arm_compute v17.09

Change-Id: I4bf8f4e6e5f84ce0d5b6f5ba570d276879f42a81
diff --git a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
index 57d57d5..ee1558f 100644
--- a/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
+++ b/src/runtime/CL/functions/CLFullyConnectedLayer.cpp
@@ -23,88 +23,31 @@
  */
 #include "arm_compute/runtime/CL/functions/CLFullyConnectedLayer.h"
 
+#include "arm_compute/core/Size2D.h"
 #include "arm_compute/core/Validate.h"
 #include "arm_compute/runtime/CL/CLScheduler.h"
+#include "support/ToolchainSupport.h"
 
 #include <algorithm>
-#include <cmath>
 
 using namespace arm_compute;
 
-CLFullyConnectedLayerReshapeWeights::CLFullyConnectedLayerReshapeWeights()
-    : _transpose_kernel(), _transpose1xW_kernel(), _transpose_output(), _transpose_weights(false), _is_batched_fc_layer(false)
+void CLFullyConnectedLayerReshapeWeights::configure(const ICLTensor *input, ICLTensor *output)
+{
+    auto k = arm_compute::support::cpp14::make_unique<CLTransposeKernel>();
+    k->configure(input, output);
+    _kernel = std::move(k);
+}
+
+CLFullyConnectedLayer::CLFullyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(std::move(memory_manager)), _im2col_kernel(), _reshape_weights_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _reshape_weights_output(),
+      _are_weights_reshaped(true), _is_fc_after_conv(true), _accumulate_biases(false)
 {
 }
 
-void CLFullyConnectedLayerReshapeWeights::configure(const ICLTensor *input, ICLTensor *output, bool transpose_weights, bool is_batched_fc_layer)
+void CLFullyConnectedLayer::configure_conv_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
-    ARM_COMPUTE_ERROR_ON(output == nullptr);
-    ARM_COMPUTE_ERROR_ON(input->info()->num_dimensions() != 2);
-    ARM_COMPUTE_ERROR_ON((transpose_weights == false) && (is_batched_fc_layer == false));
-
-    const DataType dt                   = input->info()->data_type();
-    const int      fixed_point_position = input->info()->fixed_point_position();
-
-    _transpose_weights   = transpose_weights;
-    _is_batched_fc_layer = is_batched_fc_layer;
-
-    // Check if we need to transpose the weights
-    if(_transpose_weights)
-    {
-        if(_is_batched_fc_layer)
-        {
-            // Initialize the output tensor for transpose
-            TensorShape shape_transposed(input->info()->dimension(1), input->info()->dimension(0));
-            _transpose_output.allocator()->init(TensorInfo(shape_transposed, 1, dt, fixed_point_position));
-            _transpose_kernel.configure(input, &_transpose_output);
-
-            // Configure transpose 1xW kernel
-            _transpose1xW_kernel.configure(&_transpose_output, output);
-
-            // Allocate temporary tensor used for transposing the weights
-            _transpose_output.allocator()->allocate();
-        }
-        else
-        {
-            _transpose_kernel.configure(input, output);
-        }
-    }
-    else
-    {
-        if(_is_batched_fc_layer)
-        {
-            // Configure transpose 1xW kernel
-            _transpose1xW_kernel.configure(input, output);
-        }
-        else
-        {
-            ARM_COMPUTE_ERROR("Configuration transpose_weights=false & is_batched_fc_layer=false not supported");
-        }
-    }
-}
-
-void CLFullyConnectedLayerReshapeWeights::run()
-{
-    if(_transpose_weights)
-    {
-        CLScheduler::get().enqueue(_transpose_kernel, _is_batched_fc_layer);
-    }
-    if(_is_batched_fc_layer)
-    {
-        CLScheduler::get().enqueue(_transpose1xW_kernel);
-    }
-}
-
-CLFullyConnectedLayer::CLFullyConnectedLayer()
-    : _im2col_kernel(), _reshape_weights_kernel(), _interleave4x4_kernel(), _mm_kernel(), _accumulate_biases_kernel(), _im2col_output(), _interleave4x4_output(), _reshape_weights_output(),
-      _are_weights_reshaped(true), _is_fc_after_conv(true), _is_batched_fc_layer(false), _accumulate_biases(false)
-{
-}
-
-void CLFullyConnectedLayer::configure_conv_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
-{
-    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(0) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2) * (16 / weights->info()->element_size())));
+    ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
 
     const DataType dt                   = input->info()->data_type();
     const int      fixed_point_position = input->info()->fixed_point_position();
@@ -119,93 +62,33 @@
     shape_im2col.set(3, input->info()->dimension(5));
     _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
 
-    // Initialize output tensor for interleave 4x4
-    TensorShape shape_interleaved = _im2col_output.info()->tensor_shape();
-    shape_interleaved.set(0, shape_interleaved.x() * 4);
-    shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
-    _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
-
     // Configure im2col kernel
-    _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
-
-    // Configure interleave4x4 kernel
-    _interleave4x4_kernel.configure(&_im2col_output, &_interleave4x4_output);
+    _memory_group.manage(&_im2col_output);
+    _im2col_kernel.configure(input, &_im2col_output, Size2D(1, 1), PadStrideInfo(1, 1, 0, 0), false);
 
     // Configure matrix multiply kernel
-    _mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f);
-
-    // Allocate the tensors once all the configure methods have been called
-    _im2col_output.allocator()->allocate();
-    _interleave4x4_output.allocator()->allocate();
-}
-
-void CLFullyConnectedLayer::configure_fc_fc_wb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
-{
-    const DataType dt                   = input->info()->data_type();
-    const int      fixed_point_position = input->info()->fixed_point_position();
-
-    // Initialize output tensor for interleave 4x4
-    TensorShape shape_interleaved = input->info()->tensor_shape();
-    shape_interleaved.set(0, shape_interleaved.x() * 4);
-    shape_interleaved.set(1, std::ceil(static_cast<float>(shape_interleaved.y()) / 4));
-    _interleave4x4_output.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
-
-    // Configure interleave4x4 kernel
-    _interleave4x4_kernel.configure(input, &_interleave4x4_output);
-
-    // Configure matrix multiply kernel
-    _mm_kernel.configure(&_interleave4x4_output, weights, output, 1.0f);
-
-    // Allocate the tensors once all the configure methods have been called
-    _interleave4x4_output.allocator()->allocate();
-}
-
-void CLFullyConnectedLayer::configure_conv_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
-{
-    ARM_COMPUTE_ERROR_ON((weights->info()->dimension(1) != (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2))));
-
-    const DataType dt                   = input->info()->data_type();
-    const int      fixed_point_position = input->info()->fixed_point_position();
-
-    // If the fully connected layer is called after a convolution layer, the input tensor must be linearized
-
-    // Initialize output tensor for im2col
-    TensorShape shape_im2col;
-    shape_im2col.set(0, input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2));
-    shape_im2col.set(1, 1);
-    _im2col_output.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
-
-    // Configure im2col kernel
-    _im2col_kernel.configure(input, &_im2col_output, std::make_pair(1, 1), PadStrideInfo(1, 1, 0, 0), false);
-
-    // Configure matrix multiply kernel
-    _mm_kernel.configure(&_im2col_output, weights, output, 1.0f);
+    _mm_kernel.configure(&_im2col_output, weights, output, 1.0f, false);
 
     // Allocate the output tensor for im2col once all the configure methods have been called
     _im2col_output.allocator()->allocate();
 }
 
-void CLFullyConnectedLayer::configure_fc_fc_nb(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
+void CLFullyConnectedLayer::configure_fc_fc(const ICLTensor *input, const ICLTensor *weights, ICLTensor *output)
 {
     ARM_COMPUTE_ERROR_ON(input->info()->dimension(0) != weights->info()->dimension(1));
 
     // Configure matrix multiply kernel
-    _mm_kernel.configure(input, weights, output, 1.0f);
+    _mm_kernel.configure(input, weights, output, 1.0f, false);
 }
 
 void CLFullyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, bool transpose_weights, bool are_weights_reshaped)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::QS16, DataType::F16, DataType::F32);
     ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
     ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() != 2);
 
-    const DataType dt                   = input->info()->data_type();
-    const int      fixed_point_position = input->info()->fixed_point_position();
-
-    _are_weights_reshaped = are_weights_reshaped;
+    _are_weights_reshaped = transpose_weights ? are_weights_reshaped : true;
     _is_fc_after_conv     = true;
-    _is_batched_fc_layer  = false;
     _accumulate_biases    = false;
 
     if(biases != nullptr)
@@ -224,90 +107,46 @@
     //  3) Convolution layer -> Fully Connected layer with batches
     //  4) Fully Connected layer -> Fully Connected layer with batches
 
-    // Check if we have a fully connected layer with batches
-    _is_batched_fc_layer = (output->info()->dimension(1) > 1);
-
     const ICLTensor *weights_to_use = weights;
 
-    if(!are_weights_reshaped)
+    if(!_are_weights_reshaped)
     {
-        if((transpose_weights || _is_batched_fc_layer))
-        {
-            weights_to_use = &_reshape_weights_output;
+        weights_to_use = &_reshape_weights_output;
 
-            if(transpose_weights)
-            {
-                if(_is_batched_fc_layer)
-                {
-                    const float transpose_width = 16.0f / input->info()->element_size();
-                    TensorShape shape_wt(weights->info()->dimension(0) * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(weights->info()->dimension(1) / transpose_width)));
-                    TensorInfo  info_wt(shape_wt, 1, dt, fixed_point_position);
-                    _reshape_weights_output.allocator()->init(info_wt);
-                }
-                else
-                {
-                    TensorShape shape_wt(weights->info()->dimension(1), weights->info()->dimension(0));
-                    TensorInfo  info_wt(shape_wt, 1, dt, fixed_point_position);
-                    _reshape_weights_output.allocator()->init(info_wt);
-                }
-            }
-            else
-            {
-                ARM_COMPUTE_ERROR_ON(!_is_batched_fc_layer);
-
-                const float transpose_width = 16.0f / input->info()->element_size();
-                TensorShape shape_wt(weights->info()->dimension(1) * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(weights->info()->dimension(0) / transpose_width)));
-                TensorInfo  info_wt(shape_wt, 1, dt, fixed_point_position);
-                _reshape_weights_output.allocator()->init(info_wt);
-            }
-
-            // Reshape the weights
-            _reshape_weights_kernel.configure(weights, &_reshape_weights_output, transpose_weights, _is_batched_fc_layer);
-        }
+        // Reshape the weights
+        _reshape_weights_kernel.configure(weights, &_reshape_weights_output);
     }
 
-    if(_is_batched_fc_layer)
+    // Check if we have a fully connected layer with batches
+    const bool is_batched_fc_layer = output->info()->dimension(1) > 1;
+
+    if(is_batched_fc_layer)
     {
         _is_fc_after_conv = (TensorShape::num_max_dimensions >= 4) && (std::equal(input->info()->tensor_shape().cbegin() + 3,
                                                                                   input->info()->tensor_shape().cend(),
                                                                                   output->info()->tensor_shape().cbegin() + 1));
-
-        if(_is_fc_after_conv)
-        {
-            // Fully Connected layer after a Convolution Layer with batches
-            configure_conv_fc_wb(input, weights_to_use, output);
-        }
-        else
-        {
-            // Fully Connected layer after a Fully Connected Layer with batches
-            configure_fc_fc_wb(input, weights_to_use, output);
-        }
     }
     else
     {
-        // In case of not batched fully connected layer, the weights will not be reshaped using transposed1xW
-        _is_fc_after_conv = ((weights_to_use->info()->dimension(1)) == (input->info()->dimension(0) * input->info()->dimension(1) * input->info()->dimension(2)));
+        _is_fc_after_conv = input->info()->num_dimensions() > 1;
+    }
 
-        if(_is_fc_after_conv)
-        {
-            // Fully Connected layer after a Convolution Layer without batches
-            configure_conv_fc_nb(input, weights_to_use, output);
-        }
-        else
-        {
-            // Fully Connected layer after a Fully Connected Layer without batches
-            configure_fc_fc_nb(input, weights_to_use, output);
-        }
+    if(_is_fc_after_conv)
+    {
+        // Fully Connected layer after a Convolution Layer without batches
+        configure_conv_fc(input, weights_to_use, output);
+    }
+    else
+    {
+        // Fully Connected layer after a Fully Connected Layer without batches
+        configure_fc_fc(input, weights_to_use, output);
     }
 
     // Allocate the transpose tensor if the are_weights_reshaped flag is false and once all the configure methods have been called
-    if(!are_weights_reshaped)
+    if(!_are_weights_reshaped)
     {
-        if(transpose_weights || _is_batched_fc_layer)
-        {
-            // Allocate the tensor for the weights reshaped
-            _reshape_weights_output.allocator()->allocate();
-        }
+        // Allocate the tensor for the weights reshaped
+        _reshape_weights_output.allocator()->allocate();
     }
 }
 
@@ -320,18 +159,14 @@
         _reshape_weights_kernel.run();
     }
 
+    _memory_group.acquire();
+
     // Linearize input if it comes from a convolutional layer
     if(_is_fc_after_conv)
     {
         CLScheduler::get().enqueue(_im2col_kernel, false);
     }
 
-    // Interleave input
-    if(_is_batched_fc_layer)
-    {
-        CLScheduler::get().enqueue(_interleave4x4_kernel, false);
-    }
-
     // Run matrix multiply
     CLScheduler::get().enqueue(_mm_kernel, !_accumulate_biases);
 
@@ -340,4 +175,6 @@
     {
         CLScheduler::get().enqueue(_accumulate_biases_kernel);
     }
+
+    _memory_group.release();
 }