arm_compute v18.05
diff --git a/src/runtime/CL/functions/CLWinogradConvolutionLayer.cpp b/src/runtime/CL/functions/CLWinogradConvolutionLayer.cpp
new file mode 100644
index 0000000..49753ad
--- /dev/null
+++ b/src/runtime/CL/functions/CLWinogradConvolutionLayer.cpp
@@ -0,0 +1,226 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/runtime/CL/functions/CLWinogradConvolutionLayer.h"
+
+#include "arm_compute/core/CL/ICLTensor.h"
+#include "arm_compute/core/Utils.h"
+#include "arm_compute/core/Validate.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+
+using namespace arm_compute;
+
+namespace
+{
+Size2D winograd_output_tile(const Size2D &input_dims, const Size2D &kernel_dims)
+{
+    Size2D output_tile = Size2D{};
+
+    if(kernel_dims == Size2D(3U, 3U))
+    {
+        output_tile = (input_dims.width <= 4 && input_dims.height <= 4) ? Size2D(2U, 2U) : Size2D(4U, 4U);
+    }
+    else if(kernel_dims == Size2D(5U, 5U))
+    {
+        output_tile = Size2D(4U, 4U);
+    }
+
+    return output_tile;
+}
+
+bool check_support_fast_math(const Size2D &output_tile, const Size2D &kernel_size)
+{
+    // Check if we want to configure a Winograd configuration which requires fast math
+    using WinogradConfiguration = std::pair<std::pair<int, int>, std::pair<int, int>>;
+
+    std::vector<WinogradConfiguration> fast_math_winograd =
+    {
+        WinogradConfiguration(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5))
+    };
+
+    auto p = std::make_pair(std::pair<int, int>(output_tile.width, output_tile.height),
+                            std::pair<int, int>(kernel_size.width, kernel_size.height));
+
+    return std::find(fast_math_winograd.begin(), fast_math_winograd.end(), p) != fast_math_winograd.end();
+}
+} // namespace
+
+CLWinogradConvolutionLayer::CLWinogradConvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager)
+    : _memory_group(memory_manager), _batched_mm(memory_manager), _input_transform(), _filter_transform(), _output_transform(), _activationlayer_function(), _input0(), _input1(), _batched_mm_output(),
+      _original_weights(nullptr), _is_prepared(false), _is_activationlayer_enabled(false)
+{
+}
+
+void CLWinogradConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info, const ActivationLayerInfo &act_info,
+                                           bool enable_fast_math)
+{
+    // Get indices for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(input->info()->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D input_dims  = Size2D(input->info()->tensor_shape()[idx_width], input->info()->tensor_shape()[idx_height]);
+    const Size2D kernel_size = Size2D(weights->info()->tensor_shape()[idx_width], weights->info()->tensor_shape()[idx_height]);
+    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);
+
+    // Check if the Winograd configuration requires fast math
+    if(!enable_fast_math)
+    {
+        ARM_COMPUTE_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
+    }
+
+    const WinogradInfo winograd_info = WinogradInfo(output_tile,
+                                                    kernel_size,
+                                                    input_dims,
+                                                    conv_info,
+                                                    input->info()->data_layout());
+
+    _is_prepared      = false;
+    _original_weights = weights;
+
+    // Manage intermediate tensors
+    _memory_group.manage(&_input0);
+    _memory_group.manage(&_batched_mm_output);
+
+    // Do not manage _input1 as it contains the weights
+
+    // Configure input transform
+    _input_transform.configure(input, &_input0, winograd_info);
+
+    // Configure filter transform
+    _filter_transform.configure(weights, &_input1, winograd_info);
+
+    // Configure batched matrix multiply
+    _batched_mm.configure(&_input0, &_input1, nullptr, &_batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/));
+
+    // Configure output transform
+    _output_transform.configure(&_batched_mm_output, biases, output, winograd_info);
+
+    // Configure activation layer
+    _is_activationlayer_enabled = act_info.enabled();
+    if(_is_activationlayer_enabled)
+    {
+        _activationlayer_function.configure(output, nullptr, act_info);
+    }
+
+    // Allocate temporary tensors
+    _input0.allocator()->allocate();
+    _batched_mm_output.allocator()->allocate();
+}
+
+Status CLWinogradConvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
+                                            const ActivationLayerInfo &act_info, bool enable_fast_math)
+{
+    // Get indeces for the width and height
+    const size_t idx_width  = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::WIDTH);
+    const size_t idx_height = get_data_layout_dimension_index(input->data_layout(), DataLayoutDimension::HEIGHT);
+
+    // Input shape, kernel size and output tile
+    const Size2D input_dims  = Size2D(input->tensor_shape()[idx_width], input->tensor_shape()[idx_height]);
+    const Size2D kernel_size = Size2D(weights->tensor_shape()[idx_width], weights->tensor_shape()[idx_height]);
+    const Size2D output_tile = winograd_output_tile(input_dims, kernel_size);
+
+    // Check if the Winograd configuration requires fast math
+    if(!enable_fast_math)
+    {
+        ARM_COMPUTE_RETURN_ERROR_ON_MSG(check_support_fast_math(output_tile, kernel_size), "This Winograd configuration requires enable_fast_math=true");
+    }
+
+    const WinogradInfo winograd_info = WinogradInfo(output_tile,
+                                                    kernel_size,
+                                                    input_dims,
+                                                    conv_info,
+                                                    input->data_layout());
+
+    // Validate input transform
+    const TensorShape input0_shape = misc::shape_calculator::compute_winograd_input_transform_shape(*input, winograd_info);
+    const TensorInfo  input0       = input->clone()->set_tensor_shape(input0_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradInputTransform::validate(input, &input0, winograd_info));
+
+    // Validate filter transform
+    const TensorShape input1_shape = misc::shape_calculator::compute_winograd_filter_transform_shape(*weights, winograd_info);
+    const TensorInfo  input1       = weights->clone()->set_tensor_shape(input1_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradFilterTransformKernel::validate(weights, &input1, winograd_info));
+
+    // Validate batched matrix multiply
+    TensorShape batched_mm_output_shape = input0.tensor_shape();
+    batched_mm_output_shape[0]          = input1.tensor_shape()[0];
+    const TensorInfo batched_mm_output  = input0.clone()->set_tensor_shape(batched_mm_output_shape);
+    ARM_COMPUTE_RETURN_ON_ERROR(CLGEMM::validate(&input0, &input1, nullptr, &batched_mm_output, 1.0f, 0.0f, GEMMInfo(false, false, true /* Reshape weights only for the first run*/)));
+
+    // Configure output transform
+    ARM_COMPUTE_RETURN_ON_ERROR(CLWinogradOutputTransformKernel::validate(&batched_mm_output, biases, output, winograd_info));
+
+    // Validate Activation Layer
+    if(act_info.enabled())
+    {
+        ARM_COMPUTE_RETURN_ON_ERROR(CLActivationLayer::validate(output, nullptr, act_info));
+    }
+
+    return Status{};
+}
+
+void CLWinogradConvolutionLayer::run()
+{
+    prepare();
+
+    _memory_group.acquire();
+
+    // Run input transform
+    _input_transform.run();
+
+    // Run batched matrix multiplication
+    _batched_mm.run();
+
+    // Run output transform
+    CLScheduler::get().enqueue(_output_transform);
+
+    if(_is_activationlayer_enabled)
+    {
+        _activationlayer_function.run();
+    }
+
+    _memory_group.release();
+}
+
+void CLWinogradConvolutionLayer::prepare()
+{
+    if(!_is_prepared)
+    {
+        // Run filter transform and mark original weights as unused
+        _input1.allocator()->allocate();
+        CLScheduler::get().enqueue(_filter_transform, false);
+        _original_weights->mark_as_unused();
+
+        // Prepare GEMM and release reshaped weights if marked unused by CLGEMM
+        _batched_mm.prepare();
+        if(!_input1.is_used())
+        {
+            _input1.allocator()->free();
+        }
+
+        CLScheduler::get().queue().finish();
+        _is_prepared = true;
+    }
+}