arm_compute v17.09

Change-Id: I4bf8f4e6e5f84ce0d5b6f5ba570d276879f42a81
diff --git a/src/runtime/CL/functions/CLConvolutionLayer.cpp b/src/runtime/CL/functions/CLConvolutionLayer.cpp
index f0bbc35..4b1bfd8 100644
--- a/src/runtime/CL/functions/CLConvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLConvolutionLayer.cpp
@@ -24,32 +24,31 @@
 #include "arm_compute/runtime/CL/functions/CLConvolutionLayer.h"
 
 #include "arm_compute/core/PixelValue.h"
+#include "arm_compute/core/Size2D.h"
 #include "arm_compute/core/Utils.h"
 #include "arm_compute/core/Validate.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
 
 #include <cmath>
+#include <memory>
 #include <tuple>
 
 using namespace arm_compute;
 
-CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights()
-    : _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
+CLConvolutionLayerReshapeWeights::CLConvolutionLayerReshapeWeights(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(std::move(memory_manager)), _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
 {
 }
 
 void CLConvolutionLayerReshapeWeights::configure(const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose1xW)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases, output);
-    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases, output);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
     ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
 
     if(biases != nullptr)
     {
-        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
         ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
         ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
         ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
@@ -65,10 +64,12 @@
         const unsigned int mat_weights_cols = weights->info()->dimension(3);
         const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
         TensorShape        shape_wr(mat_weights_cols, mat_weights_rows);
-        const DataType     dt = weights->info()->data_type();
-        TensorInfo         info_wr(shape_wr, 1, dt);
+        const DataType     dt                   = weights->info()->data_type();
+        const int          fixed_point_position = weights->info()->fixed_point_position();
+        TensorInfo         info_wr(shape_wr, 1, dt, fixed_point_position);
 
         _weights_reshaped.allocator()->init(info_wr);
+        _memory_group.manage(&_weights_reshaped);
         _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
         _weights_transposed_kernel.configure(&_weights_reshaped, output);
         _weights_reshaped.allocator()->allocate();
@@ -81,41 +82,50 @@
 
 void CLConvolutionLayerReshapeWeights::run()
 {
+    _memory_group.acquire();
+
     cl::CommandQueue q = CLScheduler::get().queue();
     CLScheduler::get().enqueue(_weights_reshape_kernel);
     if(_transpose1xW)
     {
         CLScheduler::get().enqueue(_weights_transposed_kernel);
     }
+
+    _memory_group.release();
 }
 
-CLConvolutionLayer::CLConvolutionLayer()
-    : _reshape_weights(), _input_im2col_kernel(), _input_interleave_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(),
-      _weights_transposed(), _gemm_output(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false)
+CLConvolutionLayer::CLConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(std::move(memory_manager)), _reshape_weights(), _input_im2col_kernel(), _input_interleave_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(),
+      _input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false)
 {
 }
 
 void CLConvolutionLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F16, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F16, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights);
     ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
     ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
 
     if(biases != nullptr)
     {
-        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F16, DataType::F32);
         ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
         ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
         ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
     }
 
+    const DataType dt                   = input->info()->data_type();
+    const int      fixed_point_position = input->info()->fixed_point_position();
+
+    // Set the GPU target for matrix multiply
+    _mm_kernel.set_target(CLScheduler::get().target());
+
     _has_bias             = (biases != nullptr);
     _are_weights_reshaped = weights_info.are_reshaped();
 
-    // Get parameters for conv_info
+    // Get parameters from conv_info
     unsigned int stride_x = 0;
     unsigned int stride_y = 0;
     unsigned int pad_x    = 0;
@@ -127,20 +137,21 @@
     unsigned int conv_w = 0;
     unsigned int conv_h = 0;
 
-    const unsigned int kernel_width = _are_weights_reshaped ? weights_info.kernel_size() : weights->info()->dimension(0);
-    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width,
-                                                 stride_x, stride_y, pad_x, pad_y, conv_info.round());
-    ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
+    const unsigned int kernel_width  = (_are_weights_reshaped) ? weights_info.kernel_size().first : weights->info()->dimension(0);
+    const unsigned int kernel_height = (_are_weights_reshaped) ? weights_info.kernel_size().second : weights->info()->dimension(1);
+    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
+                                                 conv_info);
 
     // Check if its a "fully connected" convolution
     _is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
 
-    // Create tensor to store the reshaped weights
-    size_t mat_weights_cols = weights->info()->dimension(3);
-    size_t mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + ((_has_bias) ? 1 : 0);
+    unsigned int mat_weights_cols = weights->info()->dimension(3);
+    unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
+
+    // Reshape weights if needed
     if(_are_weights_reshaped)
     {
-        mat_weights_cols                         = output->info()->dimension(2);
+        mat_weights_cols                         = weights_info.num_kernels();
         const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4;
         mat_weights_rows                         = (_has_bias ? 1 + quarter_reshaped_cols : quarter_reshaped_cols);
     }
@@ -150,77 +161,75 @@
         {
             // Create tensor to store the reshaped weights
             TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
-            TensorInfo  info_wr(shape_wr, 1, weights->info()->data_type());
+            TensorInfo  info_wr(shape_wr, 1, dt, fixed_point_position);
             _weights_reshaped.allocator()->init(info_wr);
-            _reshape_weights.configure(weights, biases, &_weights_reshaped, false);
-            weights = &_weights_reshaped;
+            _reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */);
         }
         else
         {
             // Create tensor to store transposed weights
-            TensorShape shape_wt(mat_weights_rows * 4, static_cast<size_t>(std::ceil(mat_weights_cols / 4.f)));
-            TensorInfo  info_wt(shape_wt, 1, weights->info()->data_type());
-            _weights_transposed.allocator()->init(info_wt);
-            _reshape_weights.configure(weights, biases, &_weights_transposed, true);
-            weights = &_weights_transposed;
+            const float transpose_width = 16.0f / input->info()->element_size();
+            TensorShape shape_wt(mat_weights_rows * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)));
+            TensorInfo  info_wt(shape_wt, 1, dt, fixed_point_position);
+            _weights_reshaped.allocator()->init(info_wt);
+            _reshape_weights.configure(weights, biases, &_weights_reshaped, true /* 1xW transpose */);
         }
+        weights = &_weights_reshaped;
     }
+
     // Create tensor to store im2col reshaped inputs
-    const size_t mat_input_cols = mat_weights_rows;
-    const size_t mat_input_rows = conv_w * conv_h;
-    TensorShape  shape_im2col   = input->info()->tensor_shape();
+    const unsigned int mat_input_cols = mat_weights_rows;
+    const unsigned int mat_input_rows = conv_w * conv_h;
+    TensorShape        shape_im2col   = input->info()->tensor_shape();
     shape_im2col.set(0, mat_input_cols);
     shape_im2col.set(1, mat_input_rows);
     shape_im2col.set(2, 1);
-    _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type()));
+    _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
+    _memory_group.manage(&_input_im2col_reshaped);
 
     // Create tensor (interleave) to prepare input tensor for GEMM
     if(!_is_fully_connected_convolution)
     {
         TensorShape shape_interleaved = shape_im2col;
         shape_interleaved.set(0, shape_interleaved.x() * 4);
-        shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4.f));
-        _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, input->info()->data_type()));
+        shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
+        _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
+        _memory_group.manage(&_input_interleaved_reshaped);
     }
 
     // Create GEMM output tensor
     TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape();
     shape_gemm.set(0, mat_weights_cols);
     shape_gemm.set(1, mat_input_rows);
-    _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, input->info()->data_type()));
+    _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, dt, fixed_point_position));
+    _memory_group.manage(&_gemm_output);
 
     // Configure kernels
-    _input_im2col_kernel.configure(input, &_input_im2col_reshaped, std::make_pair(conv_w, conv_h), conv_info, _has_bias);
-    _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
+    _input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _has_bias);
 
+    // Configure matrix multiply
     if(_is_fully_connected_convolution)
     {
-        _mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f);
+        // The matrix A and Matrix B have not been reshaped
+        _mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f, false);
     }
     else
     {
         _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
         _mm_kernel.configure(&_input_interleaved_reshaped, weights, &_gemm_output, 1.0f);
-    }
-
-    if(!_are_weights_reshaped)
-    {
-        if(!_is_fully_connected_convolution)
-        {
-            _weights_transposed.allocator()->allocate();
-        }
-        else
-        {
-            _weights_reshaped.allocator()->allocate();
-        }
-    }
-
-    _input_im2col_reshaped.allocator()->allocate();
-    if(!_is_fully_connected_convolution)
-    {
         _input_interleaved_reshaped.allocator()->allocate();
     }
+    _input_im2col_reshaped.allocator()->allocate();
+    _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
     _gemm_output.allocator()->allocate();
+
+    ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
+
+    // Allocate intermediate tensor
+    if(!_are_weights_reshaped)
+    {
+        _weights_reshaped.allocator()->allocate();
+    }
 }
 
 void CLConvolutionLayer::run()
@@ -232,6 +241,8 @@
         _reshape_weights.run();
     }
 
+    _memory_group.acquire();
+
     // Run input reshaping
     CLScheduler::get().enqueue(_input_im2col_kernel);
     if(!_is_fully_connected_convolution)
@@ -244,4 +255,6 @@
 
     // Reshape output matrix
     CLScheduler::get().enqueue(_output_col2im_kernel, false);
+
+    _memory_group.release();
 }