42a81
diff --git a/documentation/neon__copy__objects_8cpp.xhtml b/documentation/neon__copy__objects_8cpp.xhtml
index 485a2c7..19da5fb 100644
--- a/documentation/neon__copy__objects_8cpp.xhtml
+++ b/documentation/neon__copy__objects_8cpp.xhtml
@@ -4,7 +4,7 @@
 <head>
 <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
 <meta http-equiv="X-UA-Compatible" content="IE=9"/>
-<meta name="generator" content="Doxygen 1.8.11"/>
+<meta name="generator" content="Doxygen 1.8.6"/>
 <meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
 <title>Compute Library: examples/neon_copy_objects.cpp File Reference</title>
 <link href="tabs.css" rel="stylesheet" type="text/css"/>
@@ -12,24 +12,22 @@
 <script type="text/javascript" src="dynsections.js"></script>
 <link href="navtree.css" rel="stylesheet" type="text/css"/>
 <script type="text/javascript" src="resize.js"></script>
-<script type="text/javascript" src="navtreedata.js"></script>
 <script type="text/javascript" src="navtree.js"></script>
 <script type="text/javascript">
   $(document).ready(initResizable);
   $(window).load(resizeHeight);
 </script>
 <link href="search/search.css" rel="stylesheet" type="text/css"/>
-<script type="text/javascript" src="search/searchdata.js"></script>
 <script type="text/javascript" src="search/search.js"></script>
 <script type="text/javascript">
-  $(document).ready(function() { init_search(); });
+  $(document).ready(function() { searchBox.OnSelectItem(0); });
 </script>
 <script type="text/x-mathjax-config">
   MathJax.Hub.Config({
     extensions: ["tex2jax.js"],
     jax: ["input/TeX","output/HTML-CSS"],
 });
-</script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
+</script><script src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script>
 <link href="doxygen.css" rel="stylesheet" type="text/css" />
 </head>
 <body>
@@ -40,7 +38,7 @@
  <tr style="height: 56px;">
   <td style="padding-left: 0.5em;">
    <div id="projectname">Compute Library
-   &#160;<span id="projectnumber">v17.06</span>
+   &#160;<span id="projectnumber">17.09</span>
    </div>
   </td>
  </tr>
@@ -48,7 +46,7 @@
 </table>
 </div>
 <!-- end header part -->
-<!-- Generated by Doxygen 1.8.11 -->
+<!-- Generated by Doxygen 1.8.6 -->
 <script type="text/javascript">
 var searchBox = new SearchBox("searchBox", "search",false,'Search');
 </script>
@@ -103,7 +101,7 @@
      onmouseover="return searchBox.OnSearchSelectShow()"
      onmouseout="return searchBox.OnSearchSelectHide()"
      onkeydown="return searchBox.OnSearchSelectKey(event)">
-</div>
+<a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(0)"><span class="SelectionMark">&#160;</span>All</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(1)"><span class="SelectionMark">&#160;</span>Data Structures</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(2)"><span class="SelectionMark">&#160;</span>Namespaces</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(3)"><span class="SelectionMark">&#160;</span>Files</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(4)"><span class="SelectionMark">&#160;</span>Functions</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(5)"><span class="SelectionMark">&#160;</span>Variables</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(6)"><span class="SelectionMark">&#160;</span>Typedefs</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(7)"><span class="SelectionMark">&#160;</span>Enumerations</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(8)"><span class="SelectionMark">&#160;</span>Enumerator</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(9)"><span class="SelectionMark">&#160;</span>Friends</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(10)"><span class="SelectionMark">&#160;</span>Macros</a><a class="SelectItem" href="javascript:void(0)" onclick="searchBox.OnSelectItem(11)"><span class="SelectionMark">&#160;</span>Pages</a></div>
 
 <!-- iframe showing the search results (closed by default) -->
 <div id="MSearchResultsWindow">
@@ -119,11 +117,11 @@
 <div class="title">neon_copy_objects.cpp File Reference</div>  </div>
 </div><!--header-->
 <div class="contents">
-<div class="textblock"><code>#include &quot;<a class="el" href="_n_e_functions_8h_source.xhtml">arm_compute/runtime/NEON/NEFunctions.h</a>&quot;</code><br />
-<code>#include &quot;<a class="el" href="arm__compute_2core_2_types_8h_source.xhtml">arm_compute/core/Types.h</a>&quot;</code><br />
-<code>#include &quot;<a class="el" href="utils_2_utils_8h_source.xhtml">utils/Utils.h</a>&quot;</code><br />
-<code>#include &lt;cstring&gt;</code><br />
-<code>#include &lt;iostream&gt;</code><br />
+<div class="textblock"><code>#include &quot;<a class="el" href="_n_e_functions_8h_source.xhtml">arm_compute/runtime/NEON/NEFunctions.h</a>&quot;</code><br/>
+<code>#include &quot;<a class="el" href="arm__compute_2core_2_types_8h_source.xhtml">arm_compute/core/Types.h</a>&quot;</code><br/>
+<code>#include &quot;<a class="el" href="utils_2_utils_8h_source.xhtml">utils/Utils.h</a>&quot;</code><br/>
+<code>#include &lt;cstring&gt;</code><br/>
+<code>#include &lt;iostream&gt;</code><br/>
 </div>
 <p><a href="neon__copy__objects_8cpp_source.xhtml">Go to the source code of this file.</a></p>
 <table class="memberdecls">
@@ -132,7 +130,7 @@
 <tr class="memitem:a548cd646528b7a0644cb08e483e7ee2b"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="neon__copy__objects_8cpp.xhtml#a548cd646528b7a0644cb08e483e7ee2b">main_neon_copy_objects</a> (int argc, const char **argv)</td></tr>
 <tr class="separator:a548cd646528b7a0644cb08e483e7ee2b"><td class="memSeparator" colspan="2">&#160;</td></tr>
 <tr class="memitem:a217dbf8b442f20279ea00b898af96f52"><td class="memItemLeft" align="right" valign="top">int&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="neon__copy__objects_8cpp.xhtml#a217dbf8b442f20279ea00b898af96f52">main</a> (int argc, const char **argv)</td></tr>
-<tr class="memdesc:a217dbf8b442f20279ea00b898af96f52"><td class="mdescLeft">&#160;</td><td class="mdescRight">Main program for the copy objects test.  <a href="#a217dbf8b442f20279ea00b898af96f52">More...</a><br /></td></tr>
+<tr class="memdesc:a217dbf8b442f20279ea00b898af96f52"><td class="mdescLeft">&#160;</td><td class="mdescRight">Main program for the copy objects test.  <a href="#a217dbf8b442f20279ea00b898af96f52">More...</a><br/></td></tr>
 <tr class="separator:a217dbf8b442f20279ea00b898af96f52"><td class="memSeparator" colspan="2">&#160;</td></tr>
 </table>
 <h2 class="groupheader">Function Documentation</h2>
@@ -172,7 +170,10 @@
 <p>Definition at line <a class="el" href="neon__copy__objects_8cpp_source.xhtml#l00149">149</a> of file <a class="el" href="neon__copy__objects_8cpp_source.xhtml">neon_copy_objects.cpp</a>.</p>
 
 <p>References <a class="el" href="neon__copy__objects_8cpp_source.xhtml#l00035">main_neon_copy_objects()</a>, and <a class="el" href="utils_2_utils_8cpp_source.xhtml#l00069">arm_compute::utils::run_example()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;{</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;    <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">utils::run_example</a>(argc, argv, <a class="code" href="neon__copy__objects_8cpp.xhtml#a548cd646528b7a0644cb08e483e7ee2b">main_neon_copy_objects</a>);</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;}</div><div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a4c9395db2c8b8d0c336656a7b58fca3e"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a></div><div class="ttdeci">int run_example(int argc, const char **argv, example &amp;func)</div><div class="ttdoc">Run an example and handle the potential exceptions it throws. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8cpp_source.xhtml#l00069">Utils.cpp:69</a></div></div>
+<div class="fragment"><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;{</div>
+<div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;    <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">utils::run_example</a>(argc, argv, <a class="code" href="neon__copy__objects_8cpp.xhtml#a548cd646528b7a0644cb08e483e7ee2b">main_neon_copy_objects</a>);</div>
+<div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;}</div>
+<div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a4c9395db2c8b8d0c336656a7b58fca3e"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a></div><div class="ttdeci">int run_example(int argc, const char **argv, example &amp;func)</div><div class="ttdoc">Run an example and handle the potential exceptions it throws. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8cpp_source.xhtml#l00069">Utils.cpp:69</a></div></div>
 <div class="ttc" id="neon__copy__objects_8cpp_xhtml_a548cd646528b7a0644cb08e483e7ee2b"><div class="ttname"><a href="neon__copy__objects_8cpp.xhtml#a548cd646528b7a0644cb08e483e7ee2b">main_neon_copy_objects</a></div><div class="ttdeci">void main_neon_copy_objects(int argc, const char **argv)</div><div class="ttdef"><b>Definition:</b> <a href="neon__copy__objects_8cpp_source.xhtml#l00035">neon_copy_objects.cpp:35</a></div></div>
 </div><!-- fragment -->
 </div>
@@ -205,30 +206,137 @@
 
 <p>Definition at line <a class="el" href="neon__copy__objects_8cpp_source.xhtml#l00035">35</a> of file <a class="el" href="neon__copy__objects_8cpp_source.xhtml">neon_copy_objects.cpp</a>.</p>
 
-<p>References <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">TensorAllocator::allocate()</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">Tensor::allocator()</a>, <a class="el" href="_error_8h_source.xhtml#l00049">ARM_COMPUTE_UNUSED</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a9daf8026e68559806afe7d0aa12693d6">NESoftmaxLayer::configure()</a>, <a class="el" href="_window_8h_source.xhtml#l00045">Window::DimY</a>, <a class="el" href="_window_8h_source.xhtml#l00090">Window::Dimension::end()</a>, <a class="el" href="_helpers_8inl_source.xhtml#l00176">arm_compute::execute_window_loop()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">Tensor::info()</a>, <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">TensorAllocator::init()</a>, <a class="el" href="_helpers_8inl_source.xhtml#l00232">Iterator::ptr()</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NESoftmaxLayer::run()</a>, <a class="el" href="_window_8h_source.xhtml#l00085">Window::Dimension::start()</a>, <a class="el" href="_window_8h_source.xhtml#l00095">Window::Dimension::step()</a>, <a class="el" href="_window_8inl_source.xhtml#l00175">Window::use_tensor_dimensions()</a>, <a class="el" href="_window_8h_source.xhtml#l00128">Window::x()</a>, <a class="el" href="_window_8h_source.xhtml#l00137">Window::y()</a>, and <a class="el" href="_window_8h_source.xhtml#l00146">Window::z()</a>.</p>
+<p>References <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">TensorAllocator::allocate()</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">Tensor::allocator()</a>, <a class="el" href="_error_8h_source.xhtml#l00049">ARM_COMPUTE_UNUSED</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a9daf8026e68559806afe7d0aa12693d6">NESoftmaxLayer::configure()</a>, <a class="el" href="_window_8h_source.xhtml#l00045">Window::DimY</a>, <a class="el" href="_window_8h_source.xhtml#l00090">Window::Dimension::end()</a>, <a class="el" href="_helpers_8inl_source.xhtml#l00127">arm_compute::execute_window_loop()</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">Tensor::info()</a>, <a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">TensorAllocator::init()</a>, <a class="el" href="_helpers_8inl_source.xhtml#l00183">Iterator::ptr()</a>, <a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">NESoftmaxLayer::run()</a>, <a class="el" href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">arm_compute::test::validation::shape</a>, <a class="el" href="_window_8h_source.xhtml#l00085">Window::Dimension::start()</a>, <a class="el" href="_window_8h_source.xhtml#l00095">Window::Dimension::step()</a>, <a class="el" href="classarm__compute_1_1_i_tensor_info.xhtml#a7c66505457d00ece3aa4b34cab80757d">ITensorInfo::tensor_shape()</a>, <a class="el" href="_window_8inl_source.xhtml#l00204">Window::use_tensor_dimensions()</a>, <a class="el" href="_window_8h_source.xhtml#l00128">Window::x()</a>, <a class="el" href="_window_8h_source.xhtml#l00137">Window::y()</a>, and <a class="el" href="_window_8h_source.xhtml#l00146">Window::z()</a>.</p>
 
 <p>Referenced by <a class="el" href="neon__copy__objects_8cpp_source.xhtml#l00149">main()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;{</div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    <a class="code" href="_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argc);</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;    <a class="code" href="_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argv);</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> width  = 4;</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> height = 3;</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> batch  = 2;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;</div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;    <span class="keyword">auto</span> *src_data = <span class="keyword">new</span> <span class="keywordtype">float</span>[width * height * batch];</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;    <span class="keyword">auto</span> *dst_data = <span class="keyword">new</span> <span class="keywordtype">float</span>[width * height * batch];</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;    <span class="comment">// Fill src_data with dummy values:</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;    <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> b = 0; b &lt; batch; b++)</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;    {</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> h = 0; h &lt; height; h++)</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        {</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;            <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> w = 0; w &lt; width; w++)</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;            {</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;                src_data[b * (width * height) + h * width + w] = static_cast&lt;float&gt;(100 * b + 10 * h + w);</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;            }</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        }</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;    }</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;    <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>         input, output;</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;    <a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> softmax;</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;    <span class="comment">// Initialize the tensors dimensions and type:</span></div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;    <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> shape(width, height, batch);</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;    input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(shape, 1, DataType::F32));</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;    output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(shape, 1, DataType::F32));</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;    <span class="comment">// Configure softmax:</span></div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    softmax.<a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a9daf8026e68559806afe7d0aa12693d6">configure</a>(&amp;input, &amp;output);</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;    <span class="comment">// Allocate the input / output tensors:</span></div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    <span class="comment">// Fill the input tensor:</span></div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    <span class="comment">// Simplest way: create an iterator to iterate through each element of the input tensor:</span></div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> input_window;</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#a5bad22e0142f7e50f9a3005ddd982d8f">use_tensor_dimensions</a>(input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">info</a>());</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Dimensions of the input&#39;s iterator:\n&quot;</span>;</div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; X = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Y = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Z = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <span class="comment">// Create an iterator:</span></div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> input_it(&amp;input, input_window);</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <span class="comment">// Iterate through the elements of src_data and copy them one by one to the input tensor:</span></div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;    <span class="comment">// This is equivalent to:</span></div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <span class="comment">// for( unsigned int z = 0; z &lt; batch; ++z)</span></div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="comment">// {</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <span class="comment">//   for( unsigned int y = 0; y &lt; height; ++y)</span></div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;    <span class="comment">//   {</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;    <span class="comment">//     for( unsigned int x = 0; x &lt; width; ++x)</span></div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    <span class="comment">//     {</span></div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="comment">//       *reinterpret_cast&lt;float*&gt;( input.buffer() + input.info()-&gt;offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x];</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <span class="comment">//     }</span></div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    <span class="comment">//   }</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <span class="comment">// }</span></div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    <span class="comment">// Except it works for an arbitrary number of dimensions</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;    <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(input_window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    {</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Setting item [&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.y() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.z() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;        *<span class="keyword">reinterpret_cast&lt;</span><span class="keywordtype">float</span> *<span class="keyword">&gt;</span>(input_it.ptr()) = src_data[<span class="keywordtype">id</span>.z() * (width * height) + <span class="keywordtype">id</span>.y() * width + <span class="keywordtype">id</span>.x()];</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    },</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;    input_it);</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <span class="comment">// Run NEON softmax:</span></div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    softmax.<a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">run</a>();</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <span class="comment">// More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor:</span></div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> output_window;</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#a5bad22e0142f7e50f9a3005ddd982d8f">use_tensor_dimensions</a>(output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">info</a>(), <span class="comment">/* first_dimension =*/</span>Window::DimY); <span class="comment">// Iterate through the rows (not each element)</span></div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Dimensions of the output&#39;s iterator:\n&quot;</span>;</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; X = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Y = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Z = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    <span class="comment">// Create an iterator:</span></div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> output_it(&amp;output, output_window);</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;    <span class="comment">// Iterate through the rows of the output tensor and copy them to dst_data:</span></div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;    <span class="comment">// This is equivalent to:</span></div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <span class="comment">// for( unsigned int z = 0; z &lt; batch; ++z)</span></div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <span class="comment">// {</span></div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;    <span class="comment">//   for( unsigned int y = 0; y &lt; height; ++y)</span></div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    <span class="comment">//   {</span></div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;    <span class="comment">//     memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()-&gt;offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float));</span></div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;    <span class="comment">//   }</span></div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;    <span class="comment">// }</span></div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;    <span class="comment">// Except it works for an arbitrary number of dimensions</span></div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(output_window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    {</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Copying one row starting from [&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.y() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.z() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;        <span class="comment">// Copy one whole row:</span></div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;        memcpy(dst_data + <span class="keywordtype">id</span>.z() * (width * height) + <span class="keywordtype">id</span>.y() * width, output_it.ptr(), width * <span class="keyword">sizeof</span>(float));</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    },</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    output_it);</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    <span class="keyword">delete</span>[] src_data;</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    <span class="keyword">delete</span>[] dst_data;</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00038">TensorShape.h:38</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_window_xhtml_a5bad22e0142f7e50f9a3005ddd982d8f"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#a5bad22e0142f7e50f9a3005ddd982d8f">arm_compute::Window::use_tensor_dimensions</a></div><div class="ttdeci">void use_tensor_dimensions(const ITensorInfo *info, size_t first_dimension=Window::DimX)</div><div class="ttdoc">Use the tensor&amp;#39;s dimensions to fill the window dimensions. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8inl_source.xhtml#l00175">Window.inl:175</a></div></div>
+<div class="fragment"><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;{</div>
+<div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;    <a class="code" href="_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argc);</div>
+<div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;    <a class="code" href="_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argv);</div>
+<div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;</div>
+<div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> width  = 4;</div>
+<div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> height = 3;</div>
+<div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    constexpr <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> batch  = 2;</div>
+<div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;</div>
+<div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;    <span class="keyword">auto</span> *src_data = <span class="keyword">new</span> <span class="keywordtype">float</span>[width * height * batch];</div>
+<div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;    <span class="keyword">auto</span> *dst_data = <span class="keyword">new</span> <span class="keywordtype">float</span>[width * height * batch];</div>
+<div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;</div>
+<div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;    <span class="comment">// Fill src_data with dummy values:</span></div>
+<div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;    <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> b = 0; b &lt; batch; b++)</div>
+<div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;    {</div>
+<div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> h = 0; h &lt; height; h++)</div>
+<div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        {</div>
+<div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;            <span class="keywordflow">for</span>(<span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> w = 0; w &lt; width; w++)</div>
+<div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;            {</div>
+<div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;                src_data[b * (width * height) + h * width + w] = static_cast&lt;float&gt;(100 * b + 10 * h + w);</div>
+<div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;            }</div>
+<div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        }</div>
+<div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;    }</div>
+<div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;</div>
+<div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;    <a class="code" href="classarm__compute_1_1_tensor.xhtml">Tensor</a>         input, output;</div>
+<div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;    <a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml">NESoftmaxLayer</a> softmax;</div>
+<div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;</div>
+<div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;    <span class="comment">// Initialize the tensors dimensions and type:</span></div>
+<div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;    <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>(width, height, batch);</div>
+<div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;    input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>, 1, DataType::F32));</div>
+<div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;    output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">shape</a>, 1, DataType::F32));</div>
+<div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;</div>
+<div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;    <span class="comment">// Configure softmax:</span></div>
+<div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;    softmax.<a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a9daf8026e68559806afe7d0aa12693d6">configure</a>(&amp;input, &amp;output);</div>
+<div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;</div>
+<div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;    <span class="comment">// Allocate the input / output tensors:</span></div>
+<div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div>
+<div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div>
+<div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;</div>
+<div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;    <span class="comment">// Fill the input tensor:</span></div>
+<div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;    <span class="comment">// Simplest way: create an iterator to iterate through each element of the input tensor:</span></div>
+<div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;    <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> input_window;</div>
+<div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">use_tensor_dimensions</a>(input.<a class="code" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">info</a>()-&gt;<a class="code" href="classarm__compute_1_1_i_tensor_info.xhtml#a7c66505457d00ece3aa4b34cab80757d">tensor_shape</a>());</div>
+<div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Dimensions of the input&#39;s iterator:\n&quot;</span>;</div>
+<div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; X = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Y = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Z = [start=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; input_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;</div>
+<div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    <span class="comment">// Create an iterator:</span></div>
+<div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;    <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> input_it(&amp;input, input_window);</div>
+<div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;</div>
+<div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;    <span class="comment">// Iterate through the elements of src_data and copy them one by one to the input tensor:</span></div>
+<div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;    <span class="comment">// This is equivalent to:</span></div>
+<div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    <span class="comment">// for( unsigned int z = 0; z &lt; batch; ++z)</span></div>
+<div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="comment">// {</span></div>
+<div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;    <span class="comment">//   for( unsigned int y = 0; y &lt; height; ++y)</span></div>
+<div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;    <span class="comment">//   {</span></div>
+<div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;    <span class="comment">//     for( unsigned int x = 0; x &lt; width; ++x)</span></div>
+<div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    <span class="comment">//     {</span></div>
+<div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="comment">//       *reinterpret_cast&lt;float*&gt;( input.buffer() + input.info()-&gt;offset_element_in_bytes(Coordinates(x,y,z))) = src_data[ z * (width*height) + y * width + x];</span></div>
+<div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;    <span class="comment">//     }</span></div>
+<div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;    <span class="comment">//   }</span></div>
+<div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;    <span class="comment">// }</span></div>
+<div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;    <span class="comment">// Except it works for an arbitrary number of dimensions</span></div>
+<div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;    <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(input_window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div>
+<div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    {</div>
+<div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Setting item [&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.y() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.z() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;        *<span class="keyword">reinterpret_cast&lt;</span><span class="keywordtype">float</span> *<span class="keyword">&gt;</span>(input_it.ptr()) = src_data[<span class="keywordtype">id</span>.z() * (width * height) + <span class="keywordtype">id</span>.y() * width + <span class="keywordtype">id</span>.x()];</div>
+<div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    },</div>
+<div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;    input_it);</div>
+<div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;</div>
+<div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <span class="comment">// Run NEON softmax:</span></div>
+<div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    softmax.<a class="code" href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">run</a>();</div>
+<div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;</div>
+<div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;    <span class="comment">// More efficient way: create an iterator to iterate through each row (instead of each element) of the output tensor:</span></div>
+<div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;    <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> output_window;</div>
+<div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;    output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">use_tensor_dimensions</a>(output.<a class="code" href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">info</a>()-&gt;<a class="code" href="classarm__compute_1_1_i_tensor_info.xhtml#a7c66505457d00ece3aa4b34cab80757d">tensor_shape</a>(), <span class="comment">/* first_dimension =*/</span>Window::DimY); <span class="comment">// Iterate through the rows (not each element)</span></div>
+<div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Dimensions of the output&#39;s iterator:\n&quot;</span>;</div>
+<div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; X = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Y = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">y</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;    std::cout &lt;&lt; <span class="stringliteral">&quot; Z = [start=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">start</a>() &lt;&lt; <span class="stringliteral">&quot;, end=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">end</a>() &lt;&lt; <span class="stringliteral">&quot;, step=&quot;</span> &lt;&lt; output_window.<a class="code" href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">z</a>().<a class="code" href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">step</a>() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;</div>
+<div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;    <span class="comment">// Create an iterator:</span></div>
+<div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> output_it(&amp;output, output_window);</div>
+<div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;</div>
+<div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;    <span class="comment">// Iterate through the rows of the output tensor and copy them to dst_data:</span></div>
+<div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;    <span class="comment">// This is equivalent to:</span></div>
+<div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;    <span class="comment">// for( unsigned int z = 0; z &lt; batch; ++z)</span></div>
+<div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;    <span class="comment">// {</span></div>
+<div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;    <span class="comment">//   for( unsigned int y = 0; y &lt; height; ++y)</span></div>
+<div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;    <span class="comment">//   {</span></div>
+<div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;    <span class="comment">//     memcpy( dst_data + z * (width*height) + y * width, input.buffer() + input.info()-&gt;offset_element_in_bytes(Coordinates(0,y,z)), width * sizeof(float));</span></div>
+<div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;    <span class="comment">//   }</span></div>
+<div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;    <span class="comment">// }</span></div>
+<div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;    <span class="comment">// Except it works for an arbitrary number of dimensions</span></div>
+<div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;    <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(output_window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div>
+<div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;    {</div>
+<div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Copying one row starting from [&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.<a class="code" href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">x</a>() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.y() &lt;&lt; <span class="stringliteral">&quot;,&quot;</span> &lt;&lt; <span class="keywordtype">id</span>.z() &lt;&lt; <span class="stringliteral">&quot;]\n&quot;</span>;</div>
+<div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;        <span class="comment">// Copy one whole row:</span></div>
+<div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;        memcpy(dst_data + <span class="keywordtype">id</span>.z() * (width * height) + <span class="keywordtype">id</span>.y() * width, output_it.ptr(), width * <span class="keyword">sizeof</span>(float));</div>
+<div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;    },</div>
+<div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;    output_it);</div>
+<div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;</div>
+<div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;    <span class="keyword">delete</span>[] src_data;</div>
+<div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;    <span class="keyword">delete</span>[] dst_data;</div>
+<div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;}</div>
+<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a45cde9abb508c62d67c3bb2b9bf566a5"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a45cde9abb508c62d67c3bb2b9bf566a5">arm_compute::test::validation::shape</a></div><div class="ttdeci">shape</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_min_max_location_8cpp_source.xhtml#l00089">MinMaxLocation.cpp:89</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00038">TensorShape.h:38</a></div></div>
 <div class="ttc" id="_error_8h_xhtml_a4103adbb45806b2f2002d44b91d0d206"><div class="ttname"><a href="_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a></div><div class="ttdeci">#define ARM_COMPUTE_UNUSED(var)</div><div class="ttdoc">To avoid unused variables warnings. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00049">Error.h:49</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_window_1_1_dimension_xhtml_a27c3790df96e9523b0370e7e10c0d375"><div class="ttname"><a href="classarm__compute_1_1_window_1_1_dimension.xhtml#a27c3790df96e9523b0370e7e10c0d375">arm_compute::Window::Dimension::start</a></div><div class="ttdeci">constexpr int start() const </div><div class="ttdoc">Return the start of the dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00085">Window.h:85</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_n_e_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_softmax_layer.xhtml">arm_compute::NESoftmaxLayer</a></div><div class="ttdoc">Basic function to compute a SoftmaxLayer. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_softmax_layer_8h_source.xhtml#l00046">NESoftmaxLayer.h:46</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_n_e_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_n_e_softmax_layer.xhtml">arm_compute::NESoftmaxLayer</a></div><div class="ttdoc">Basic function to compute a SoftmaxLayer. </div><div class="ttdef"><b>Definition:</b> <a href="_n_e_softmax_layer_8h_source.xhtml#l00047">NESoftmaxLayer.h:47</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_window_xhtml_a14470b4cb59140a1b6ff3b8f16c89ab6"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">arm_compute::Window::use_tensor_dimensions</a></div><div class="ttdeci">void use_tensor_dimensions(const TensorShape &amp;shape, size_t first_dimension=Window::DimX)</div><div class="ttdoc">Use the tensor&#39;s dimensions to fill the window dimensions. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8inl_source.xhtml#l00204">Window.inl:204</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_window_1_1_dimension_xhtml_aa9a8509af319b9e47f00c8fba23d368b"><div class="ttname"><a href="classarm__compute_1_1_window_1_1_dimension.xhtml#aa9a8509af319b9e47f00c8fba23d368b">arm_compute::Window::Dimension::end</a></div><div class="ttdeci">constexpr int end() const </div><div class="ttdoc">Return the end of the dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00090">Window.h:90</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_xhtml_a531ec877bfc923dea3ab6f1be5e6e1ac"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">arm_compute::Tensor::allocator</a></div><div class="ttdeci">TensorAllocator * allocator()</div><div class="ttdoc">Return a pointer to the tensor&amp;#39;s allocator. </div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_xhtml_a531ec877bfc923dea3ab6f1be5e6e1ac"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml#a531ec877bfc923dea3ab6f1be5e6e1ac">arm_compute::Tensor::allocator</a></div><div class="ttdeci">TensorAllocator * allocator()</div><div class="ttdoc">Return a pointer to the tensor&#39;s allocator. </div></div>
 <div class="ttc" id="classarm__compute_1_1_window_xhtml_aedd49c804f269c0e2c251c4efd44a275"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#aedd49c804f269c0e2c251c4efd44a275">arm_compute::Window::y</a></div><div class="ttdeci">constexpr const Dimension &amp; y() const </div><div class="ttdoc">Alias to access the second dimension of the window. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00137">Window.h:137</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_a6c0dcc38187027dcb89cd9724bc5a823"><div class="ttname"><a href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">arm_compute::execute_window_loop</a></div><div class="ttdeci">void execute_window_loop(const Window &amp;w, L &amp;&amp;lambda_function, Ts &amp;&amp;...iterators)</div><div class="ttdoc">Iterate through the passed window, automatically adjusting the iterators and calling the lambda_funct...</div><div class="ttdef"><b>Definition:</b> <a href="_helpers_8inl_source.xhtml#l00176">Helpers.inl:176</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_i_tensor_info_xhtml_a7c66505457d00ece3aa4b34cab80757d"><div class="ttname"><a href="classarm__compute_1_1_i_tensor_info.xhtml#a7c66505457d00ece3aa4b34cab80757d">arm_compute::ITensorInfo::tensor_shape</a></div><div class="ttdeci">virtual const TensorShape &amp; tensor_shape() const =0</div><div class="ttdoc">Size for each dimension of the tensor. </div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_a6c0dcc38187027dcb89cd9724bc5a823"><div class="ttname"><a href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">arm_compute::execute_window_loop</a></div><div class="ttdeci">void execute_window_loop(const Window &amp;w, L &amp;&amp;lambda_function, Ts &amp;&amp;...iterators)</div><div class="ttdoc">Iterate through the passed window, automatically adjusting the iterators and calling the lambda_funct...</div><div class="ttdef"><b>Definition:</b> <a href="_helpers_8inl_source.xhtml#l00127">Helpers.inl:127</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_coordinates_xhtml"><div class="ttname"><a href="classarm__compute_1_1_coordinates.xhtml">arm_compute::Coordinates</a></div><div class="ttdoc">Coordinates of an item. </div><div class="ttdef"><b>Definition:</b> <a href="_coordinates_8h_source.xhtml#l00037">Coordinates.h:37</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_tensor_allocator_xhtml_a6e509c2a177b0b29e9e2369535094dee"><div class="ttname"><a href="classarm__compute_1_1_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">arm_compute::TensorAllocator::allocate</a></div><div class="ttdeci">void allocate() override</div><div class="ttdoc">Allocate size specified by TensorInfo of CPU memory. </div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml">arm_compute::Tensor</a></div><div class="ttdoc">Basic implementation of the tensor interface. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2runtime_2_tensor_8h_source.xhtml#l00037">Tensor.h:37</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml">arm_compute::Tensor</a></div><div class="ttdoc">Basic implementation of the tensor interface. </div><div class="ttdef"><b>Definition:</b> <a href="runtime_2_tensor_8h_source.xhtml#l00037">Tensor.h:37</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_n_e_softmax_layer_xhtml_ad1717410afd0be936c6213a63c8005fb"><div class="ttname"><a href="classarm__compute_1_1_n_e_softmax_layer.xhtml#ad1717410afd0be936c6213a63c8005fb">arm_compute::NESoftmaxLayer::run</a></div><div class="ttdeci">void run() override</div><div class="ttdoc">Run the kernels contained in the function. </div></div>
 <div class="ttc" id="classarm__compute_1_1_window_1_1_dimension_xhtml_a992b375fc3254afe2e38f63bc29a43d4"><div class="ttname"><a href="classarm__compute_1_1_window_1_1_dimension.xhtml#a992b375fc3254afe2e38f63bc29a43d4">arm_compute::Window::Dimension::step</a></div><div class="ttdeci">constexpr int step() const </div><div class="ttdoc">Return the step of the dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00095">Window.h:95</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_tensor_allocator_xhtml_a3014ce2f4215e8a44331aa5daf3ba0d4"><div class="ttname"><a href="classarm__compute_1_1_tensor_allocator.xhtml#a3014ce2f4215e8a44331aa5daf3ba0d4">arm_compute::TensorAllocator::init</a></div><div class="ttdeci">void init(const TensorAllocator &amp;allocator, const Coordinates &amp;coords, TensorInfo sub_info)</div><div class="ttdoc">Shares the same backing memory with another tensor allocator, while the tensor info might be differen...</div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&amp;#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00042">TensorInfo.h:42</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00042">TensorInfo.h:42</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_n_e_softmax_layer_xhtml_a9daf8026e68559806afe7d0aa12693d6"><div class="ttname"><a href="classarm__compute_1_1_n_e_softmax_layer.xhtml#a9daf8026e68559806afe7d0aa12693d6">arm_compute::NESoftmaxLayer::configure</a></div><div class="ttdeci">void configure(ITensor *input, ITensor *output)</div><div class="ttdoc">Set the input and output tensors. </div></div>
-<div class="ttc" id="classarm__compute_1_1_iterator_xhtml"><div class="ttname"><a href="classarm__compute_1_1_iterator.xhtml">arm_compute::Iterator</a></div><div class="ttdoc">Iterator updated by execute_window_loop for each window element. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_helpers_8h_source.xhtml#l00251">Helpers.h:251</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_iterator_xhtml"><div class="ttname"><a href="classarm__compute_1_1_iterator.xhtml">arm_compute::Iterator</a></div><div class="ttdoc">Iterator updated by execute_window_loop for each window element. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_helpers_8h_source.xhtml#l00259">Helpers.h:259</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_window_xhtml_ade6a04ff1f61b38e07ddb8ef741c996b"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#ade6a04ff1f61b38e07ddb8ef741c996b">arm_compute::Window::z</a></div><div class="ttdeci">constexpr const Dimension &amp; z() const </div><div class="ttdoc">Alias to access the third dimension of the window. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00146">Window.h:146</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_window_xhtml"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml">arm_compute::Window</a></div><div class="ttdoc">Describe a multidimensional execution window. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00039">Window.h:39</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_xhtml_aa68535e0983cc60a425253a72b162661"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">arm_compute::Tensor::info</a></div><div class="ttdeci">ITensorInfo * info() const override</div><div class="ttdoc">Interface to be implemented by the child class to return the tensor&amp;#39;s metadata. </div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_xhtml_aa68535e0983cc60a425253a72b162661"><div class="ttname"><a href="classarm__compute_1_1_tensor.xhtml#aa68535e0983cc60a425253a72b162661">arm_compute::Tensor::info</a></div><div class="ttdeci">ITensorInfo * info() const override</div><div class="ttdoc">Interface to be implemented by the child class to return the tensor&#39;s metadata. </div></div>
 <div class="ttc" id="classarm__compute_1_1_window_xhtml_ade63ce331b49eb66d330aab444e57ca9"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#ade63ce331b49eb66d330aab444e57ca9">arm_compute::Window::x</a></div><div class="ttdeci">constexpr const Dimension &amp; x() const </div><div class="ttdoc">Alias to access the first dimension of the window. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8h_source.xhtml#l00128">Window.h:128</a></div></div>
 </div><!-- fragment -->
 </div>
@@ -238,10 +346,10 @@
 <!-- start footer part -->
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
-    <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="neon__copy__objects_8cpp.xhtml">neon_copy_objects.cpp</a></li>
-    <li class="footer">Generated on Fri Jun 23 2017 15:44:34 for Compute Library by
+    <li class="navelem"><a class="el" href="dir_1253bad92dedae5edd993ead924afb7b.xhtml">examples</a></li><li class="navelem"><a class="el" href="neon__copy__objects_8cpp.xhtml">neon_copy_objects.cpp</a></li>
+    <li class="footer">Generated on Thu Sep 28 2017 14:37:53 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
-    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
+    <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.6 </li>
   </ul>
 </div>
 </body>