arm_compute v18.05
diff --git a/src/runtime/CL/functions/CLLSTMLayer.cpp b/src/runtime/CL/functions/CLLSTMLayer.cpp
new file mode 100644
index 0000000..930d311
--- /dev/null
+++ b/src/runtime/CL/functions/CLLSTMLayer.cpp
@@ -0,0 +1,508 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/CL/functions/CLLSTMLayer.h"
+
+#include "arm_compute/core/PixelValue.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+
+#include <cmath>
+#include <memory>
+#include <tuple>
+
+using namespace arm_compute;
+using namespace arm_compute::misc::shape_calculator;
+
+CLLSTMLayer::CLLSTMLayer(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(std::move(memory_manager)), _fully_connected_input_gate(), _gemm_input_gate1(), _gemm_input_gate2(), _transpose_input_gate1(), _transpose_input_gate2(), _accum_input_gate1(),
+      _accum_input_gate2(), _subtract_input_gate(), _activation_input_gate(), _fully_connected_forget_gate(), _gemm_forget_gate1(), _gemm_forget_gate2(), _transpose_forget_gate1(),
+      _transpose_forget_gate2(), _accum_forget_gate1(), _accum_forget_gate2(), _activation_forget_gate(), _fully_connected_cell_state(), _gemm_cell_state1(), _gemm_cell_state2(), _transpose_cell_state1(),
+      _accum_cell_state1(), _accum_cell_state2(), _pixelwise_mul_cell_state1(), _activation_cell_state(), _cell_clip(), _pixelwise_mul_cell_state2(), _fully_connected_output(), _gemm_output1(),
+      _gemm_output2(), _transpose_output1(), _transpose_output2(), _accum_output1(), _accum_output2(), _activation_output(), _activation_output_state(), _pixelwise_mul_output_state(),
+      _fully_connected_output_state(), _gemm_output_state(), _accum_output_state(), _projection_clip(), _copy_cell_state(), _copy_output(), _concat_scratch_buffer(), _input_gate_out1(), _input_gate_out2(),
+      _input_gate_out3(), _input_gate_out4(), _input_gate_out5(), _input_gate_out6(), _forget_gate_out1(), _forget_gate_out2(), _forget_gate_out3(), _forget_gate_out4(), _forget_gate_out5(),
+      _forget_gate_out6(), _cell_state_out1(), _cell_state_out2(), _cell_state_out3(), _cell_state_out4(), _cell_state_out5(), _output1(), _output2(), _output3(), _output4(), _output5(), _output6(),
+      _cell_state_activation(), _output_projection1(), _ones(), _run_peephole_opt(false), _run_cifg_opt(false), _perform_cell_clipping(false), _has_projection_weights(false),
+      _perform_projection_clipping(false)
+{
+}
+
+void CLLSTMLayer::configure(const ICLTensor *input, const ICLTensor *input_to_forget_weights, const ICLTensor *input_to_cell_weights, const ICLTensor *input_to_output_weights,
+                            const ICLTensor *recurrent_to_forget_weights, const ICLTensor *recurrent_to_cell_weights, const ICLTensor *recurrent_to_output_weights,
+                            const ICLTensor *forget_gate_bias, const ICLTensor *cell_bias, const ICLTensor *output_gate_bias,
+                            ICLTensor *output_state, ICLTensor *cell_state, ICLTensor *scratch_buffer, ICLTensor *output, const LSTMParams<ICLTensor> &lstm_params, const ActivationLayerInfo &activation_info,
+                            float cell_threshold, float projection_threshold)
+{
+    ARM_COMPUTE_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
+                                 forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
+    LSTMParams<ITensorInfo> lstm_params_info;
+    if(lstm_params.has_peephole_opt())
+    {
+        lstm_params_info.set_peephole_params(lstm_params.cell_to_input_weights()->info(), lstm_params.cell_to_forget_weights()->info(), lstm_params.cell_to_output_weights()->info());
+    }
+    if(lstm_params.has_projection())
+    {
+        lstm_params_info.set_projection_params(lstm_params.projection_weights()->info(), lstm_params.projection_bias()->info());
+    }
+    if(!lstm_params.has_cifg_opt())
+    {
+        lstm_params_info.set_cifg_params(lstm_params.input_to_input_weights()->info(), lstm_params.recurrent_to_input_weights()->info(),
+                                         lstm_params.cell_to_input_weights()->info(), lstm_params.input_gate_bias()->info());
+    }
+    ARM_COMPUTE_ERROR_THROW_ON(CLLSTMLayer::validate(input->info(), input_to_forget_weights->info(),
+                                                     input_to_cell_weights->info(), input_to_output_weights->info(),
+                                                     recurrent_to_forget_weights->info(), recurrent_to_cell_weights->info(), recurrent_to_output_weights->info(),
+                                                     forget_gate_bias->info(), cell_bias->info(), output_gate_bias->info(),
+                                                     output_state->info(), cell_state->info(), scratch_buffer->info(), output->info(), lstm_params_info,
+                                                     activation_info, cell_threshold, projection_threshold));
+
+    const TensorShape cell_state_shape = cell_state->info()->tensor_shape();
+
+    TensorShape forget_gate1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
+    TensorShape forget_gate2_shape = compute_transposed_shape(*forget_gate_bias->info());
+    TensorShape forget_gate3_shape{ 1, output_state->info()->dimension(1) };
+    _forget_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _forget_gate_out2.allocator()->init(TensorInfo(forget_gate1_shape, 1, input->info()->data_type()));
+    _forget_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _forget_gate_out6.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+
+    // Configure block that calculates the forget gate
+    // forget_gate = Activation(input * input_to_forget_weights + output_state * recurrent_to_forget_weights + cell_state * cell_to_forget_weights + forget_gate_bias)
+    _memory_group.manage(&_forget_gate_out1);
+    _fully_connected_forget_gate.configure(input, input_to_forget_weights, forget_gate_bias, &_forget_gate_out1, true, false);
+    _memory_group.manage(&_forget_gate_out2);
+    _transpose_forget_gate1.configure(recurrent_to_forget_weights, &_forget_gate_out2);
+    _memory_group.manage(&_forget_gate_out3);
+    _gemm_forget_gate1.configure(output_state, &_forget_gate_out2, nullptr, &_forget_gate_out3, 1.f, 0.f);
+    _forget_gate_out2.allocator()->allocate();
+    _memory_group.manage(&_forget_gate_out6);
+    _accum_forget_gate1.configure(&_forget_gate_out1, &_forget_gate_out3, &_forget_gate_out6, ConvertPolicy::SATURATE);
+    CLTensor *forget_gate_out = &_forget_gate_out6;
+
+    if(lstm_params.has_peephole_opt())
+    {
+        _forget_gate_out4.allocator()->init(TensorInfo(forget_gate2_shape, 1, input->info()->data_type()));
+        _forget_gate_out5.allocator()->init(TensorInfo(forget_gate3_shape, 1, input->info()->data_type()));
+
+        _run_peephole_opt = true;
+        _memory_group.manage(&_forget_gate_out4);
+        _transpose_forget_gate2.configure(lstm_params.cell_to_forget_weights(), &_forget_gate_out4);
+        _memory_group.manage(&_forget_gate_out5);
+        _gemm_forget_gate2.configure(cell_state, &_forget_gate_out4, nullptr, &_forget_gate_out5, 1.f, 0.f);
+        _forget_gate_out4.allocator()->allocate();
+        _accum_forget_gate2.configure(&_forget_gate_out6, &_forget_gate_out5, &_forget_gate_out3, ConvertPolicy::SATURATE);
+        _forget_gate_out5.allocator()->allocate();
+        _forget_gate_out6.allocator()->allocate();
+        forget_gate_out = &_forget_gate_out3;
+    }
+    else
+    {
+        _forget_gate_out3.allocator()->allocate();
+    }
+    _activation_forget_gate.configure(forget_gate_out, &_forget_gate_out1, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
+    forget_gate_out->allocator()->allocate();
+
+    TensorShape input_gate3_shape{ 1, output_state->info()->dimension(1) };
+    _input_gate_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _input_gate_out5.allocator()->init(TensorInfo(input_gate3_shape, 1, input->info()->data_type()));
+
+    // Configure block that calculates the input gate
+    // input_gate = Activation(input * input_to_input_weights + output_state * recurrent_to_input_weights + cell_state * cell_to_input_weights + input_gate_bias), without CIFG
+    // input_gate = 1 - forget_gate, with CIFG
+    if(lstm_params.has_cifg_opt())
+    {
+        _memory_group.manage(&_input_gate_out1);
+        _ones.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+        _subtract_input_gate.configure(&_ones, &_forget_gate_out1, &_input_gate_out1, ConvertPolicy::SATURATE);
+        _ones.allocator()->allocate();
+        _run_cifg_opt = true;
+    }
+    else
+    {
+        TensorShape input_gate1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
+        TensorShape input_gate2_shape = compute_transposed_shape(*lstm_params.cell_to_input_weights()->info());
+
+        _input_gate_out2.allocator()->init(TensorInfo(input_gate1_shape, 1, input->info()->data_type()));
+        _input_gate_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+        _input_gate_out4.allocator()->init(TensorInfo(input_gate2_shape, 1, input->info()->data_type()));
+        _input_gate_out6.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+
+        _memory_group.manage(&_input_gate_out1);
+        _fully_connected_input_gate.configure(input, lstm_params.input_to_input_weights(), lstm_params.input_gate_bias(), &_input_gate_out1, true, false);
+        _memory_group.manage(&_input_gate_out2);
+        _transpose_input_gate1.configure(lstm_params.recurrent_to_input_weights(), &_input_gate_out2);
+        _memory_group.manage(&_input_gate_out3);
+        _gemm_input_gate1.configure(output_state, &_input_gate_out2, nullptr, &_input_gate_out3, 1.f, 0.f);
+        _input_gate_out2.allocator()->allocate();
+        _memory_group.manage(&_input_gate_out4);
+        _transpose_input_gate2.configure(lstm_params.cell_to_input_weights(), &_input_gate_out4);
+        _memory_group.manage(&_input_gate_out5);
+        _gemm_input_gate2.configure(cell_state, &_input_gate_out4, nullptr, &_input_gate_out5, 1.f, 0.f);
+        _input_gate_out4.allocator()->allocate();
+        _memory_group.manage(&_input_gate_out6);
+        _accum_input_gate1.configure(&_input_gate_out1, &_input_gate_out3, &_input_gate_out6, ConvertPolicy::SATURATE);
+        _input_gate_out3.allocator()->allocate();
+        _accum_input_gate2.configure(&_input_gate_out6, &_input_gate_out5, &_input_gate_out1, ConvertPolicy::SATURATE);
+        _input_gate_out5.allocator()->allocate();
+        _input_gate_out6.allocator()->allocate();
+        _activation_input_gate.configure(&_input_gate_out1, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
+    }
+
+    TensorShape cell_state1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
+    _cell_state_out1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _cell_state_out2.allocator()->init(TensorInfo(cell_state1_shape, 1, input->info()->data_type()));
+    _cell_state_out3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _cell_state_out4.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _cell_state_out5.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+
+    // Configure block that calculates the cell state
+    // cell_state = Clip((RixelwiseMul(input_gate, Activation(input * input_to_cell_weights + output_state * recurrent_to_cell_weights + cell_bias)) + PixelwiseMul(forget_gate, cell_state)), cell_threshold)
+    _memory_group.manage(&_cell_state_out1);
+    _fully_connected_cell_state.configure(input, input_to_cell_weights, cell_bias, &_cell_state_out1, true, false);
+    _memory_group.manage(&_cell_state_out2);
+    _transpose_cell_state1.configure(recurrent_to_cell_weights, &_cell_state_out2);
+    _memory_group.manage(&_cell_state_out3);
+    _gemm_cell_state1.configure(output_state, &_cell_state_out2, nullptr, &_cell_state_out3, 1.f, 0.f);
+    _cell_state_out2.allocator()->allocate();
+    _memory_group.manage(&_cell_state_out4);
+    _accum_cell_state1.configure(&_cell_state_out1, &_cell_state_out3, &_cell_state_out4, ConvertPolicy::SATURATE);
+    _activation_cell_state.configure(&_cell_state_out4, nullptr, activation_info);
+    _memory_group.manage(&_cell_state_out5);
+    _pixelwise_mul_cell_state1.configure(&_cell_state_out4, &_input_gate_out1, &_cell_state_out5, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
+    _input_gate_out1.allocator()->allocate();
+    _cell_state_out4.allocator()->allocate();
+    _pixelwise_mul_cell_state2.configure(&_forget_gate_out1, cell_state, &_cell_state_out3, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
+    _forget_gate_out1.allocator()->allocate();
+    _accum_cell_state2.configure(&_cell_state_out5, &_cell_state_out3, &_cell_state_out1, ConvertPolicy::SATURATE);
+    _cell_state_out3.allocator()->allocate();
+    _cell_state_out5.allocator()->allocate();
+
+    // Perform clipping
+    if(cell_threshold != 0.f)
+    {
+        _perform_cell_clipping = true;
+        _cell_clip.configure(&_cell_state_out1, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold, cell_threshold));
+    }
+
+    TensorShape output1_shape = compute_transposed_shape(*recurrent_to_output_weights->info());
+    TensorShape output2_shape = compute_transposed_shape(*cell_bias->info());
+    TensorShape output3_shape{ 1, output_state->info()->dimension(1) };
+    _output1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _output2.allocator()->init(TensorInfo(output1_shape, 1, input->info()->data_type()));
+    _output3.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+    _output6.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+
+    // Configure block that calculates the output
+    // output_gate = Activation(input * input_to_output_weights + output_state * recurrent_to_output_weights + cell_state * cell_to_output_weights + output_gate_bias)
+    _memory_group.manage(&_output1);
+    _fully_connected_output.configure(input, input_to_output_weights, output_gate_bias, &_output1, true, false);
+    _memory_group.manage(&_output2);
+    _transpose_output1.configure(recurrent_to_output_weights, &_output2);
+    _memory_group.manage(&_output3);
+    _gemm_output1.configure(output_state, &_output2, nullptr, &_output3, 1.f, 0.f);
+    _output2.allocator()->allocate();
+    _memory_group.manage(&_output6);
+    _accum_output1.configure(&_output1, &_output3, &_output6, ConvertPolicy::SATURATE);
+    _output3.allocator()->allocate();
+    CLTensor *output_gate_out = &_output6;
+    if(lstm_params.has_peephole_opt())
+    {
+        _output4.allocator()->init(TensorInfo(output2_shape, 1, input->info()->data_type()));
+        _output5.allocator()->init(TensorInfo(output3_shape, 1, input->info()->data_type()));
+
+        _memory_group.manage(&_output4);
+        _transpose_output2.configure(lstm_params.cell_to_output_weights(), &_output4);
+        _memory_group.manage(&_output5);
+        _gemm_output2.configure(&_cell_state_out1, &_output4, nullptr, &_output5, 1.f, 0.f);
+        _accum_output2.configure(&_output6, &_output5, &_output1, ConvertPolicy::SATURATE);
+        _output6.allocator()->allocate();
+        output_gate_out = &_output1;
+
+        // Allocate intermediate buffers
+        _output4.allocator()->allocate();
+        _output5.allocator()->allocate();
+    }
+    else
+    {
+        _output1.allocator()->allocate();
+    }
+    _activation_output.configure(output_gate_out, output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC));
+    output_gate_out->allocator()->allocate();
+
+    _cell_state_activation.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+
+    // Configure block that calculates the output state
+    /** lstm_res = PixelwiseMul(output, Activation(cell_state))
+     *
+     *                      -- Clip(lstm_res * projection_weights + projection_bias, projection_threshold) , if there is a projection
+     *                     /
+     *  output_state =  --
+     *                     \
+     *                      -- lstm_res , otherwise
+     */
+    _memory_group.manage(&_cell_state_activation);
+    _activation_output_state.configure(&_cell_state_out1, &_cell_state_activation, activation_info);
+    _pixelwise_mul_output_state.configure(&_cell_state_activation, output, output_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN);
+    _cell_state_activation.allocator()->allocate();
+
+    if(lstm_params.has_projection())
+    {
+        _has_projection_weights = true;
+        _output_projection1.allocator()->init(TensorInfo(cell_state_shape, 1, input->info()->data_type()));
+        _memory_group.manage(&_output_projection1);
+        _fully_connected_output_state.configure(output_state, lstm_params.projection_weights(), lstm_params.projection_bias(), &_output_projection1, true, false);
+        // Perform clipping
+        if(projection_threshold != 0.f)
+        {
+            _perform_projection_clipping = true;
+            _projection_clip.configure(&_output_projection1, output_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold, projection_threshold));
+        }
+
+        // Allocate intermediate buffer
+        _output_projection1.allocator()->allocate();
+    }
+
+    // Copy cell state and output
+    _copy_cell_state.configure(&_cell_state_out1, cell_state);
+    _cell_state_out1.allocator()->allocate();
+    _copy_output.configure(output_state, output);
+
+    // Vector for holding the tensors to store in scratch buffer
+    std::vector<ICLTensor *> scratch_inputs;
+    if(lstm_params.has_cifg_opt())
+    {
+        scratch_inputs.emplace_back(&_input_gate_out1);
+    }
+    scratch_inputs.emplace_back(&_cell_state_out1);
+    scratch_inputs.emplace_back(forget_gate_out);
+    scratch_inputs.emplace_back(output_gate_out);
+    _concat_scratch_buffer.configure(scratch_inputs, scratch_buffer);
+}
+
+Status CLLSTMLayer::validate(const ITensorInfo *input, const ITensorInfo *input_to_forget_weights, const ITensorInfo *input_to_cell_weights, const ITensorInfo *input_to_output_weights,
+                             const ITensorInfo *recurrent_to_forget_weights, const ITensorInfo *recurrent_to_cell_weights, const ITensorInfo *recurrent_to_output_weights,
+                             const ITensorInfo *forget_gate_bias, const ITensorInfo *cell_bias, const ITensorInfo *output_gate_bias,
+                             const ITensorInfo *output_state, const ITensorInfo *cell_state, const ITensorInfo *scratch_buffer, const ITensorInfo *output,
+                             const LSTMParams<ITensorInfo> &lstm_params, const ActivationLayerInfo &activation_info, float cell_threshold, float projection_threshold)
+{
+    ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights, recurrent_to_output_weights,
+                                        forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, input_to_forget_weights, input_to_cell_weights, input_to_output_weights, recurrent_to_forget_weights, recurrent_to_cell_weights,
+                                                       recurrent_to_output_weights, forget_gate_bias, cell_bias, output_gate_bias, output_state, cell_state);
+    ARM_COMPUTE_RETURN_ERROR_ON(input->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(input_to_forget_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(input_to_cell_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(input_to_output_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_forget_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_cell_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(recurrent_to_output_weights->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(forget_gate_bias->num_dimensions() != 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->num_dimensions() != 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(output_gate_bias->num_dimensions() != 1);
+    ARM_COMPUTE_RETURN_ERROR_ON(output_state->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_state->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(scratch_buffer->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(output->num_dimensions() != 2);
+    ARM_COMPUTE_RETURN_ERROR_ON(cell_bias->dimension(0) * 4 != scratch_buffer->dimension(0) && cell_bias->dimension(0) * 3 != scratch_buffer->dimension(0));
+
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.cell_to_input_weights(), lstm_params.cell_to_output_weights(), lstm_params.cell_to_forget_weights());
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_input_weights()->num_dimensions() != 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_forget_weights()->num_dimensions() != 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_output_weights()->num_dimensions() != 1);
+    }
+
+    TensorShape      units_out_transposed_shape = compute_transposed_shape(*recurrent_to_output_weights);
+    TensorShape      gemmv_shape{ 1, output_state->dimension(1) };
+    TensorShape      num_units_transposed_shape = compute_transposed_shape(*forget_gate_bias);
+    const TensorInfo units_out_transposed_info  = TensorInfo(units_out_transposed_shape, 1, input->data_type());
+    const TensorInfo gemmv_shape_info           = TensorInfo(gemmv_shape, 1, input->data_type());
+    const TensorInfo num_units_transposed_info  = TensorInfo(num_units_transposed_shape, 1, input->data_type());
+
+    // Validate forget gate
+    ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_forget_weights, forget_gate_bias, cell_state, true, false));
+    ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(output_state, &units_out_transposed_info, nullptr, cell_state, 1.f, 0.f, GEMMInfo()));
+    ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAdditionKernel::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(cell_state, &num_units_transposed_info, nullptr, &gemmv_shape_info, 1.f, 0.f, GEMMInfo()));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, &gemmv_shape_info, cell_state, ConvertPolicy::SATURATE));
+    }
+    ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, cell_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
+
+    // Validate input gate
+    if(!lstm_params.has_cifg_opt())
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(lstm_params.input_to_input_weights(), lstm_params.recurrent_to_input_weights(), lstm_params.cell_to_input_weights(), lstm_params.input_gate_bias());
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_to_input_weights()->num_dimensions() != 2);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.recurrent_to_input_weights()->num_dimensions() != 2);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.cell_to_input_weights()->num_dimensions() != 1);
+        ARM_COMPUTE_RETURN_ERROR_ON(lstm_params.input_gate_bias()->num_dimensions() != 1);
+        ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, lstm_params.input_to_input_weights(), lstm_params.input_gate_bias(), cell_state, true, false));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(cell_state, &num_units_transposed_info, nullptr, &gemmv_shape_info, 1.f, 0.f, GEMMInfo()));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, &gemmv_shape_info, cell_state, ConvertPolicy::SATURATE));
+        ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
+    }
+    else
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticSubtractionKernel::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
+    }
+
+    // Validate cell state
+    ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_cell_weights, cell_bias, cell_state, true, false));
+    ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, activation_info));
+    ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state, cell_state, cell_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN));
+
+    if(cell_threshold != 0.f)
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, nullptr, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -cell_threshold, cell_threshold)));
+    }
+
+    ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(input, input_to_output_weights, output_gate_bias, cell_state, true, false));
+    if(lstm_params.has_peephole_opt())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLArithmeticAddition::validate(cell_state, cell_state, cell_state, ConvertPolicy::SATURATE));
+    }
+    ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, output, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LOGISTIC)));
+
+    // Validate output state
+    ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, cell_state, activation_info));
+    ARM_COMPUTE_RETURN_ON_ERROR(CLPixelWiseMultiplicationKernel::validate(cell_state, output, output_state, 1, ConvertPolicy::SATURATE, RoundingPolicy::TO_NEAREST_EVEN));
+    if(lstm_params.has_projection())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLFullyConnectedLayer::validate(output_state, lstm_params.projection_weights(), lstm_params.projection_bias(), cell_state, true, false));
+        if(projection_threshold != 0.f)
+        {
+            ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayerKernel::validate(cell_state, output_state, ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LU_BOUNDED_RELU, -projection_threshold,
+                                                                                                                        projection_threshold)));
+        }
+    }
+
+    std::vector<TensorInfo> inputs_vector_info;
+    if(lstm_params.has_cifg_opt())
+    {
+        inputs_vector_info.emplace_back(*cell_state);
+    }
+    inputs_vector_info.emplace_back(*cell_state);
+    inputs_vector_info.emplace_back(*cell_state);
+    inputs_vector_info.emplace_back(*cell_state);
+
+    std::vector<ITensorInfo *> inputs_vector_info_raw;
+    for(auto &input : inputs_vector_info)
+    {
+        inputs_vector_info_raw.emplace_back(&input);
+    }
+
+    ARM_COMPUTE_RETURN_ON_ERROR(CLWidthConcatenateLayer::validate(inputs_vector_info_raw, scratch_buffer));
+    return Status{};
+}
+
+void CLLSTMLayer::run()
+{
+    _memory_group.acquire();
+
+    _fully_connected_forget_gate.run();
+    CLScheduler::get().enqueue(_transpose_forget_gate1);
+    _gemm_forget_gate1.run();
+    CLScheduler::get().enqueue(_accum_forget_gate1);
+
+    if(_run_peephole_opt)
+    {
+        CLScheduler::get().enqueue(_transpose_forget_gate2);
+        _gemm_forget_gate2.run();
+        _accum_forget_gate2.run();
+    }
+    CLScheduler::get().enqueue(_activation_forget_gate);
+
+    if(_run_cifg_opt)
+    {
+        _ones.map(true);
+        std::fill_n(_ones.buffer(), _ones.info()->total_size(), 1);
+        _ones.unmap();
+        CLScheduler::get().enqueue(_subtract_input_gate);
+    }
+    else
+    {
+        _fully_connected_input_gate.run();
+        CLScheduler::get().enqueue(_transpose_input_gate1);
+        _gemm_input_gate1.run();
+        CLScheduler::get().enqueue(_transpose_input_gate2);
+        _gemm_input_gate2.run();
+        CLScheduler::get().enqueue(_accum_input_gate1);
+        _accum_input_gate2.run();
+        CLScheduler::get().enqueue(_activation_input_gate);
+    }
+
+    _fully_connected_cell_state.run();
+    CLScheduler::get().enqueue(_transpose_cell_state1);
+    _gemm_cell_state1.run();
+    CLScheduler::get().enqueue(_accum_cell_state1);
+    CLScheduler::get().enqueue(_activation_cell_state);
+    CLScheduler::get().enqueue(_pixelwise_mul_cell_state1);
+    CLScheduler::get().enqueue(_pixelwise_mul_cell_state2);
+    CLScheduler::get().enqueue(_accum_cell_state2);
+
+    if(_perform_cell_clipping)
+    {
+        CLScheduler::get().enqueue(_cell_clip);
+    }
+
+    _fully_connected_output.run();
+    CLScheduler::get().enqueue(_transpose_output1);
+    _gemm_output1.run();
+    CLScheduler::get().enqueue(_accum_output1);
+    CLScheduler::get().enqueue(_pixelwise_mul_output_state);
+
+    if(_run_peephole_opt)
+    {
+        CLScheduler::get().enqueue(_transpose_output2);
+        _gemm_output2.run();
+        _accum_output2.run();
+    }
+    CLScheduler::get().enqueue(_activation_output);
+
+    CLScheduler::get().enqueue(_activation_output_state);
+    CLScheduler::get().enqueue(_pixelwise_mul_output_state);
+
+    if(_has_projection_weights)
+    {
+        _fully_connected_output_state.run();
+        if(_perform_projection_clipping)
+        {
+            CLScheduler::get().enqueue(_projection_clip);
+        }
+    }
+
+    CLScheduler::get().enqueue(_copy_cell_state);
+    CLScheduler::get().enqueue(_copy_output);
+
+    _concat_scratch_buffer.run();
+
+    _memory_group.release();
+}
\ No newline at end of file