arm_compute v17.04
diff --git a/documentation/hierarchy.xhtml b/documentation/hierarchy.xhtml
index 2899be1..4fb4859 100644
--- a/documentation/hierarchy.xhtml
+++ b/documentation/hierarchy.xhtml
@@ -40,7 +40,7 @@
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">ARM Compute Library
-  <span id="projectnumber">17.03.1</span>
+  <span id="projectnumber">17.04</span>
</div>
</td>
</tr>
@@ -249,24 +249,26 @@
<tr id="row_22_23_18_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dilate.xhtml" target="_self">NEDilate</a></td><td class="desc">Basic function to execute dilate </td></tr>
<tr id="row_22_23_19_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_erode.xhtml" target="_self">NEErode</a></td><td class="desc">Basic function to execute erode </td></tr>
<tr id="row_22_23_20_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3.xhtml" target="_self">NEGaussian3x3</a></td><td class="desc">Basic function to execute gaussian filter 3x3 </td></tr>
-<tr id="row_22_23_21_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector.xhtml" target="_self">NEHOGDetector</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector based on linear SVM </td></tr>
-<tr id="row_22_23_22_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image.xhtml" target="_self">NEIntegralImage</a></td><td class="desc">Basic function to run a <a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml">NEIntegralImageKernel</a> </td></tr>
-<tr id="row_22_23_23_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude.xhtml" target="_self">NEMagnitude</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
-<tr id="row_22_23_24_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3.xhtml" target="_self">NEMedian3x3</a></td><td class="desc">Basic function to execute median filter </td></tr>
-<tr id="row_22_23_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter.xhtml" target="_self">NENonLinearFilter</a></td><td class="desc">Basic function to execute non linear filter </td></tr>
-<tr id="row_22_23_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3.xhtml" target="_self">NENonMaximaSuppression3x3</a></td><td class="desc">Basic function to execute non-maxima suppression over a 3x3 window </td></tr>
-<tr id="row_22_23_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_phase.xhtml" target="_self">NEPhase</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
-<tr id="row_22_23_28_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication.xhtml" target="_self">NEPixelWiseMultiplication</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml">NEPixelWiseMultiplicationKernel</a> </td></tr>
-<tr id="row_22_23_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml" target="_self">NEPoolingLayer</a></td><td class="desc">Basic function to simulate a pooling layer with the specified pooling operation </td></tr>
-<tr id="row_22_23_30_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap.xhtml" target="_self">NERemap</a></td><td class="desc">Basic function to execute remap </td></tr>
-<tr id="row_22_23_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale.xhtml" target="_self">NEScale</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml">NEScaleKernel</a> </td></tr>
-<tr id="row_22_23_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3.xhtml" target="_self">NEScharr3x3</a></td><td class="desc">Basic function to execute scharr 3x3 filter </td></tr>
-<tr id="row_22_23_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3.xhtml" target="_self">NESobel3x3</a></td><td class="desc">Basic function to execute sobel 3x3 filter </td></tr>
-<tr id="row_22_23_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup.xhtml" target="_self">NETableLookup</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml">NETableLookupKernel</a> </td></tr>
-<tr id="row_22_23_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold.xhtml" target="_self">NEThreshold</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml">NEThresholdKernel</a> </td></tr>
-<tr id="row_22_23_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose.xhtml" target="_self">NETranspose</a></td><td class="desc">Basic function to transpose a matrix on NEON </td></tr>
-<tr id="row_22_23_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine.xhtml" target="_self">NEWarpAffine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml">NEWarpAffineKernel</a> </td></tr>
-<tr id="row_22_23_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective.xhtml" target="_self">NEWarpPerspective</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml">NEWarpPerspectiveKernel</a> </td></tr>
+<tr id="row_22_23_21_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4.xhtml" target="_self">NEGEMMInterleave4x4</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" title="NEON kernel to interleave the elements of a matrix. ">NEGEMMInterleave4x4Kernel</a> </td></tr>
+<tr id="row_22_23_22_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w.xhtml" target="_self">NEGEMMTranspose1xW</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" title="NEON kernel which transposes the elements of a matrix in chunks of 1x4 if the input data type is F32 ...">NEGEMMTranspose1xWKernel</a> </td></tr>
+<tr id="row_22_23_23_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector.xhtml" target="_self">NEHOGDetector</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector based on linear SVM </td></tr>
+<tr id="row_22_23_24_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image.xhtml" target="_self">NEIntegralImage</a></td><td class="desc">Basic function to run a <a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml">NEIntegralImageKernel</a> </td></tr>
+<tr id="row_22_23_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude.xhtml" target="_self">NEMagnitude</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
+<tr id="row_22_23_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3.xhtml" target="_self">NEMedian3x3</a></td><td class="desc">Basic function to execute median filter </td></tr>
+<tr id="row_22_23_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter.xhtml" target="_self">NENonLinearFilter</a></td><td class="desc">Basic function to execute non linear filter </td></tr>
+<tr id="row_22_23_28_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3.xhtml" target="_self">NENonMaximaSuppression3x3</a></td><td class="desc">Basic function to execute non-maxima suppression over a 3x3 window </td></tr>
+<tr id="row_22_23_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_phase.xhtml" target="_self">NEPhase</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
+<tr id="row_22_23_30_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication.xhtml" target="_self">NEPixelWiseMultiplication</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml">NEPixelWiseMultiplicationKernel</a> </td></tr>
+<tr id="row_22_23_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml" target="_self">NEPoolingLayer</a></td><td class="desc">Basic function to simulate a pooling layer with the specified pooling operation </td></tr>
+<tr id="row_22_23_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap.xhtml" target="_self">NERemap</a></td><td class="desc">Basic function to execute remap </td></tr>
+<tr id="row_22_23_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale.xhtml" target="_self">NEScale</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml">NEScaleKernel</a> </td></tr>
+<tr id="row_22_23_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3.xhtml" target="_self">NEScharr3x3</a></td><td class="desc">Basic function to execute scharr 3x3 filter </td></tr>
+<tr id="row_22_23_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3.xhtml" target="_self">NESobel3x3</a></td><td class="desc">Basic function to execute sobel 3x3 filter </td></tr>
+<tr id="row_22_23_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup.xhtml" target="_self">NETableLookup</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml">NETableLookupKernel</a> </td></tr>
+<tr id="row_22_23_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold.xhtml" target="_self">NEThreshold</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml">NEThresholdKernel</a> </td></tr>
+<tr id="row_22_23_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose.xhtml" target="_self">NETranspose</a></td><td class="desc">Basic function to transpose a matrix on NEON </td></tr>
+<tr id="row_22_23_39_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine.xhtml" target="_self">NEWarpAffine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml">NEWarpAffineKernel</a> </td></tr>
+<tr id="row_22_23_40_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective.xhtml" target="_self">NEWarpPerspective</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml">NEWarpPerspectiveKernel</a> </td></tr>
<tr id="row_22_24_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_canny_edge.xhtml" target="_self">NECannyEdge</a></td><td class="desc">Basic function to execute canny edge on NEON </td></tr>
<tr id="row_22_25_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution5x5.xhtml" target="_self">NEConvolution5x5</a></td><td class="desc">Basic function to execute convolution of size 5x5 </td></tr>
<tr id="row_22_26_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution7x7.xhtml" target="_self">NEConvolution7x7</a></td><td class="desc">Basic function to execute convolution of size 7x7 </td></tr>
@@ -319,69 +321,69 @@
<tr id="row_24_0_15_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_edge_trace_kernel.xhtml" target="_self">CLEdgeTraceKernel</a></td><td class="desc">OpenCL kernel to perform Edge tracing </td></tr>
<tr id="row_24_0_16_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_fast_corners_kernel.xhtml" target="_self">CLFastCornersKernel</a></td><td class="desc">CL kernel to perform fast corners </td></tr>
<tr id="row_24_0_17_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_fill_border_kernel.xhtml" target="_self">CLFillBorderKernel</a></td><td class="desc">Interface for filling the border of a kernel </td></tr>
-<tr id="row_24_0_18_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian_pyramid_hor_kernel.xhtml" target="_self">CLGaussianPyramidHorKernel</a></td><td class="desc">OpenCL kernel to perform a Gaussian filter and half scaling across width (horizontal pass) </td></tr>
-<tr id="row_24_0_19_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian_pyramid_vert_kernel.xhtml" target="_self">CLGaussianPyramidVertKernel</a></td><td class="desc">OpenCL kernel to perform a Gaussian filter and half scaling across height (vertical pass) </td></tr>
-<tr id="row_24_0_20_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">CLGEMMInterleave4x4Kernel</a></td><td class="desc">OpenCL kernel which interleaves the elements of a matrix A in chunk of 4x4 </td></tr>
-<tr id="row_24_0_21_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">CLGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">OpenCL kernel to compute low precision matrix multiplication kernel </td></tr>
-<tr id="row_24_0_22_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">CLGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">Interface to add a bias to each row of the input tensor </td></tr>
-<tr id="row_24_0_23_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">CLGEMMMatrixAdditionKernel</a></td><td class="desc">OpenCL kernel to perform the in-place matrix addition between 2 matrices, taking into account that the second matrix might be weighted by a scalar value beta </td></tr>
-<tr id="row_24_0_24_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">CLGEMMMatrixMultiplyKernel</a></td><td class="desc">OpenCL kernel to multiply two input matrices "A" and "B" or to multiply a vector "A" by a matrix "B" </td></tr>
-<tr id="row_24_0_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gradient_kernel.xhtml" target="_self">CLGradientKernel</a></td><td class="desc">OpenCL kernel to perform Gradient computation </td></tr>
-<tr id="row_24_0_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_harris_score_kernel.xhtml" target="_self">CLHarrisScoreKernel</a></td><td class="desc">Interface for the harris score kernel </td></tr>
-<tr id="row_24_0_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_histogram_border_kernel.xhtml" target="_self">CLHistogramBorderKernel</a></td><td class="desc">Interface to run the histogram kernel to handle the leftover part of image </td></tr>
-<tr id="row_24_0_28_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_histogram_kernel.xhtml" target="_self">CLHistogramKernel</a></td><td class="desc">Interface to run the histogram kernel </td></tr>
-<tr id="row_24_0_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_im2_col_kernel.xhtml" target="_self">CLIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
-<tr id="row_24_0_30_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_integral_image_vert_kernel.xhtml" target="_self">CLIntegralImageVertKernel</a></td><td class="desc">Interface to run the vertical pass of the integral image kernel </td></tr>
-<tr id="row_24_0_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_finalize_kernel.xhtml" target="_self">CLLKTrackerFinalizeKernel</a></td><td class="desc">Interface to run the finalize step of LKTracker, where it truncates the coordinates stored in new_points array </td></tr>
-<tr id="row_24_0_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_init_kernel.xhtml" target="_self">CLLKTrackerInitKernel</a></td><td class="desc">Interface to run the initialization step of LKTracker </td></tr>
-<tr id="row_24_0_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_stage0_kernel.xhtml" target="_self">CLLKTrackerStage0Kernel</a></td><td class="desc">Interface to run the first stage of LKTracker, where A11, A12, A22, min_eig, ival, ixval and iyval are computed </td></tr>
-<tr id="row_24_0_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_stage1_kernel.xhtml" target="_self">CLLKTrackerStage1Kernel</a></td><td class="desc">Interface to run the second stage of LKTracker, where the motion vectors of the given points are computed </td></tr>
-<tr id="row_24_0_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_norm_kernel.xhtml" target="_self">CLLogits1DNormKernel</a></td><td class="desc">Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits </td></tr>
-<tr id="row_24_0_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_shift_exp_sum_kernel.xhtml" target="_self">CLLogits1DShiftExpSumKernel</a></td><td class="desc">Interface for shifting the logits values around the max value and exponentiating the result </td></tr>
-<tr id="row_24_0_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_magnitude_phase_kernel.xhtml" target="_self">CLMagnitudePhaseKernel</a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
-<tr id="row_24_0_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_mean_std_dev_kernel.xhtml" target="_self">CLMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
-<tr id="row_24_0_39_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_min_max_kernel.xhtml" target="_self">CLMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
-<tr id="row_24_0_40_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_min_max_location_kernel.xhtml" target="_self">CLMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
-<tr id="row_24_0_41_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_normalization_layer_kernel.xhtml" target="_self">CLNormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
-<tr id="row_24_0_42_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pixel_wise_multiplication_kernel.xhtml" target="_self">CLPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the pixelwise multiplication kernel </td></tr>
-<tr id="row_24_0_43_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pooling_layer_kernel.xhtml" target="_self">CLPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
-<tr id="row_24_0_44_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_remap_kernel.xhtml" target="_self">CLRemapKernel</a></td><td class="desc">OpenCL kernel to perform a remap on a tensor </td></tr>
-<tr id="row_24_0_45_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_scharr3x3_kernel.xhtml" target="_self">CLScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
-<tr id="row_24_0_46_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel3x3_kernel.xhtml" target="_self">CLSobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel filter on a tensor </td></tr>
-<tr id="row_24_0_47_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel5x5_hor_kernel.xhtml" target="_self">CLSobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
-<tr id="row_24_0_48_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel5x5_vert_kernel.xhtml" target="_self">CLSobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel filter on a tensor </td></tr>
-<tr id="row_24_0_49_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel7x7_hor_kernel.xhtml" target="_self">CLSobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
-<tr id="row_24_0_50_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel7x7_vert_kernel.xhtml" target="_self">CLSobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel filter on a tensor </td></tr>
-<tr id="row_24_0_51_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_0_51_" class="arrow" onclick="toggleFolder('24_0_51_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple_kernel.xhtml" target="_self">ICLSimpleKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
-<tr id="row_24_0_51_0_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span id="arr_24_0_51_0_" class="arrow" onclick="toggleFolder('24_0_51_0_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple2_d_kernel.xhtml" target="_self">ICLSimple2DKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
-<tr id="row_24_0_51_0_0_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_kernel.xhtml" target="_self">CLAccumulateKernel</a></td><td class="desc">Interface for the accumulate kernel </td></tr>
-<tr id="row_24_0_51_0_1_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_squared_kernel.xhtml" target="_self">CLAccumulateSquaredKernel</a></td><td class="desc">Interface for the accumulate squared kernel </td></tr>
-<tr id="row_24_0_51_0_2_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_weighted_kernel.xhtml" target="_self">CLAccumulateWeightedKernel</a></td><td class="desc">Interface for the accumulate weighted kernel </td></tr>
-<tr id="row_24_0_51_0_3_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_activation_layer_kernel.xhtml" target="_self">CLActivationLayerKernel</a></td><td class="desc">Interface for the activation layer kernel </td></tr>
-<tr id="row_24_0_51_0_4_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_bitwise_not_kernel.xhtml" target="_self">CLBitwiseNotKernel</a></td><td class="desc">Interface for the bitwise NOT operation kernel </td></tr>
-<tr id="row_24_0_51_0_5_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_box3x3_kernel.xhtml" target="_self">CLBox3x3Kernel</a></td><td class="desc">Interface for the box 3x3 filter kernel </td></tr>
-<tr id="row_24_0_51_0_6_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_convolution_kernel.xhtml" target="_self">CLConvolutionKernel< matrix_size ></a></td><td class="desc">Interface for the kernel to run an arbitrary size convolution on a tensor </td></tr>
-<tr id="row_24_0_51_0_7_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_depth_convert_kernel.xhtml" target="_self">CLDepthConvertKernel</a></td><td class="desc">Interface for the depth conversion kernel </td></tr>
-<tr id="row_24_0_51_0_8_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_dilate_kernel.xhtml" target="_self">CLDilateKernel</a></td><td class="desc">Interface for the dilate kernel </td></tr>
-<tr id="row_24_0_51_0_9_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_erode_kernel.xhtml" target="_self">CLErodeKernel</a></td><td class="desc">Interface for the erode kernel </td></tr>
-<tr id="row_24_0_51_0_10_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian3x3_kernel.xhtml" target="_self">CLGaussian3x3Kernel</a></td><td class="desc">Interface for the Gaussian 3x3 filter kernel </td></tr>
-<tr id="row_24_0_51_0_11_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">CLGEMMTranspose1xWKernel</a></td><td class="desc">OpenCL kernel which transposes the elements of a matrix in chunks of 1x4 if the input data type is F32 or in chunks of 1x8 if the input data type is F16 </td></tr>
-<tr id="row_24_0_51_0_12_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_integral_image_hor_kernel.xhtml" target="_self">CLIntegralImageHorKernel</a></td><td class="desc">Interface to run the horizontal pass of the integral image kernel </td></tr>
-<tr id="row_24_0_51_0_13_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_max_kernel.xhtml" target="_self">CLLogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
-<tr id="row_24_0_51_0_14_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_median3x3_kernel.xhtml" target="_self">CLMedian3x3Kernel</a></td><td class="desc">Interface for the median 3x3 filter kernel </td></tr>
-<tr id="row_24_0_51_0_15_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_non_linear_filter_kernel.xhtml" target="_self">CLNonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
-<tr id="row_24_0_51_0_16_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_non_maxima_suppression3x3_kernel.xhtml" target="_self">CLNonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using OpenCL </td></tr>
-<tr id="row_24_0_51_0_17_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_scale_kernel.xhtml" target="_self">CLScaleKernel</a></td><td class="desc">Interface for the warp affine kernel </td></tr>
-<tr id="row_24_0_51_0_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span id="arr_24_0_51_0_18_" class="arrow" onclick="toggleFolder('24_0_51_0_18_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_separable_convolution_hor_kernel.xhtml" target="_self">CLSeparableConvolutionHorKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
-<tr id="row_24_0_51_0_18_0_" style="display:none;"><td class="entry"><span style="width:96px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian5x5_hor_kernel.xhtml" target="_self">CLGaussian5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Gaussian filter on a tensor </td></tr>
-<tr id="row_24_0_51_0_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span id="arr_24_0_51_0_19_" class="arrow" onclick="toggleFolder('24_0_51_0_19_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_separable_convolution_vert_kernel.xhtml" target="_self">CLSeparableConvolutionVertKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
-<tr id="row_24_0_51_0_19_0_" style="display:none;"><td class="entry"><span style="width:96px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian5x5_vert_kernel.xhtml" target="_self">CLGaussian5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Gaussian filter on a tensor </td></tr>
-<tr id="row_24_0_51_0_20_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_table_lookup_kernel.xhtml" target="_self">CLTableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
-<tr id="row_24_0_51_0_21_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_threshold_kernel.xhtml" target="_self">CLThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
-<tr id="row_24_0_51_0_22_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_transpose_kernel.xhtml" target="_self">CLTransposeKernel</a></td><td class="desc">OpenCL kernel which transposes the elements of a matrix </td></tr>
-<tr id="row_24_0_51_0_23_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_warp_affine_kernel.xhtml" target="_self">CLWarpAffineKernel</a></td><td class="desc">Interface for the warp affine kernel </td></tr>
-<tr id="row_24_0_51_0_24_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_warp_perspective_kernel.xhtml" target="_self">CLWarpPerspectiveKernel</a></td><td class="desc">Interface for the warp perspective kernel </td></tr>
-<tr id="row_24_0_51_0_25_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple3_d_kernel.xhtml" target="_self">ICLSimple3DKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
+<tr id="row_24_0_18_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">CLGEMMInterleave4x4Kernel</a></td><td class="desc">OpenCL kernel which interleaves the elements of a matrix A in chunk of 4x4 </td></tr>
+<tr id="row_24_0_19_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">CLGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">OpenCL kernel to compute low precision matrix multiplication kernel </td></tr>
+<tr id="row_24_0_20_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">CLGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">Interface to add a bias to each row of the input tensor </td></tr>
+<tr id="row_24_0_21_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">CLGEMMMatrixAdditionKernel</a></td><td class="desc">OpenCL kernel to perform the in-place matrix addition between 2 matrices, taking into account that the second matrix might be weighted by a scalar value beta </td></tr>
+<tr id="row_24_0_22_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">CLGEMMMatrixMultiplyKernel</a></td><td class="desc">OpenCL kernel to multiply two input matrices "A" and "B" or to multiply a vector "A" by a matrix "B" </td></tr>
+<tr id="row_24_0_23_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gradient_kernel.xhtml" target="_self">CLGradientKernel</a></td><td class="desc">OpenCL kernel to perform Gradient computation </td></tr>
+<tr id="row_24_0_24_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_harris_score_kernel.xhtml" target="_self">CLHarrisScoreKernel</a></td><td class="desc">Interface for the harris score kernel </td></tr>
+<tr id="row_24_0_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_histogram_border_kernel.xhtml" target="_self">CLHistogramBorderKernel</a></td><td class="desc">Interface to run the histogram kernel to handle the leftover part of image </td></tr>
+<tr id="row_24_0_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_histogram_kernel.xhtml" target="_self">CLHistogramKernel</a></td><td class="desc">Interface to run the histogram kernel </td></tr>
+<tr id="row_24_0_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_im2_col_kernel.xhtml" target="_self">CLIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
+<tr id="row_24_0_28_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_integral_image_vert_kernel.xhtml" target="_self">CLIntegralImageVertKernel</a></td><td class="desc">Interface to run the vertical pass of the integral image kernel </td></tr>
+<tr id="row_24_0_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_finalize_kernel.xhtml" target="_self">CLLKTrackerFinalizeKernel</a></td><td class="desc">Interface to run the finalize step of LKTracker, where it truncates the coordinates stored in new_points array </td></tr>
+<tr id="row_24_0_30_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_init_kernel.xhtml" target="_self">CLLKTrackerInitKernel</a></td><td class="desc">Interface to run the initialization step of LKTracker </td></tr>
+<tr id="row_24_0_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_stage0_kernel.xhtml" target="_self">CLLKTrackerStage0Kernel</a></td><td class="desc">Interface to run the first stage of LKTracker, where A11, A12, A22, min_eig, ival, ixval and iyval are computed </td></tr>
+<tr id="row_24_0_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_l_k_tracker_stage1_kernel.xhtml" target="_self">CLLKTrackerStage1Kernel</a></td><td class="desc">Interface to run the second stage of LKTracker, where the motion vectors of the given points are computed </td></tr>
+<tr id="row_24_0_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_norm_kernel.xhtml" target="_self">CLLogits1DNormKernel</a></td><td class="desc">Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits </td></tr>
+<tr id="row_24_0_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_shift_exp_sum_kernel.xhtml" target="_self">CLLogits1DShiftExpSumKernel</a></td><td class="desc">Interface for shifting the logits values around the max value and exponentiating the result </td></tr>
+<tr id="row_24_0_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_magnitude_phase_kernel.xhtml" target="_self">CLMagnitudePhaseKernel</a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
+<tr id="row_24_0_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_mean_std_dev_kernel.xhtml" target="_self">CLMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
+<tr id="row_24_0_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_min_max_kernel.xhtml" target="_self">CLMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
+<tr id="row_24_0_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_min_max_location_kernel.xhtml" target="_self">CLMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
+<tr id="row_24_0_39_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_normalization_layer_kernel.xhtml" target="_self">CLNormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
+<tr id="row_24_0_40_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pixel_wise_multiplication_kernel.xhtml" target="_self">CLPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the pixelwise multiplication kernel </td></tr>
+<tr id="row_24_0_41_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pooling_layer_kernel.xhtml" target="_self">CLPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
+<tr id="row_24_0_42_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_remap_kernel.xhtml" target="_self">CLRemapKernel</a></td><td class="desc">OpenCL kernel to perform a remap on a tensor </td></tr>
+<tr id="row_24_0_43_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_scharr3x3_kernel.xhtml" target="_self">CLScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
+<tr id="row_24_0_44_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel3x3_kernel.xhtml" target="_self">CLSobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel filter on a tensor </td></tr>
+<tr id="row_24_0_45_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel5x5_hor_kernel.xhtml" target="_self">CLSobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
+<tr id="row_24_0_46_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel5x5_vert_kernel.xhtml" target="_self">CLSobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel filter on a tensor </td></tr>
+<tr id="row_24_0_47_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel7x7_hor_kernel.xhtml" target="_self">CLSobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
+<tr id="row_24_0_48_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_sobel7x7_vert_kernel.xhtml" target="_self">CLSobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel filter on a tensor </td></tr>
+<tr id="row_24_0_49_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_0_49_" class="arrow" onclick="toggleFolder('24_0_49_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple_kernel.xhtml" target="_self">ICLSimpleKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
+<tr id="row_24_0_49_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian_pyramid_hor_kernel.xhtml" target="_self">CLGaussianPyramidHorKernel</a></td><td class="desc">OpenCL kernel to perform a Gaussian filter and half scaling across width (horizontal pass) </td></tr>
+<tr id="row_24_0_49_1_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian_pyramid_vert_kernel.xhtml" target="_self">CLGaussianPyramidVertKernel</a></td><td class="desc">OpenCL kernel to perform a Gaussian filter and half scaling across height (vertical pass) </td></tr>
+<tr id="row_24_0_49_2_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span id="arr_24_0_49_2_" class="arrow" onclick="toggleFolder('24_0_49_2_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple2_d_kernel.xhtml" target="_self">ICLSimple2DKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
+<tr id="row_24_0_49_2_0_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_kernel.xhtml" target="_self">CLAccumulateKernel</a></td><td class="desc">Interface for the accumulate kernel </td></tr>
+<tr id="row_24_0_49_2_1_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_squared_kernel.xhtml" target="_self">CLAccumulateSquaredKernel</a></td><td class="desc">Interface for the accumulate squared kernel </td></tr>
+<tr id="row_24_0_49_2_2_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_accumulate_weighted_kernel.xhtml" target="_self">CLAccumulateWeightedKernel</a></td><td class="desc">Interface for the accumulate weighted kernel </td></tr>
+<tr id="row_24_0_49_2_3_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_activation_layer_kernel.xhtml" target="_self">CLActivationLayerKernel</a></td><td class="desc">Interface for the activation layer kernel </td></tr>
+<tr id="row_24_0_49_2_4_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_bitwise_not_kernel.xhtml" target="_self">CLBitwiseNotKernel</a></td><td class="desc">Interface for the bitwise NOT operation kernel </td></tr>
+<tr id="row_24_0_49_2_5_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_box3x3_kernel.xhtml" target="_self">CLBox3x3Kernel</a></td><td class="desc">Interface for the box 3x3 filter kernel </td></tr>
+<tr id="row_24_0_49_2_6_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_convolution_kernel.xhtml" target="_self">CLConvolutionKernel< matrix_size ></a></td><td class="desc">Interface for the kernel to run an arbitrary size convolution on a tensor </td></tr>
+<tr id="row_24_0_49_2_7_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_depth_convert_kernel.xhtml" target="_self">CLDepthConvertKernel</a></td><td class="desc">Interface for the depth conversion kernel </td></tr>
+<tr id="row_24_0_49_2_8_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_dilate_kernel.xhtml" target="_self">CLDilateKernel</a></td><td class="desc">Interface for the dilate kernel </td></tr>
+<tr id="row_24_0_49_2_9_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_erode_kernel.xhtml" target="_self">CLErodeKernel</a></td><td class="desc">Interface for the erode kernel </td></tr>
+<tr id="row_24_0_49_2_10_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian3x3_kernel.xhtml" target="_self">CLGaussian3x3Kernel</a></td><td class="desc">Interface for the Gaussian 3x3 filter kernel </td></tr>
+<tr id="row_24_0_49_2_11_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">CLGEMMTranspose1xWKernel</a></td><td class="desc">OpenCL kernel which transposes the elements of a matrix in chunks of 1x4 if the input data type is F32 or in chunks of 1x8 if the input data type is F16 </td></tr>
+<tr id="row_24_0_49_2_12_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_integral_image_hor_kernel.xhtml" target="_self">CLIntegralImageHorKernel</a></td><td class="desc">Interface to run the horizontal pass of the integral image kernel </td></tr>
+<tr id="row_24_0_49_2_13_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_logits1_d_max_kernel.xhtml" target="_self">CLLogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
+<tr id="row_24_0_49_2_14_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_median3x3_kernel.xhtml" target="_self">CLMedian3x3Kernel</a></td><td class="desc">Interface for the median 3x3 filter kernel </td></tr>
+<tr id="row_24_0_49_2_15_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_non_linear_filter_kernel.xhtml" target="_self">CLNonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
+<tr id="row_24_0_49_2_16_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_non_maxima_suppression3x3_kernel.xhtml" target="_self">CLNonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using OpenCL </td></tr>
+<tr id="row_24_0_49_2_17_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_scale_kernel.xhtml" target="_self">CLScaleKernel</a></td><td class="desc">Interface for the warp affine kernel </td></tr>
+<tr id="row_24_0_49_2_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span id="arr_24_0_49_2_18_" class="arrow" onclick="toggleFolder('24_0_49_2_18_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_separable_convolution_hor_kernel.xhtml" target="_self">CLSeparableConvolutionHorKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
+<tr id="row_24_0_49_2_18_0_" style="display:none;"><td class="entry"><span style="width:96px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian5x5_hor_kernel.xhtml" target="_self">CLGaussian5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Gaussian filter on a tensor </td></tr>
+<tr id="row_24_0_49_2_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span id="arr_24_0_49_2_19_" class="arrow" onclick="toggleFolder('24_0_49_2_19_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_separable_convolution_vert_kernel.xhtml" target="_self">CLSeparableConvolutionVertKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
+<tr id="row_24_0_49_2_19_0_" style="display:none;"><td class="entry"><span style="width:96px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_gaussian5x5_vert_kernel.xhtml" target="_self">CLGaussian5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Gaussian filter on a tensor </td></tr>
+<tr id="row_24_0_49_2_20_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_table_lookup_kernel.xhtml" target="_self">CLTableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
+<tr id="row_24_0_49_2_21_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_threshold_kernel.xhtml" target="_self">CLThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
+<tr id="row_24_0_49_2_22_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_transpose_kernel.xhtml" target="_self">CLTransposeKernel</a></td><td class="desc">OpenCL kernel which transposes the elements of a matrix </td></tr>
+<tr id="row_24_0_49_2_23_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_warp_affine_kernel.xhtml" target="_self">CLWarpAffineKernel</a></td><td class="desc">Interface for the warp affine kernel </td></tr>
+<tr id="row_24_0_49_2_24_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_warp_perspective_kernel.xhtml" target="_self">CLWarpPerspectiveKernel</a></td><td class="desc">Interface for the warp perspective kernel </td></tr>
+<tr id="row_24_0_49_2_25_" style="display:none;"><td class="entry"><span style="width:80px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_simple3_d_kernel.xhtml" target="_self">ICLSimple3DKernel</a></td><td class="desc">Interface for simple OpenCL kernels having 1 tensor input and 1 tensor output </td></tr>
<tr id="row_24_1_" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_24_1_" class="arrow" onclick="toggleFolder('24_1_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_p_p_kernel.xhtml" target="_self">ICPPKernel</a></td><td class="desc">Common interface for all kernels implemented in C++ </td></tr>
<tr id="row_24_1_0_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_p_p_corner_candidates_kernel.xhtml" target="_self">CPPCornerCandidatesKernel</a></td><td class="desc">CPP kernel to perform corner candidates </td></tr>
<tr id="row_24_1_1_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_p_p_sort_euclidean_distance_kernel.xhtml" target="_self">CPPSortEuclideanDistanceKernel</a></td><td class="desc">CPP kernel to perform sorting and euclidean distance </td></tr>
@@ -401,24 +403,26 @@
<tr id="row_24_1_2_10_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3_kernel.xhtml" target="_self">NEGaussian3x3Kernel</a></td><td class="desc">NEON kernel to perform a Gaussian 3x3 filter </td></tr>
<tr id="row_24_1_2_11_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_hor_kernel.xhtml" target="_self">NEGaussian5x5HorKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (horizontal pass) </td></tr>
<tr id="row_24_1_2_12_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_vert_kernel.xhtml" target="_self">NEGaussian5x5VertKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (vertical pass) </td></tr>
-<tr id="row_24_1_2_13_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">NEGEMMInterleave4x4Kernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
-<tr id="row_24_1_2_14_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">NEGEMMMatrixAdditionKernel</a></td><td class="desc">NEON kernel to perform the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: </td></tr>
-<tr id="row_24_1_2_15_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">NEGEMMTranspose1xWKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix in chunks of 1x4 if the input data type is F32 or in chunks of 1x8 if the input data type is F16 </td></tr>
-<tr id="row_24_1_2_16_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml" target="_self">NEIntegralImageKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform an image integral on an image </td></tr>
-<tr id="row_24_1_2_17_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_max_kernel.xhtml" target="_self">NELogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
-<tr id="row_24_1_2_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3_kernel.xhtml" target="_self">NEMedian3x3Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform a median filter on a tensor </td></tr>
-<tr id="row_24_1_2_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
-<tr id="row_24_1_2_20_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
-<tr id="row_24_1_2_21_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml" target="_self">NETableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
-<tr id="row_24_1_2_22_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 5 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_23_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 7 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_24_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 9 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_25_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 5 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_26_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 7 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_27_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 9 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_28_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 5 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_29_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 7 ></a></td><td class="desc"></td></tr>
-<tr id="row_24_1_2_30_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 9 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_13_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_hor_kernel.xhtml" target="_self">NEGaussianPyramidHorKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (horizontal pass) </td></tr>
+<tr id="row_24_1_2_14_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_vert_kernel.xhtml" target="_self">NEGaussianPyramidVertKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (vertical pass) </td></tr>
+<tr id="row_24_1_2_15_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">NEGEMMInterleave4x4Kernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
+<tr id="row_24_1_2_16_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">NEGEMMMatrixAdditionKernel</a></td><td class="desc">NEON kernel to perform the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: </td></tr>
+<tr id="row_24_1_2_17_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">NEGEMMTranspose1xWKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix in chunks of 1x4 if the input data type is F32 or in chunks of 1x8 if the input data type is F16 </td></tr>
+<tr id="row_24_1_2_18_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml" target="_self">NEIntegralImageKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform an image integral on an image </td></tr>
+<tr id="row_24_1_2_19_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_max_kernel.xhtml" target="_self">NELogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
+<tr id="row_24_1_2_20_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3_kernel.xhtml" target="_self">NEMedian3x3Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform a median filter on a tensor </td></tr>
+<tr id="row_24_1_2_21_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
+<tr id="row_24_1_2_22_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< matrix_size ></a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
+<tr id="row_24_1_2_23_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml" target="_self">NETableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
+<tr id="row_24_1_2_24_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 5 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_25_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 7 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_26_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel< 9 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_27_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 5 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_28_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 7 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_29_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel< 9 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_30_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 5 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_31_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 7 ></a></td><td class="desc"></td></tr>
+<tr id="row_24_1_2_32_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel< 9 ></a></td><td class="desc"></td></tr>
<tr id="row_24_1_3_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_1_3_" class="arrow" onclick="toggleFolder('24_1_3_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_n_e_harris_score_kernel.xhtml" target="_self">INEHarrisScoreKernel</a></td><td class="desc">Common interface for all Harris Score kernels </td></tr>
<tr id="row_24_1_3_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_score_f_p16_kernel.xhtml" target="_self">NEHarrisScoreFP16Kernel< block_size ></a></td><td class="desc">Interface for the accumulate Weighted kernel using F16 </td></tr>
<tr id="row_24_1_3_1_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_score_kernel.xhtml" target="_self">NEHarrisScoreKernel< block_size ></a></td><td class="desc">Template NEON kernel to perform Harris Score </td></tr>
@@ -445,44 +449,42 @@
<tr id="row_24_1_22_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_array_kernel.xhtml" target="_self">NEFillArrayKernel</a></td><td class="desc">This kernel adds all texels greater than or equal to the threshold value to the keypoint array </td></tr>
<tr id="row_24_1_23_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_border_kernel.xhtml" target="_self">NEFillBorderKernel</a></td><td class="desc">Interface for the kernel to fill borders </td></tr>
<tr id="row_24_1_24_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_inner_border_kernel.xhtml" target="_self">NEFillInnerBorderKernel</a></td><td class="desc">Interface for the kernel to fill the interior borders </td></tr>
-<tr id="row_24_1_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_hor_kernel.xhtml" target="_self">NEGaussianPyramidHorKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (horizontal pass) </td></tr>
-<tr id="row_24_1_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_vert_kernel.xhtml" target="_self">NEGaussianPyramidVertKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (vertical pass) </td></tr>
-<tr id="row_24_1_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">NEGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply matrices </td></tr>
-<tr id="row_24_1_28_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">NEGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">NEON kernel to add a bias to each row of the input tensor </td></tr>
-<tr id="row_24_1_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">NEGEMMMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_24_1_30_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_1_30_" class="arrow" onclick="toggleFolder('24_1_30_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_kernel.xhtml" target="_self">NEGradientKernel</a></td><td class="desc">Computes magnitude and quantised phase from inputs gradients </td></tr>
-<tr id="row_24_1_30_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_f_p16_kernel.xhtml" target="_self">NEGradientFP16Kernel</a></td><td class="desc">NEON kernel to perform Gradient computation </td></tr>
-<tr id="row_24_1_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_border_kernel.xhtml" target="_self">NEHistogramBorderKernel</a></td><td class="desc">Interface for the histogram border handling kernel </td></tr>
-<tr id="row_24_1_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml" target="_self">NEHistogramKernel</a></td><td class="desc">Interface for the histogram kernel </td></tr>
-<tr id="row_24_1_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_block_normalization_kernel.xhtml" target="_self">NEHOGBlockNormalizationKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> block normalization </td></tr>
-<tr id="row_24_1_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector_kernel.xhtml" target="_self">NEHOGDetectorKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector kernel using linear SVM </td></tr>
-<tr id="row_24_1_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_non_maxima_suppression_kernel.xhtml" target="_self">NEHOGNonMaximaSuppressionKernel</a></td><td class="desc">NEON kernel to perform in-place computation of euclidean distance based non-maxima suppression for <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
-<tr id="row_24_1_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_orientation_binning_kernel.xhtml" target="_self">NEHOGOrientationBinningKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> Orientation Binning </td></tr>
-<tr id="row_24_1_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml" target="_self">NEIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
-<tr id="row_24_1_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l_k_tracker_kernel.xhtml" target="_self">NELKTrackerKernel</a></td><td class="desc">Interface for the Lucas-Kanade tracker kernel </td></tr>
-<tr id="row_24_1_39_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_norm_kernel.xhtml" target="_self">NELogits1DNormKernel</a></td><td class="desc">Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits </td></tr>
-<tr id="row_24_1_40_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_shift_exp_sum_kernel.xhtml" target="_self">NELogits1DShiftExpSumKernel</a></td><td class="desc">Interface for shifting the logits values around the max value and exponentiating the result </td></tr>
-<tr id="row_24_1_41_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_f_p16_kernel.xhtml" target="_self">NEMagnitudePhaseFP16Kernel< mag_type, phase_type ></a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
-<tr id="row_24_1_42_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" target="_self">NEMagnitudePhaseKernel< mag_type, phase_type ></a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
-<tr id="row_24_1_43_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev_kernel.xhtml" target="_self">NEMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
-<tr id="row_24_1_44_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_kernel.xhtml" target="_self">NEMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
-<tr id="row_24_1_45_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location_kernel.xhtml" target="_self">NEMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
-<tr id="row_24_1_46_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter_kernel.xhtml" target="_self">NENonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
-<tr id="row_24_1_47_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_1_47_" class="arrow" onclick="toggleFolder('24_1_47_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_kernel.xhtml" target="_self">NENonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using NEON </td></tr>
-<tr id="row_24_1_47_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_f_p16_kernel.xhtml" target="_self">NENonMaximaSuppression3x3FP16Kernel</a></td><td class="desc">NEON kernel to perform Non-Maxima suppression 3x3 </td></tr>
-<tr id="row_24_1_48_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml" target="_self">NENormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
-<tr id="row_24_1_49_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml" target="_self">NEPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
-<tr id="row_24_1_50_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer_kernel.xhtml" target="_self">NEPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
-<tr id="row_24_1_51_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap_kernel.xhtml" target="_self">NERemapKernel</a></td><td class="desc">NEON kernel to perform a remap on a tensor </td></tr>
-<tr id="row_24_1_52_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml" target="_self">NEScaleKernel</a></td><td class="desc">NEON kernel to perform scaling on a tensor </td></tr>
-<tr id="row_24_1_53_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3_kernel.xhtml" target="_self">NEScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
-<tr id="row_24_1_54_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3_kernel.xhtml" target="_self">NESobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel X filter on a tensor </td></tr>
-<tr id="row_24_1_55_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_hor_kernel.xhtml" target="_self">NESobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
-<tr id="row_24_1_56_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_vert_kernel.xhtml" target="_self">NESobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel Y filter on a tensor </td></tr>
-<tr id="row_24_1_57_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_hor_kernel.xhtml" target="_self">NESobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
-<tr id="row_24_1_58_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_vert_kernel.xhtml" target="_self">NESobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel Y filter on a tensor </td></tr>
-<tr id="row_24_1_59_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml" target="_self">NEThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
-<tr id="row_24_1_60_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose_kernel.xhtml" target="_self">NETransposeKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix </td></tr>
+<tr id="row_24_1_25_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">NEGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply matrices </td></tr>
+<tr id="row_24_1_26_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">NEGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">NEON kernel to add a bias to each row of the input tensor </td></tr>
+<tr id="row_24_1_27_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">NEGEMMMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_24_1_28_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_1_28_" class="arrow" onclick="toggleFolder('24_1_28_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_kernel.xhtml" target="_self">NEGradientKernel</a></td><td class="desc">Computes magnitude and quantised phase from inputs gradients </td></tr>
+<tr id="row_24_1_28_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_f_p16_kernel.xhtml" target="_self">NEGradientFP16Kernel</a></td><td class="desc">NEON kernel to perform Gradient computation </td></tr>
+<tr id="row_24_1_29_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_border_kernel.xhtml" target="_self">NEHistogramBorderKernel</a></td><td class="desc">Interface for the histogram border handling kernel </td></tr>
+<tr id="row_24_1_30_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml" target="_self">NEHistogramKernel</a></td><td class="desc">Interface for the histogram kernel </td></tr>
+<tr id="row_24_1_31_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_block_normalization_kernel.xhtml" target="_self">NEHOGBlockNormalizationKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> block normalization </td></tr>
+<tr id="row_24_1_32_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector_kernel.xhtml" target="_self">NEHOGDetectorKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector kernel using linear SVM </td></tr>
+<tr id="row_24_1_33_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_non_maxima_suppression_kernel.xhtml" target="_self">NEHOGNonMaximaSuppressionKernel</a></td><td class="desc">NEON kernel to perform in-place computation of euclidean distance based non-maxima suppression for <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
+<tr id="row_24_1_34_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_orientation_binning_kernel.xhtml" target="_self">NEHOGOrientationBinningKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> Orientation Binning </td></tr>
+<tr id="row_24_1_35_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml" target="_self">NEIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
+<tr id="row_24_1_36_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l_k_tracker_kernel.xhtml" target="_self">NELKTrackerKernel</a></td><td class="desc">Interface for the Lucas-Kanade tracker kernel </td></tr>
+<tr id="row_24_1_37_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_norm_kernel.xhtml" target="_self">NELogits1DNormKernel</a></td><td class="desc">Interface for calculating the final step of the Softmax Layer where each logit value is multiplied by the inverse of the sum of the logits </td></tr>
+<tr id="row_24_1_38_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_shift_exp_sum_kernel.xhtml" target="_self">NELogits1DShiftExpSumKernel</a></td><td class="desc">Interface for shifting the logits values around the max value and exponentiating the result </td></tr>
+<tr id="row_24_1_39_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_f_p16_kernel.xhtml" target="_self">NEMagnitudePhaseFP16Kernel< mag_type, phase_type ></a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
+<tr id="row_24_1_40_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" target="_self">NEMagnitudePhaseKernel< mag_type, phase_type ></a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
+<tr id="row_24_1_41_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev_kernel.xhtml" target="_self">NEMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
+<tr id="row_24_1_42_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_kernel.xhtml" target="_self">NEMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
+<tr id="row_24_1_43_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location_kernel.xhtml" target="_self">NEMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
+<tr id="row_24_1_44_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter_kernel.xhtml" target="_self">NENonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
+<tr id="row_24_1_45_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span id="arr_24_1_45_" class="arrow" onclick="toggleFolder('24_1_45_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_kernel.xhtml" target="_self">NENonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using NEON </td></tr>
+<tr id="row_24_1_45_0_" style="display:none;"><td class="entry"><span style="width:64px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_f_p16_kernel.xhtml" target="_self">NENonMaximaSuppression3x3FP16Kernel</a></td><td class="desc">NEON kernel to perform Non-Maxima suppression 3x3 </td></tr>
+<tr id="row_24_1_46_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml" target="_self">NENormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
+<tr id="row_24_1_47_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml" target="_self">NEPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
+<tr id="row_24_1_48_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer_kernel.xhtml" target="_self">NEPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
+<tr id="row_24_1_49_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap_kernel.xhtml" target="_self">NERemapKernel</a></td><td class="desc">NEON kernel to perform a remap on a tensor </td></tr>
+<tr id="row_24_1_50_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml" target="_self">NEScaleKernel</a></td><td class="desc">NEON kernel to perform scaling on a tensor </td></tr>
+<tr id="row_24_1_51_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3_kernel.xhtml" target="_self">NEScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
+<tr id="row_24_1_52_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3_kernel.xhtml" target="_self">NESobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel X filter on a tensor </td></tr>
+<tr id="row_24_1_53_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_hor_kernel.xhtml" target="_self">NESobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
+<tr id="row_24_1_54_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_vert_kernel.xhtml" target="_self">NESobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel Y filter on a tensor </td></tr>
+<tr id="row_24_1_55_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_hor_kernel.xhtml" target="_self">NESobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
+<tr id="row_24_1_56_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_vert_kernel.xhtml" target="_self">NESobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel Y filter on a tensor </td></tr>
+<tr id="row_24_1_57_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml" target="_self">NEThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
+<tr id="row_24_1_58_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose_kernel.xhtml" target="_self">NETransposeKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix </td></tr>
<tr id="row_25_"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_25_" class="arrow" onclick="toggleFolder('25_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_lut.xhtml" target="_self">ILut</a></td><td class="desc">Lookup Table object interface </td></tr>
<tr id="row_25_0_" class="even" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_25_0_" class="arrow" onclick="toggleFolder('25_0_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_lut.xhtml" target="_self">ICLLut</a></td><td class="desc">Interface for OpenCL LUT </td></tr>
<tr id="row_25_0_0_" class="even" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_lut.xhtml" target="_self">CLLut</a></td><td class="desc">Basic implementation of the OpenCL lut interface </td></tr>
@@ -498,36 +500,37 @@
<tr id="row_29_0_0_" class="even" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_multi_image.xhtml" target="_self">CLMultiImage</a></td><td class="desc">Basic implementation of the CL multi-planar image interface </td></tr>
<tr id="row_29_1_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image.xhtml" target="_self">MultiImage</a></td><td class="desc">Basic implementation of the multi-planar image interface </td></tr>
<tr id="row_30_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_internal_keypoint.xhtml" target="_self">InternalKeypoint</a></td><td class="desc"></td></tr>
-<tr id="row_31_"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_31_" class="arrow" onclick="toggleFolder('31_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pyramid.xhtml" target="_self">IPyramid</a></td><td class="desc">Interface for pyramid data-object </td></tr>
-<tr id="row_31_0_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pyramid.xhtml" target="_self">CLPyramid</a></td><td class="desc">Basic implementation of the OpenCL pyramid interface </td></tr>
-<tr id="row_31_1_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid.xhtml" target="_self">Pyramid</a></td><td class="desc">Basic implementation of the pyramid interface </td></tr>
-<tr id="row_32_" class="even"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_32_" class="arrow" onclick="toggleFolder('32_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor.xhtml" target="_self">ITensor</a></td><td class="desc">Interface for NEON tensor </td></tr>
-<tr id="row_32_0_" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_32_0_" class="arrow" onclick="toggleFolder('32_0_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_tensor.xhtml" target="_self">ICLTensor</a></td><td class="desc">Interface for OpenCL tensor </td></tr>
-<tr id="row_32_0_0_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml" target="_self">CLTensor</a></td><td class="desc">Basic implementation of the OpenCL tensor interface </td></tr>
-<tr id="row_32_1_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor.xhtml" target="_self">Tensor</a></td><td class="desc">Basic implementation of the tensor interface </td></tr>
-<tr id="row_33_"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_33_" class="arrow" onclick="toggleFolder('33_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_allocator.xhtml" target="_self">ITensorAllocator</a></td><td class="desc">Interface to allocate tensors </td></tr>
-<tr id="row_33_0_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_tensor_allocator.xhtml" target="_self">CLTensorAllocator</a></td><td class="desc">Basic implementation of a CL memory tensor allocator </td></tr>
-<tr id="row_33_1_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml" target="_self">TensorAllocator</a></td><td class="desc">Basic implementation of a CPU memory tensor allocator </td></tr>
-<tr id="row_34_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_iterator.xhtml" target="_self">Iterator</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> updated by <a class="el" href="namespacearm__compute.xhtml#a78fd1c0056e9add7ab01b8e118c0038d">execute_window_loop</a> for each window element </td></tr>
-<tr id="row_35_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_kernel.xhtml" target="_self">Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> class </td></tr>
-<tr id="row_36_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_keypoint.xhtml" target="_self">Keypoint</a></td><td class="desc"></td></tr>
-<tr id="row_37_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_key_point.xhtml" target="_self">KeyPoint</a></td><td class="desc"><a class="el" href="struct_keypoint.xhtml">Keypoint</a> type </td></tr>
-<tr id="row_38_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image_info.xhtml" target="_self">MultiImageInfo</a></td><td class="desc">Store the multi-planar image's metadata </td></tr>
-<tr id="row_39_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_n_e_l_k_internal_keypoint.xhtml" target="_self">NELKInternalKeypoint</a></td><td class="desc">Internal keypoint class for Lucas-Kanade Optical Flow </td></tr>
-<tr id="row_40_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_normalization_layer_info.xhtml" target="_self">NormalizationLayerInfo</a></td><td class="desc">Normalization Layer Information class </td></tr>
-<tr id="row_41_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pad_stride_info.xhtml" target="_self">PadStrideInfo</a></td><td class="desc">Padding and stride information class </td></tr>
-<tr id="row_42_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pixel_value.xhtml" target="_self">PixelValue</a></td><td class="desc">Class describing the value of a pixel for any image format </td></tr>
-<tr id="row_43_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pooling_layer_info.xhtml" target="_self">PoolingLayerInfo</a></td><td class="desc">Pooling Layer Information class </td></tr>
-<tr id="row_44_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classtest__helpers_1_1_p_p_m_loader.xhtml" target="_self">PPMLoader</a></td><td class="desc">Class to load the content of a PPM file into an <a class="el" href="struct_image.xhtml" title="Structure to hold Image information. ">Image</a> </td></tr>
-<tr id="row_45_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_program.xhtml" target="_self">Program</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_program.xhtml" title="Program class. ">Program</a> class </td></tr>
-<tr id="row_46_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid_info.xhtml" target="_self">PyramidInfo</a></td><td class="desc">Store the <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a>'s metadata </td></tr>
-<tr id="row_47_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_rectangle.xhtml" target="_self">Rectangle</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_rectangle.xhtml" title="Rectangle type. ">Rectangle</a> type </td></tr>
-<tr id="row_48_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_size2_d.xhtml" target="_self">Size2D</a></td><td class="desc">Class for specifying the size of an image or rectangle </td></tr>
-<tr id="row_49_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_tensor3_d.xhtml" target="_self">Tensor3D</a></td><td class="desc">Structure to hold 3D tensor information </td></tr>
-<tr id="row_50_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_info.xhtml" target="_self">TensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
-<tr id="row_51_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_valid_region.xhtml" target="_self">ValidRegion</a></td><td class="desc"></td></tr>
-<tr id="row_52_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_vector.xhtml" target="_self">Vector</a></td><td class="desc">Structure to hold <a class="el" href="struct_vector.xhtml" title="Structure to hold Vector information. ">Vector</a> information </td></tr>
-<tr id="row_53_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window.xhtml" target="_self">Window</a></td><td class="desc">Describe a multidimensional execution window </td></tr>
+<tr id="row_31_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_i_o_format_info.xhtml" target="_self">IOFormatInfo</a></td><td class="desc">IO formatting information class </td></tr>
+<tr id="row_32_" class="even"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_32_" class="arrow" onclick="toggleFolder('32_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pyramid.xhtml" target="_self">IPyramid</a></td><td class="desc">Interface for pyramid data-object </td></tr>
+<tr id="row_32_0_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_pyramid.xhtml" target="_self">CLPyramid</a></td><td class="desc">Basic implementation of the OpenCL pyramid interface </td></tr>
+<tr id="row_32_1_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid.xhtml" target="_self">Pyramid</a></td><td class="desc">Basic implementation of the pyramid interface </td></tr>
+<tr id="row_33_"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_33_" class="arrow" onclick="toggleFolder('33_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor.xhtml" target="_self">ITensor</a></td><td class="desc">Interface for NEON tensor </td></tr>
+<tr id="row_33_0_" class="even" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span id="arr_33_0_" class="arrow" onclick="toggleFolder('33_0_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_c_l_tensor.xhtml" target="_self">ICLTensor</a></td><td class="desc">Interface for OpenCL tensor </td></tr>
+<tr id="row_33_0_0_" class="even" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_tensor.xhtml" target="_self">CLTensor</a></td><td class="desc">Basic implementation of the OpenCL tensor interface </td></tr>
+<tr id="row_33_1_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor.xhtml" target="_self">Tensor</a></td><td class="desc">Basic implementation of the tensor interface </td></tr>
+<tr id="row_34_" class="even"><td class="entry"><span style="width:0px;display:inline-block;"> </span><span id="arr_34_" class="arrow" onclick="toggleFolder('34_')">►</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_allocator.xhtml" target="_self">ITensorAllocator</a></td><td class="desc">Interface to allocate tensors </td></tr>
+<tr id="row_34_0_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_c_l_tensor_allocator.xhtml" target="_self">CLTensorAllocator</a></td><td class="desc">Basic implementation of a CL memory tensor allocator </td></tr>
+<tr id="row_34_1_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml" target="_self">TensorAllocator</a></td><td class="desc">Basic implementation of a CPU memory tensor allocator </td></tr>
+<tr id="row_35_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_iterator.xhtml" target="_self">Iterator</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> updated by <a class="el" href="namespacearm__compute.xhtml#a78fd1c0056e9add7ab01b8e118c0038d">execute_window_loop</a> for each window element </td></tr>
+<tr id="row_36_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_kernel.xhtml" target="_self">Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> class </td></tr>
+<tr id="row_37_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_keypoint.xhtml" target="_self">Keypoint</a></td><td class="desc"></td></tr>
+<tr id="row_38_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_key_point.xhtml" target="_self">KeyPoint</a></td><td class="desc"><a class="el" href="struct_keypoint.xhtml">Keypoint</a> type </td></tr>
+<tr id="row_39_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image_info.xhtml" target="_self">MultiImageInfo</a></td><td class="desc">Store the multi-planar image's metadata </td></tr>
+<tr id="row_40_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_n_e_l_k_internal_keypoint.xhtml" target="_self">NELKInternalKeypoint</a></td><td class="desc">Internal keypoint class for Lucas-Kanade Optical Flow </td></tr>
+<tr id="row_41_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_normalization_layer_info.xhtml" target="_self">NormalizationLayerInfo</a></td><td class="desc">Normalization Layer Information class </td></tr>
+<tr id="row_42_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pad_stride_info.xhtml" target="_self">PadStrideInfo</a></td><td class="desc">Padding and stride information class </td></tr>
+<tr id="row_43_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pixel_value.xhtml" target="_self">PixelValue</a></td><td class="desc">Class describing the value of a pixel for any image format </td></tr>
+<tr id="row_44_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pooling_layer_info.xhtml" target="_self">PoolingLayerInfo</a></td><td class="desc">Pooling Layer Information class </td></tr>
+<tr id="row_45_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classtest__helpers_1_1_p_p_m_loader.xhtml" target="_self">PPMLoader</a></td><td class="desc">Class to load the content of a PPM file into an <a class="el" href="struct_image.xhtml" title="Structure to hold Image information. ">Image</a> </td></tr>
+<tr id="row_46_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_program.xhtml" target="_self">Program</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_program.xhtml" title="Program class. ">Program</a> class </td></tr>
+<tr id="row_47_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid_info.xhtml" target="_self">PyramidInfo</a></td><td class="desc">Store the <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a>'s metadata </td></tr>
+<tr id="row_48_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_rectangle.xhtml" target="_self">Rectangle</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_rectangle.xhtml" title="Rectangle type. ">Rectangle</a> type </td></tr>
+<tr id="row_49_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_size2_d.xhtml" target="_self">Size2D</a></td><td class="desc">Class for specifying the size of an image or rectangle </td></tr>
+<tr id="row_50_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_tensor3_d.xhtml" target="_self">Tensor3D</a></td><td class="desc">Structure to hold 3D tensor information </td></tr>
+<tr id="row_51_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_info.xhtml" target="_self">TensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
+<tr id="row_52_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_valid_region.xhtml" target="_self">ValidRegion</a></td><td class="desc"></td></tr>
+<tr id="row_53_"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="struct_vector.xhtml" target="_self">Vector</a></td><td class="desc">Structure to hold <a class="el" href="struct_vector.xhtml" title="Structure to hold Vector information. ">Vector</a> information </td></tr>
+<tr id="row_54_" class="even"><td class="entry"><span style="width:16px;display:inline-block;"> </span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window.xhtml" target="_self">Window</a></td><td class="desc">Describe a multidimensional execution window </td></tr>
</table>
</div><!-- directory -->
</div><!-- contents -->
@@ -535,7 +538,7 @@
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
- <li class="footer">Generated on Fri Mar 24 2017 17:23:51 for ARM Compute Library by
+ <li class="footer">Generated on Wed Apr 12 2017 14:26:06 for ARM Compute Library by
<a href="http://www.doxygen.org/index.html">
<img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
</ul>