arm_compute v18.05
diff --git a/documentation/gc__dc_8cpp_source.xhtml b/documentation/gc__dc_8cpp_source.xhtml
index 7ba751e..79f80dc 100644
--- a/documentation/gc__dc_8cpp_source.xhtml
+++ b/documentation/gc__dc_8cpp_source.xhtml
@@ -40,7 +40,7 @@
  <tr style="height: 56px;">
   <td style="padding-left: 0.5em;">
    <div id="projectname">Compute Library
-   &#160;<span id="projectnumber">18.03</span>
+   &#160;<span id="projectnumber">18.05</span>
    </div>
   </td>
  </tr>
@@ -117,16 +117,15 @@
 <div class="title">gc_dc.cpp</div>  </div>
 </div><!--header-->
 <div class="contents">
-<a href="gc__dc_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017, 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#ifndef ARM_COMPUTE_GC</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="preprocessor">#error &quot;This example needs to be built with -DARM_COMPUTE_GC&quot;</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* ARM_COMPUTE_GC */</span><span class="preprocessor"></span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_g_c_functions_8h.xhtml">arm_compute/runtime/GLES_COMPUTE/GCFunctions.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_g_c_scheduler_8h.xhtml">arm_compute/runtime/GLES_COMPUTE/GCScheduler.h</a>&quot;</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#include &quot;half/half.hpp&quot;</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="utils_2_utils_8h.xhtml">utils/Utils.h</a>&quot;</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute.xhtml">arm_compute</a>;</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="keyword">using namespace </span>utils;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="keyword">class </span>GCDCExample : <span class="keyword">public</span> <a class="code" href="classarm__compute_1_1utils_1_1_example.xhtml">Example</a></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;{</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="keyword">public</span>:</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;    <span class="keywordtype">void</span> do_setup(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)<span class="keyword"> override</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;        <a class="code" href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argc);</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;        <a class="code" href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a>(argv);</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;        <span class="comment">// init instance</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;        <a class="code" href="classarm__compute_1_1_g_c_scheduler.xhtml#ac758c6b5a7ccc31b7193cfde59c32109">GCScheduler::get</a>().<a class="code" href="classarm__compute_1_1_g_c_scheduler.xhtml#a19bb5002a62b62e050e89c975f7b9fdf">default_init</a>();</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>  src_shape   = <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>{ 11<a class="code" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb">U</a> <span class="comment">/* W */</span>, 13<a class="code" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb">U</a> <span class="comment">/* H */</span>, 4U <span class="comment">/* C */</span>, 3U <span class="comment">/* N */</span> };</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_size = 3;</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          stride_x    = 1;</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          stride_y    = 1;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          pad_x       = 0;</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          pad_y       = 0;</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> num_kernels = 256;</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;        <span class="keyword">const</span> <a class="code" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a>     <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>   = <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">DataType::F16</a>;</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        <span class="comment">// generate shape</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>   weights_shape(kernel_size, kernel_size, src_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">z</a>(), num_kernels);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>   bias_shape(num_kernels);</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> pad_info(stride_x, stride_y, pad_x, pad_y, <a class="code" href="namespacearm__compute.xhtml#a1fece1bd804e64f39f602d1c3969849aa56c1e354d36beb85b0d881c5b2e24cbe">DimensionRoundingType::FLOOR</a>);</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;        <span class="comment">// output shape should be 9*11*256*3 (W*H*C*N)</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> dst_shape = get_output_shape(src_shape, weights_shape, pad_info);</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;        <span class="comment">// create tensors</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(src_shape, 1, data_type));</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;        weights.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(weights_shape, 1, data_type));</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;        bias.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(bias_shape, 1, data_type));</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#ad6dc6b773780dd6b1ad17fc82368d9f3">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_i_tensor_allocator.xhtml#aa72161e0e3c0f6b2da20f835de6af680">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(dst_shape, 1, data_type));</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        <span class="comment">// configure layer</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>.configure(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>, &amp;weights, &amp;bias, &amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, pad_info);</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;        <span class="comment">// allocate tensors</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.allocator()-&gt;allocate();</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        weights.allocator()-&gt;allocate();</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;        bias.allocator()-&gt;allocate();</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#ad6dc6b773780dd6b1ad17fc82368d9f3">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_i_tensor_allocator.xhtml#aa8a4946cd749d482dd996874d295af85">allocate</a>();</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;        <span class="comment">// To demonstrate how to fill tensor with some values...</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.map();</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> window;</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;        window.<a class="code" href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">use_tensor_dimensions</a>(src_shape);</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;        <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> it(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>, window);</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;        <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;        {</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;            *<span class="keyword">reinterpret_cast&lt;</span><a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half_float::half</a> *<span class="keyword">&gt;</span>(it.ptr()) = <a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half_float::half</a>(1.f);</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;        });</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.unmap();</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    }</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="keywordtype">void</span> do_run()<span class="keyword"> override</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;        <span class="comment">// run the layer</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>.run();</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    }</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="keywordtype">void</span> do_teardown()<span class="keyword"> override</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;        <span class="comment">// check result</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a14c53d2d17be6fa8a2c9861527c7b002">map</a>();</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;        <span class="comment">// do something</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a1ffeb3b5abb3d61f62b58a391816201c">unmap</a>();</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    }</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="keyword">private</span>:</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    <a class="code" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>                 <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>{}, weights{}, bias{}, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>{};</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;    <a class="code" href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">GCDirectConvolutionLayer</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>{};</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> get_output_shape(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> in_shape, <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> kernel_shape, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> &amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>)</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    {</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;        <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape(in_shape);</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;        <span class="keyword">const</span> std::pair&lt;unsigned int, unsigned int&gt; scaled_dims = <a class="code" href="namespacearm__compute.xhtml#a3d3d8bf7b86db4d7d4ebfe5b332f41b3">scaled_dimensions</a>(in_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>(),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                                                                                    in_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>(),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                                                                                    kernel_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>(),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                                                                                    kernel_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>(),</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;                                                                                    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>);</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;        out_shape.set(0, scaled_dims.first);</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        out_shape.set(1, scaled_dims.second);</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        out_shape.set(2, kernel_shape[3]);</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;        <span class="keywordflow">return</span> out_shape;</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    }</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;};</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;</div><div class="line"><a name="l00127"></a><span class="lineno"><a class="line" href="gc__dc_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">  127</a></span>&#160;<span class="keywordtype">int</span> <a class="code" href="gc__dc_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a>(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;{</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;    <span class="keywordflow">return</span> utils::run_example&lt;GCDCExample&gt;(argc, argv);</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_a336121cb63ed79fa0a072eed03d694ac"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">arm_compute::Dimensions::z</a></div><div class="ttdeci">T z() const </div><div class="ttdoc">Alias to access the size of the third dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00091">Dimensions.h:91</a></div></div>
+<a href="gc__dc_8cpp.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno">    1</span>&#160;<span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno">    2</span>&#160;<span class="comment"> * Copyright (c) 2017, 2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno">    3</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno">    4</span>&#160;<span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno">    5</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno">    6</span>&#160;<span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno">    7</span>&#160;<span class="comment"> * of this software and associated documentation files (the &quot;Software&quot;), to</span></div><div class="line"><a name="l00008"></a><span class="lineno">    8</span>&#160;<span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno">    9</span>&#160;<span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno">   10</span>&#160;<span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno">   11</span>&#160;<span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno">   12</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno">   13</span>&#160;<span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno">   14</span>&#160;<span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno">   15</span>&#160;<span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno">   16</span>&#160;<span class="comment"> * THE SOFTWARE IS PROVIDED &quot;AS IS&quot;, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno">   17</span>&#160;<span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno">   18</span>&#160;<span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno">   19</span>&#160;<span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno">   20</span>&#160;<span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno">   21</span>&#160;<span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno">   22</span>&#160;<span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno">   23</span>&#160;<span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno">   24</span>&#160;<span class="preprocessor">#ifndef ARM_COMPUTE_GC</span></div><div class="line"><a name="l00025"></a><span class="lineno">   25</span>&#160;<span class="preprocessor">#error &quot;This example needs to be built with -DARM_COMPUTE_GC&quot;</span></div><div class="line"><a name="l00026"></a><span class="lineno">   26</span>&#160;<span class="preprocessor">#endif </span><span class="comment">/* ARM_COMPUTE_GC */</span><span class="preprocessor"></span></div><div class="line"><a name="l00027"></a><span class="lineno">   27</span>&#160;</div><div class="line"><a name="l00028"></a><span class="lineno">   28</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_g_c_functions_8h.xhtml">arm_compute/runtime/GLES_COMPUTE/GCFunctions.h</a>&quot;</span></div><div class="line"><a name="l00029"></a><span class="lineno">   29</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="_g_c_scheduler_8h.xhtml">arm_compute/runtime/GLES_COMPUTE/GCScheduler.h</a>&quot;</span></div><div class="line"><a name="l00030"></a><span class="lineno">   30</span>&#160;<span class="preprocessor">#include &quot;half/half.hpp&quot;</span></div><div class="line"><a name="l00031"></a><span class="lineno">   31</span>&#160;<span class="preprocessor">#include &quot;<a class="code" href="utils_2_utils_8h.xhtml">utils/Utils.h</a>&quot;</span></div><div class="line"><a name="l00032"></a><span class="lineno">   32</span>&#160;</div><div class="line"><a name="l00033"></a><span class="lineno">   33</span>&#160;<span class="keyword">using namespace </span><a class="code" href="namespacearm__compute.xhtml">arm_compute</a>;</div><div class="line"><a name="l00034"></a><span class="lineno">   34</span>&#160;<span class="keyword">using namespace </span>utils;</div><div class="line"><a name="l00035"></a><span class="lineno">   35</span>&#160;</div><div class="line"><a name="l00036"></a><span class="lineno">   36</span>&#160;<span class="keyword">class </span>GCDCExample : <span class="keyword">public</span> <a class="code" href="classarm__compute_1_1utils_1_1_example.xhtml">Example</a></div><div class="line"><a name="l00037"></a><span class="lineno">   37</span>&#160;{</div><div class="line"><a name="l00038"></a><span class="lineno">   38</span>&#160;<span class="keyword">public</span>:</div><div class="line"><a name="l00039"></a><span class="lineno">   39</span>&#160;    <span class="keywordtype">void</span> do_setup(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)<span class="keyword"> override</span></div><div class="line"><a name="l00040"></a><span class="lineno">   40</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;        <a class="code" href="_error_8h.xhtml#a6dc630a6ae9cc063b3924bcea8dee9d6">ARM_COMPUTE_UNUSED</a>(argc);</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;        <a class="code" href="_error_8h.xhtml#a6dc630a6ae9cc063b3924bcea8dee9d6">ARM_COMPUTE_UNUSED</a>(argv);</div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;</div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;        <span class="comment">// init instance</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;        <a class="code" href="classarm__compute_1_1_g_c_scheduler.xhtml#ac758c6b5a7ccc31b7193cfde59c32109">GCScheduler::get</a>().<a class="code" href="classarm__compute_1_1_g_c_scheduler.xhtml#a19bb5002a62b62e050e89c975f7b9fdf">default_init</a>();</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;</div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>  src_shape   = <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>{ 11<a class="code" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb">U</a> <span class="comment">/* W */</span>, 13<a class="code" href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb">U</a> <span class="comment">/* H */</span>, 4U <span class="comment">/* C */</span>, 3U <span class="comment">/* N */</span> };</div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> kernel_size = 3;</div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          stride_x    = 1;</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          stride_y    = 1;</div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          pad_x       = 0;</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">int</span>          pad_y       = 0;</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;        <span class="keyword">const</span> <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> num_kernels = 256;</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;        <span class="keyword">const</span> <a class="code" href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">DataType</a>     <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">data_type</a>   = <a class="code" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a56d8353718e6fdc78b8d69078a2cdb94">DataType::F16</a>;</div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;        <span class="comment">// generate shape</span></div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>   weights_shape(kernel_size, kernel_size, src_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">z</a>(), num_kernels);</div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>   bias_shape(num_kernels);</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> pad_info(stride_x, stride_y, pad_x, pad_y, <a class="code" href="namespacearm__compute.xhtml#a1fece1bd804e64f39f602d1c3969849aa56c1e354d36beb85b0d881c5b2e24cbe">DimensionRoundingType::FLOOR</a>);</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;        <span class="comment">// output shape should be 9*11*256*3 (W*H*C*N)</span></div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;        <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> dst_shape = get_output_shape(src_shape, weights_shape, pad_info);</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;        <span class="comment">// create tensors</span></div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(src_shape, 1, data_type));</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;        weights.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(weights_shape, 1, data_type));</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;        bias.allocator()-&gt;init(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(bias_shape, 1, data_type));</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a256b18d4e6fdbbff14937b4b9089bdd3">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_i_tensor_allocator.xhtml#aa72161e0e3c0f6b2da20f835de6af680">init</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(dst_shape, 1, data_type));</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        <span class="comment">// configure layer</span></div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>.configure(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>, &amp;weights, &amp;bias, &amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>, pad_info);</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;        <span class="comment">// allocate tensors</span></div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.allocator()-&gt;allocate();</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        weights.allocator()-&gt;allocate();</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;        bias.allocator()-&gt;allocate();</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a256b18d4e6fdbbff14937b4b9089bdd3">allocator</a>()-&gt;<a class="code" href="classarm__compute_1_1_c_l_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">allocate</a>();</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;        <span class="comment">// To demonstrate how to fill tensor with some values...</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.map();</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        <a class="code" href="classarm__compute_1_1_window.xhtml">Window</a> window;</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;        window.<a class="code" href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">use_tensor_dimensions</a>(src_shape);</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;        <a class="code" href="classarm__compute_1_1_iterator.xhtml">Iterator</a> it(&amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>, window);</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;        <a class="code" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a>(window, [&amp;](<span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_coordinates.xhtml">Coordinates</a> &amp; <span class="keywordtype">id</span>)</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;        {</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;            *<span class="keyword">reinterpret_cast&lt;</span><a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half_float::half</a> *<span class="keyword">&gt;</span>(it.ptr()) = <a class="code" href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">half_float::half</a>(1.f);</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;        });</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>.unmap();</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;    }</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;    <span class="keywordtype">void</span> do_run()<span class="keyword"> override</span></div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;        <span class="comment">// run the layer</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>.run();</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;    }</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;    <span class="keywordtype">void</span> do_teardown()<span class="keyword"> override</span></div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;<span class="keyword">    </span>{</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;        <span class="comment">// check result</span></div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a14c53d2d17be6fa8a2c9861527c7b002">map</a>();</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;        <span class="comment">// do something</span></div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;        <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>.<a class="code" href="classarm__compute_1_1_c_l_tensor.xhtml#a1ffeb3b5abb3d61f62b58a391816201c">unmap</a>();</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;    }</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;<span class="keyword">private</span>:</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;    <a class="code" href="classarm__compute_1_1_g_c_tensor.xhtml">GCTensor</a>                 <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>{}, weights{}, bias{}, <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>{};</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;    <a class="code" href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">GCDirectConvolutionLayer</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">conv</a>{};</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;</div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;    <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> get_output_shape(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> in_shape, <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> kernel_shape, <span class="keyword">const</span> <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a> &amp;<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>)</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;    {</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;        <a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a> out_shape(in_shape);</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;        <span class="keyword">const</span> std::pair&lt;unsigned int, unsigned int&gt; scaled_dims = <a class="code" href="namespacearm__compute.xhtml#ac78192301777700de24d8c75667baf35">scaled_dimensions</a>(in_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>(),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;                                                                                    in_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>(),</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;                                                                                    kernel_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">x</a>(),</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;                                                                                    kernel_shape.<a class="code" href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">y</a>(),</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;                                                                                    <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">info</a>);</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;        out_shape.set(0, scaled_dims.first);</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;        out_shape.set(1, scaled_dims.second);</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;        out_shape.set(2, kernel_shape[3]);</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;        <span class="keywordflow">return</span> out_shape;</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;    }</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;};</div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;</div><div class="line"><a name="l00127"></a><span class="lineno"><a class="line" href="gc__dc_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">  127</a></span>&#160;<span class="keywordtype">int</span> <a class="code" href="gc__dc_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a>(<span class="keywordtype">int</span> argc, <span class="keywordtype">char</span> **argv)</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;{</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;    <span class="keywordflow">return</span> utils::run_example&lt;GCDCExample&gt;(argc, argv);</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1_c_l_tensor_xhtml_a256b18d4e6fdbbff14937b4b9089bdd3"><div class="ttname"><a href="classarm__compute_1_1_c_l_tensor.xhtml#a256b18d4e6fdbbff14937b4b9089bdd3">arm_compute::CLTensor::allocator</a></div><div class="ttdeci">CLTensorAllocator * allocator()</div><div class="ttdoc">Return a pointer to the tensor&amp;#39;s allocator. </div></div>
+<div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_a336121cb63ed79fa0a072eed03d694ac"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#a336121cb63ed79fa0a072eed03d694ac">arm_compute::Dimensions::z</a></div><div class="ttdeci">T z() const </div><div class="ttdoc">Alias to access the size of the third dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00091">Dimensions.h:91</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00039">TensorShape.h:39</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_c_l_tensor_xhtml_ad6dc6b773780dd6b1ad17fc82368d9f3"><div class="ttname"><a href="classarm__compute_1_1_c_l_tensor.xhtml#ad6dc6b773780dd6b1ad17fc82368d9f3">arm_compute::CLTensor::allocator</a></div><div class="ttdeci">ITensorAllocator * allocator()</div><div class="ttdoc">Return a pointer to the tensor&amp;#39;s allocator. </div></div>
 <div class="ttc" id="utils_2_utils_8h_xhtml"><div class="ttname"><a href="utils_2_utils_8h.xhtml">Utils.h</a></div></div>
 <div class="ttc" id="namespacearm__compute_xhtml_a1fece1bd804e64f39f602d1c3969849aa56c1e354d36beb85b0d881c5b2e24cbe"><div class="ttname"><a href="namespacearm__compute.xhtml#a1fece1bd804e64f39f602d1c3969849aa56c1e354d36beb85b0d881c5b2e24cbe">arm_compute::DimensionRoundingType::FLOOR</a></div><div class="ttdoc">Floor rounding. </div></div>
 <div class="ttc" id="namespacearm__compute_xhtml_a73e2825fd61d349c5ca2f5313e3c8ea1"><div class="ttname"><a href="namespacearm__compute.xhtml#a73e2825fd61d349c5ca2f5313e3c8ea1">arm_compute::half</a></div><div class="ttdeci">half_float::half half</div><div class="ttdoc">16-bit floating point type </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00044">Types.h:44</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adf88bb8e946175c496fb362aa458128b"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adf88bb8e946175c496fb362aa458128b">arm_compute::test::validation::conv</a></div><div class="ttdeci">int16_t conv[25]</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_convolution_8cpp_source.xhtml#l00140">Convolution.cpp:140</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_g_c_direct_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">arm_compute::GCDirectConvolutionLayer</a></div><div class="ttdoc">Basic function to execute direct convolution function. </div><div class="ttdef"><b>Definition:</b> <a href="_g_c_direct_convolution_layer_8h_source.xhtml#l00049">GCDirectConvolutionLayer.h:49</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_g_c_direct_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1_g_c_direct_convolution_layer.xhtml">arm_compute::GCDirectConvolutionLayer</a></div><div class="ttdoc">Basic function to execute direct convolution function. </div><div class="ttdef"><b>Definition:</b> <a href="_g_c_direct_convolution_layer_8h_source.xhtml#l00050">GCDirectConvolutionLayer.h:50</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_g_c_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1_g_c_tensor.xhtml">arm_compute::GCTensor</a></div><div class="ttdoc">Interface for OpenGL ES tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_g_c_tensor_8h_source.xhtml#l00037">GCTensor.h:37</a></div></div>
-<div class="ttc" id="core_2_error_8h_xhtml_a4103adbb45806b2f2002d44b91d0d206"><div class="ttname"><a href="core_2_error_8h.xhtml#a4103adbb45806b2f2002d44b91d0d206">ARM_COMPUTE_UNUSED</a></div><div class="ttdeci">#define ARM_COMPUTE_UNUSED(var)</div><div class="ttdoc">To avoid unused variables warnings. </div><div class="ttdef"><b>Definition:</b> <a href="core_2_error_8h_source.xhtml#l00147">Error.h:147</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_window_xhtml_a14470b4cb59140a1b6ff3b8f16c89ab6"><div class="ttname"><a href="classarm__compute_1_1_window.xhtml#a14470b4cb59140a1b6ff3b8f16c89ab6">arm_compute::Window::use_tensor_dimensions</a></div><div class="ttdeci">void use_tensor_dimensions(const TensorShape &amp;shape, size_t first_dimension=Window::DimX)</div><div class="ttdoc">Use the tensor&amp;#39;s dimensions to fill the window dimensions. </div><div class="ttdef"><b>Definition:</b> <a href="_window_8inl_source.xhtml#l00240">Window.inl:240</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a096668313a9a819d54a2e65ec21ff0cc"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a096668313a9a819d54a2e65ec21ff0cc">arm_compute::test::validation::info</a></div><div class="ttdeci">src info() -&gt; set_format(Format::S16)</div></div>
 <div class="ttc" id="namespacearm__compute_xhtml"><div class="ttname"><a href="namespacearm__compute.xhtml">arm_compute</a></div><div class="ttdoc">This file contains all available output stages for GEMMLowp on OpenCL. </div><div class="ttdef"><b>Definition:</b> <a href="00__introduction_8dox_source.xhtml#l00001">00_introduction.dox:1</a></div></div>
@@ -134,21 +133,22 @@
 <div class="ttc" id="classarm__compute_1_1_c_l_tensor_xhtml_a14c53d2d17be6fa8a2c9861527c7b002"><div class="ttname"><a href="classarm__compute_1_1_c_l_tensor.xhtml#a14c53d2d17be6fa8a2c9861527c7b002">arm_compute::CLTensor::map</a></div><div class="ttdeci">void map(bool blocking=true)</div><div class="ttdoc">Enqueue a map operation of the allocated buffer. </div></div>
 <div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_afb5cd37bb08f1029691590372e6330f0"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#afb5cd37bb08f1029691590372e6330f0">arm_compute::Dimensions::x</a></div><div class="ttdeci">T x() const </div><div class="ttdoc">Alias to access the size of the first dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00081">Dimensions.h:81</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_ac2ad7f431e3446fddcd9b6b9f93c4c14"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#ac2ad7f431e3446fddcd9b6b9f93c4c14">arm_compute::test::validation::data_type</a></div><div class="ttdeci">data_type</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_g_e_m_m_8cpp_source.xhtml#l00116">GEMM.cpp:116</a></div></div>
+<div class="ttc" id="_error_8h_xhtml_a6dc630a6ae9cc063b3924bcea8dee9d6"><div class="ttname"><a href="_error_8h.xhtml#a6dc630a6ae9cc063b3924bcea8dee9d6">ARM_COMPUTE_UNUSED</a></div><div class="ttdeci">#define ARM_COMPUTE_UNUSED(...)</div><div class="ttdoc">To avoid unused variables warnings. </div><div class="ttdef"><b>Definition:</b> <a href="_error_8h_source.xhtml#l00159">Error.h:159</a></div></div>
 <div class="ttc" id="namespacearm__compute_xhtml_a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb"><div class="ttname"><a href="namespacearm__compute.xhtml#a1ce9b523fd4f3b5bbcadcd796183455aa4c614360da93c0a041b22e537de151eb">arm_compute::Channel::U</a></div><div class="ttdoc">Cb/U channel. </div></div>
 <div class="ttc" id="namespacearm__compute_xhtml_a6c0dcc38187027dcb89cd9724bc5a823"><div class="ttname"><a href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">arm_compute::execute_window_loop</a></div><div class="ttdeci">void execute_window_loop(const Window &amp;w, L &amp;&amp;lambda_function, Ts &amp;&amp;...iterators)</div><div class="ttdoc">Iterate through the passed window, automatically adjusting the iterators and calling the lambda_funct...</div><div class="ttdef"><b>Definition:</b> <a href="_helpers_8inl_source.xhtml#l00122">Helpers.inl:122</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_coordinates_xhtml"><div class="ttname"><a href="classarm__compute_1_1_coordinates.xhtml">arm_compute::Coordinates</a></div><div class="ttdoc">Coordinates of an item. </div><div class="ttdef"><b>Definition:</b> <a href="_coordinates_8h_source.xhtml#l00037">Coordinates.h:37</a></div></div>
 <div class="ttc" id="classarm__compute_1_1utils_1_1_example_xhtml"><div class="ttname"><a href="classarm__compute_1_1utils_1_1_example.xhtml">arm_compute::utils::Example</a></div><div class="ttdoc">Abstract Example class. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8h_source.xhtml#l00062">Utils.h:62</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_pad_stride_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pad_stride_info.xhtml">arm_compute::PadStrideInfo</a></div><div class="ttdoc">Padding and stride information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00491">Types.h:491</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_pad_stride_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pad_stride_info.xhtml">arm_compute::PadStrideInfo</a></div><div class="ttdoc">Padding and stride information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00571">Types.h:571</a></div></div>
 <div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adbf67dcee294e673cf796f1ed8aeb6a4"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">arm_compute::test::validation::dst</a></div><div class="ttdeci">CLTensor dst</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_convolution_8cpp_source.xhtml#l00137">Convolution.cpp:137</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_i_tensor_allocator_xhtml_aa8a4946cd749d482dd996874d295af85"><div class="ttname"><a href="classarm__compute_1_1_i_tensor_allocator.xhtml#aa8a4946cd749d482dd996874d295af85">arm_compute::ITensorAllocator::allocate</a></div><div class="ttdeci">virtual void allocate()=0</div><div class="ttdoc">Interface to be implemented by the child class to allocate the tensor. </div></div>
 <div class="ttc" id="gc__dc_8cpp_xhtml_a3c04138a5bfe5d72780bb7e82a18e627"><div class="ttname"><a href="gc__dc_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a></div><div class="ttdeci">int main(int argc, char **argv)</div><div class="ttdoc">Main program for directconvolution test. </div><div class="ttdef"><b>Definition:</b> <a href="gc__dc_8cpp_source.xhtml#l00127">gc_dc.cpp:127</a></div></div>
 <div class="ttc" id="_g_c_functions_8h_xhtml"><div class="ttname"><a href="_g_c_functions_8h.xhtml">GCFunctions.h</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_c_l_tensor_allocator_xhtml_a6e509c2a177b0b29e9e2369535094dee"><div class="ttname"><a href="classarm__compute_1_1_c_l_tensor_allocator.xhtml#a6e509c2a177b0b29e9e2369535094dee">arm_compute::CLTensorAllocator::allocate</a></div><div class="ttdeci">void allocate() override</div><div class="ttdoc">Allocate size specified by TensorInfo of OpenCL memory. </div></div>
 <div class="ttc" id="classarm__compute_1_1_dimensions_xhtml_a691c9cb93365c2e33f3429de43244098"><div class="ttname"><a href="classarm__compute_1_1_dimensions.xhtml#a691c9cb93365c2e33f3429de43244098">arm_compute::Dimensions::y</a></div><div class="ttdeci">T y() const </div><div class="ttdoc">Alias to access the size of the second dimension. </div><div class="ttdef"><b>Definition:</b> <a href="_dimensions_8h_source.xhtml#l00086">Dimensions.h:86</a></div></div>
-<div class="ttc" id="namespacearm__compute_xhtml_a3d3d8bf7b86db4d7d4ebfe5b332f41b3"><div class="ttname"><a href="namespacearm__compute.xhtml#a3d3d8bf7b86db4d7d4ebfe5b332f41b3">arm_compute::scaled_dimensions</a></div><div class="ttdeci">const std::pair&lt; unsigned int, unsigned int &gt; scaled_dimensions(unsigned int width, unsigned int height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &amp;pad_stride_info)</div><div class="ttdoc">Returns expected width and height of output scaled tensor depending on dimensions rounding mode...</div></div>
 <div class="ttc" id="classarm__compute_1_1_i_tensor_allocator_xhtml_aa72161e0e3c0f6b2da20f835de6af680"><div class="ttname"><a href="classarm__compute_1_1_i_tensor_allocator.xhtml#aa72161e0e3c0f6b2da20f835de6af680">arm_compute::ITensorAllocator::init</a></div><div class="ttdeci">void init(const TensorInfo &amp;input)</div><div class="ttdoc">Initialize a tensor based on the passed TensorInfo. </div></div>
+<div class="ttc" id="namespacearm__compute_xhtml_ac78192301777700de24d8c75667baf35"><div class="ttname"><a href="namespacearm__compute.xhtml#ac78192301777700de24d8c75667baf35">arm_compute::scaled_dimensions</a></div><div class="ttdeci">const std::pair&lt; unsigned int, unsigned int &gt; scaled_dimensions(unsigned int width, unsigned int height, unsigned int kernel_width, unsigned int kernel_height, const PadStrideInfo &amp;pad_stride_info, const Size2D &amp;dilation=Size2D(1U, 1U))</div><div class="ttdoc">Returns expected width and height of output scaled tensor depending on dimensions rounding mode...</div></div>
 <div class="ttc" id="_g_c_scheduler_8h_xhtml"><div class="ttname"><a href="_g_c_scheduler_8h.xhtml">GCScheduler.h</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&amp;#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00044">TensorInfo.h:44</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_iterator_xhtml"><div class="ttname"><a href="classarm__compute_1_1_iterator.xhtml">arm_compute::Iterator</a></div><div class="ttdoc">Iterator updated by execute_window_loop for each window element. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_helpers_8h_source.xhtml#l00257">Helpers.h:257</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&amp;#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00045">TensorInfo.h:45</a></div></div>
+<div class="ttc" id="classarm__compute_1_1_iterator_xhtml"><div class="ttname"><a href="classarm__compute_1_1_iterator.xhtml">arm_compute::Iterator</a></div><div class="ttdoc">Iterator updated by execute_window_loop for each window element. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_helpers_8h_source.xhtml#l00284">Helpers.h:284</a></div></div>
 <div class="ttc" id="namespacearm__compute_xhtml_ad8ed01ff3ff33333d8e19db4d2818bb6"><div class="ttname"><a href="namespacearm__compute.xhtml#ad8ed01ff3ff33333d8e19db4d2818bb6">arm_compute::DataType</a></div><div class="ttdeci">DataType</div><div class="ttdoc">Available data types. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00072">Types.h:72</a></div></div>
 <div class="ttc" id="classarm__compute_1_1_c_l_tensor_xhtml_a1ffeb3b5abb3d61f62b58a391816201c"><div class="ttname"><a href="classarm__compute_1_1_c_l_tensor.xhtml#a1ffeb3b5abb3d61f62b58a391816201c">arm_compute::CLTensor::unmap</a></div><div class="ttdeci">void unmap()</div><div class="ttdoc">Enqueue an unmap operation of the allocated and mapped buffer. </div></div>
 <div class="ttc" id="classarm__compute_1_1_g_c_scheduler_xhtml_ac758c6b5a7ccc31b7193cfde59c32109"><div class="ttname"><a href="classarm__compute_1_1_g_c_scheduler.xhtml#ac758c6b5a7ccc31b7193cfde59c32109">arm_compute::GCScheduler::get</a></div><div class="ttdeci">static GCScheduler &amp; get()</div><div class="ttdoc">Access the scheduler singleton. </div></div>
@@ -161,7 +161,7 @@
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="gc__dc_8cpp.xhtml">gc_dc.cpp</a></li>
-    <li class="footer">Generated on Fri Mar 2 2018 12:37:53 for Compute Library by
+    <li class="footer">Generated on Wed May 23 2018 11:36:36 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
   </ul>