arm_compute v18.05
diff --git a/examples/graph_alexnet.cpp b/examples/graph_alexnet.cpp
index a396c76..9e6d919 100644
--- a/examples/graph_alexnet.cpp
+++ b/examples/graph_alexnet.cpp
@@ -21,8 +21,7 @@
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
-#include "arm_compute/graph/Graph.h"
-#include "arm_compute/graph/Nodes.h"
+#include "arm_compute/graph.h"
 #include "support/ToolchainSupport.h"
 #include "utils/GraphUtils.h"
 #include "utils/Utils.h"
@@ -32,13 +31,13 @@
 #include <memory>
 
 using namespace arm_compute::utils;
-using namespace arm_compute::graph;
+using namespace arm_compute::graph::frontend;
 using namespace arm_compute::graph_utils;
 
 /** Example demonstrating how to implement AlexNet's network using the Compute Library's graph API
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
  */
 class GraphAlexnetExample : public Example
 {
@@ -54,56 +53,69 @@
         std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<CaffePreproccessor>(mean_rgb);
 
         // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
-        const int  int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
-        TargetHint target_hint     = set_target_hint(int_target_hint);
+        const int target      = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
+        Target    target_hint = set_target_hint(target);
 
-        const bool            is_gemm_convolution5x5 = Graph::gpu_target() == arm_compute::GPUTarget::MIDGARD || target_hint == TargetHint::NEON;
-        ConvolutionMethodHint convolution_5x5_hint   = is_gemm_convolution5x5 ? ConvolutionMethodHint::GEMM : ConvolutionMethodHint::DIRECT;
+        const bool        is_neon              = (target_hint == Target::NEON);
+        ConvolutionMethod convolution_5x5_hint = is_neon ? ConvolutionMethod::GEMM : ConvolutionMethod::DIRECT;
+        ConvolutionMethod convolution_3x3_hint = ConvolutionMethod::DEFAULT;
+        FastMathHint      fast_math_hint       = FastMathHint::DISABLED;
 
         // Parse arguments
         if(argc < 2)
         {
             // Print help
-            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n";
+            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels] [fast_math_hint]\n\n";
             std::cout << "No data folder provided: using random values\n\n";
         }
         else if(argc == 2)
         {
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n";
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels] [fast_math_hint]\n\n";
             std::cout << "No data folder provided: using random values\n\n";
         }
         else if(argc == 3)
         {
             data_path = argv[2];
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n";
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels] [fast_math_hint]\n\n";
             std::cout << "No image provided: using random values\n\n";
         }
         else if(argc == 4)
         {
             data_path = argv[2];
             image     = argv[3];
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n";
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels] [fast_math_hint]\n\n";
             std::cout << "No text file with labels provided: skipping output accessor\n\n";
         }
-        else
+        else if(argc == 5)
         {
             data_path = argv[2];
             image     = argv[3];
             label     = argv[4];
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " " << argv[4] << " [fast_math_hint]\n\n";
+            std::cout << "No fast math info provided: disabling fast math\n\n";
+        }
+        else
+        {
+            data_path      = argv[2];
+            image          = argv[3];
+            label          = argv[4];
+            fast_math_hint = (std::strtol(argv[5], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
         }
 
         graph << target_hint
-              << Tensor(TensorInfo(TensorShape(227U, 227U, 3U, 1U), 1, DataType::F32),
-                        get_input_accessor(image, std::move(preprocessor)))
+              << fast_math_hint
+              << InputLayer(TensorDescriptor(TensorShape(227U, 227U, 3U, 1U), DataType::F32),
+                            get_input_accessor(image, std::move(preprocessor)))
               // Layer 1
               << ConvolutionLayer(
                   11U, 11U, 96U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv1_b.npy"),
                   PadStrideInfo(4, 4, 0, 0))
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
-              << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
-              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)))
+              .set_name("conv1")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu1")
+              << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm1")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
               // Layer 2
               << convolution_5x5_hint
               << ConvolutionLayer(
@@ -111,55 +123,64 @@
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv2_b.npy"),
                   PadStrideInfo(1, 1, 2, 2), 2)
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
-              << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))
-              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)))
-              << ConvolutionMethodHint::GEMM
+              .set_name("conv2")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu2")
+              << NormalizationLayer(NormalizationLayerInfo(NormType::CROSS_MAP, 5, 0.0001f, 0.75f)).set_name("norm2")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
+              << convolution_3x3_hint
               // Layer 3
               << ConvolutionLayer(
                   3U, 3U, 384U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv3_b.npy"),
                   PadStrideInfo(1, 1, 1, 1))
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              .set_name("conv3")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu3")
               // Layer 4
               << ConvolutionLayer(
                   3U, 3U, 384U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv4_b.npy"),
                   PadStrideInfo(1, 1, 1, 1), 2)
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              .set_name("conv4")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu4")
               // Layer 5
               << ConvolutionLayer(
                   3U, 3U, 256U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/conv5_b.npy"),
                   PadStrideInfo(1, 1, 1, 1), 2)
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
-              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0)))
+              .set_name("conv5")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu5")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0))).set_name("pool5")
               // Layer 6
               << FullyConnectedLayer(
                   4096U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc6_b.npy"))
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              .set_name("fc6")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu6")
               // Layer 7
               << FullyConnectedLayer(
                   4096U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc7_b.npy"))
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              .set_name("fc7")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu7")
               // Layer 8
               << FullyConnectedLayer(
                   1000U,
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/alexnet_model/fc8_b.npy"))
+              .set_name("fc8")
               // Softmax
-              << SoftmaxLayer()
-              << Tensor(get_output_accessor(label, 5));
+              << SoftmaxLayer().set_name("prob")
+              << OutputLayer(get_output_accessor(label, 5));
 
-        // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated
-        graph.graph_init(int_target_hint == 2);
+        // Finalize graph
+        GraphConfig config;
+        config.use_tuner = (target == 2);
+        graph.finalize(target_hint, config);
     }
     void do_run() override
     {
@@ -168,13 +189,13 @@
     }
 
 private:
-    Graph graph{};
+    Stream graph{ 0, "AlexNet" };
 };
 
 /** Main program for AlexNet
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
  */
 int main(int argc, char **argv)
 {