arm_compute v18.05
diff --git a/examples/graph_lenet.cpp b/examples/graph_lenet.cpp
index 61bc7bd..32c7582 100644
--- a/examples/graph_lenet.cpp
+++ b/examples/graph_lenet.cpp
@@ -21,8 +21,8 @@
  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  * SOFTWARE.
  */
-#include "arm_compute/graph/Graph.h"
-#include "arm_compute/graph/Nodes.h"
+#include "arm_compute/graph.h"
+
 #include "support/ToolchainSupport.h"
 #include "utils/GraphUtils.h"
 #include "utils/Utils.h"
@@ -30,13 +30,13 @@
 #include <cstdlib>
 
 using namespace arm_compute::utils;
-using namespace arm_compute::graph;
+using namespace arm_compute::graph::frontend;
 using namespace arm_compute::graph_utils;
 
 /** Example demonstrating how to implement LeNet's network using the Compute Library's graph API
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] batches )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] batches, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
  */
 class GraphLenetExample : public Example
 {
@@ -47,64 +47,81 @@
         unsigned int batches = 4; /** Number of batches */
 
         // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
-        const int  int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
-        TargetHint target_hint     = set_target_hint(int_target_hint);
+        const int target      = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
+        Target    target_hint = set_target_hint(target);
+
+        FastMathHint fast_math_hint = FastMathHint::DISABLED;
 
         // Parse arguments
         if(argc < 2)
         {
             // Print help
-            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [batches]\n\n";
+            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [batches] [fast_math_hint]\n\n";
             std::cout << "No data folder provided: using random values\n\n";
         }
         else if(argc == 2)
         {
-            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [batches]\n\n";
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [batches] [fast_math_hint]\n\n";
             std::cout << "No data folder provided: using random values\n\n";
         }
         else if(argc == 3)
         {
             //Do something with argv[1]
             data_path = argv[2];
-            std::cout << "Usage: " << argv[0] << " [path_to_data] [batches]\n\n";
+            std::cout << "Usage: " << argv[0] << " [path_to_data] [batches] [fast_math_hint]\n\n";
             std::cout << "No number of batches where specified, thus will use the default : " << batches << "\n\n";
         }
+        else if(argc == 4)
+        {
+            data_path = argv[2];
+            batches   = std::strtol(argv[3], nullptr, 0);
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [fast_math_hint]\n\n";
+            std::cout << "No fast math info provided: disabling fast math\n\n";
+        }
         else
         {
             //Do something with argv[1] and argv[2]
-            data_path = argv[2];
-            batches   = std::strtol(argv[3], nullptr, 0);
+            data_path      = argv[2];
+            batches        = std::strtol(argv[3], nullptr, 0);
+            fast_math_hint = (std::strtol(argv[4], nullptr, 1) == 0) ? FastMathHint::DISABLED : FastMathHint::ENABLED;
         }
 
         //conv1 << pool1 << conv2 << pool2 << fc1 << act1 << fc2 << smx
         graph << target_hint
-              << Tensor(TensorInfo(TensorShape(28U, 28U, 1U, batches), 1, DataType::F32), DummyAccessor())
+              << fast_math_hint
+              << InputLayer(TensorDescriptor(TensorShape(28U, 28U, 1U, batches), DataType::F32), get_input_accessor(""))
               << ConvolutionLayer(
                   5U, 5U, 20U,
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv1_b.npy"),
                   PadStrideInfo(1, 1, 0, 0))
-              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)))
+              .set_name("conv1")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool1")
               << ConvolutionLayer(
                   5U, 5U, 50U,
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/conv2_b.npy"),
                   PadStrideInfo(1, 1, 0, 0))
-              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0)))
+              .set_name("conv2")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 2, PadStrideInfo(2, 2, 0, 0))).set_name("pool2")
               << FullyConnectedLayer(
                   500U,
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip1_b.npy"))
-              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              .set_name("ip1")
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU)).set_name("relu")
               << FullyConnectedLayer(
                   10U,
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_w.npy"),
                   get_weights_accessor(data_path, "/cnn_data/lenet_model/ip2_b.npy"))
-              << SoftmaxLayer()
-              << Tensor(DummyAccessor(0));
+              .set_name("ip2")
+              << SoftmaxLayer().set_name("prob")
+              << OutputLayer(get_output_accessor(""));
 
-        // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated
-        graph.graph_init(int_target_hint == 2);
+        // Finalize graph
+        GraphConfig config;
+        config.use_tuner = (target == 2);
+        graph.finalize(target_hint, config);
     }
     void do_run() override
     {
@@ -113,13 +130,13 @@
     }
 
 private:
-    Graph graph{};
+    Stream graph{ 0, "LeNet" };
 };
 
 /** Main program for LeNet
  *
  * @param[in] argc Number of arguments
- * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] batches )
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] batches, [optional] Fast math for convolution layer (0 = DISABLED, 1 = ENABLED) )
  */
 int main(int argc, char **argv)
 {