arm_compute v18.05
diff --git a/tests/validation/reference/Winograd.cpp b/tests/validation/reference/Winograd.cpp
new file mode 100644
index 0000000..194a78e
--- /dev/null
+++ b/tests/validation/reference/Winograd.cpp
@@ -0,0 +1,466 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "Winograd.h"
+
+#include "tests/validation/Helpers.h"
+#include "tests/validation/reference/Utils.h"
+
+#include "arm_compute/core/Types.h"
+
+#include <algorithm>
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace reference
+{
+namespace
+{
+template <typename T>
+void initialize_matrix_transform(SimpleTensor<T> &src, const Size2D &output_tile_size, const Size2D &kernel_size, WinogradTransformType winograd_transform_type)
+{
+    // Winograd input transform matrices
+    static const float imatrix2x2_3x3[] =
+    {
+        1.0f, 0.0f, -1.0f, 0.0f,
+        0.0f, 1.0f, 1.0f, 0.0f,
+        0.0f, -1.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, 0.0f, -1.0f
+    };
+
+    static const float imatrix4x4_3x3[] =
+    {
+        4.0f, 0.0f, -5.0f, 0.0f, 1.0f, 0.0f,
+        0.0f, -4.0f, -4.0f, 1.0f, 1.0f, 0.0f,
+        0.0f, 4.0f, -4.0f, -1.0f, 1.0f, 0.0f,
+        0.0f, -2.0f, -1.0f, 2.0f, 1.0f, 0.0f,
+        0.0f, 2.0f, -1.0f, -2.0f, 1.0f, 0.0f,
+        0.0f, 4.0f, 0.0f, -5.0f, 0.0f, 1.0f,
+    };
+
+    static const float imatrix4x4_5x5[] =
+    {
+        1.f, 0.f, -21.f / 4.f, 0.f, 21.f / 4.f, 0.f, -1.f, 0.f,
+        0.f, 1.f, 1.f, -17.f / 4.f, -17.f / 4.f, 1.f, 1.f, 0.f,
+        0.f, -1.f, 1.f, 17.f / 4.f, -17.f / 4.f, -1.f, 1.f, 0.f,
+        0.f, 1.f / 2.f, 1.f / 4.f, -5.f / 2.f, -5.f / 4.f, 2.f, 1.f, 0.f,
+        0.f, -1.f / 2.f, 1.f / 4.f, 5.f / 2.f, -5.f / 4.f, -2.f, 1.f, 0.f,
+        0.f, 2.f, 4.f, -5.f / 2.f, -5.f, 1.f / 2.f, 1.f, 0.f,
+        0.f, -2.f, 4.f, 5.f / 2.f, -5.f, -1.f / 2.f, 1.f, 0.f,
+        0.f, -1.f, 0.f, 21.f / 4.f, 0.f, -21.f / 4.f, 0.f, 1.f
+    };
+
+    // ------------------------------------------
+
+    // Winograd filter transform matrices
+    static const float fmatrix2x2_3x3[] =
+    {
+        1.0f, 0.0f, 0.0f,
+        0.5f, 0.5f, 0.5f,
+        0.5f, -0.5f, 0.5f,
+        0.0f, 0.0f, 1.0f
+    };
+
+    static const float fmatrix4x4_3x3[] =
+    {
+        0.25f, 0.0f, 0.0f,
+        -1.0f / 6.0f, -1.0f / 6.0f, -1.0f / 6.0f,
+        -1.0f / 6.0f, 1.0f / 6.0f, -1.0f / 6.0f,
+        1.0f / 24.0f, 1.0f / 12.0f, 1.0f / 6.0f,
+        1.0f / 24.0f, -1.0f / 12.0f, 1.0f / 6.0f,
+        0.0f, 0.0f, 1.0f
+    };
+
+    static const float fmatrix4x4_5x5[] =
+    {
+        1.0f, 0.0f, 0.0f, 0.0f, 0.0f,
+        -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f, -2.0f / 9.0f,
+        -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f, 2.0f / 9.0f, -2.0f / 9.0f,
+        1.0f / 90.0f, 1.0f / 45.0f, 2.0f / 45.0f, 4.0f / 45.0f, 8.0f / 45.0f,
+        1.0f / 90.0f, -1.0f / 45.0f, 2.0f / 45.0f, -4.0f / 45.0f, 8.0f / 45.0f,
+        4.0f / 45.0f, 2.0f / 45.0f, 1.0f / 45.0f, 1.0f / 90.0f, 1.0f / 180.0f,
+        4.0f / 45.0f, -2.0f / 45.0f, 1.0f / 45.0f, -1.0f / 90.0f, 1.0f / 180.0f,
+        0.0f, 0.0f, 0.0f, 0.0f, 1.0f
+
+    };
+
+    // ------------------------------------------
+
+    // Winograd output transform matrices
+    static const float omatrix2x2_3x3[] =
+    {
+        1.0f, 1.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, -1.0f, -1.0f
+    };
+
+    static const float omatrix4x4_3x3[] =
+    {
+        1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 0.0f,
+        0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 0.0f,
+        0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 0.0f,
+        0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f
+    };
+
+    static const float omatrix4x4_5x5[] =
+    {
+        1.0f, 1.0f, 1.0f, 1.0f, 1.0f, 8.0f, 8.0f, 0.0f,
+        0.0f, 1.0f, -1.0f, 2.0f, -2.0f, 4.0f, -4.0f, 0.0f,
+        0.0f, 1.0f, 1.0f, 4.0f, 4.0f, 2.0f, 2.0f, 0.0f,
+        0.0f, 1.0f, -1.0f, 8.0f, -8.0f, 1.0f, -1.0f, 1.0f
+    };
+
+    // ------------------------------------------
+
+    using WinogradKey = std::tuple<std::pair<int, int>, std::pair<int, int>, WinogradTransformType>;
+
+    // Key = (Output tile size, Kernel size, Winograd transform type)
+    static std::map<WinogradKey, const float *> matrix_map =
+    {
+        { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix2x2_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::INPUT), imatrix4x4_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::INPUT), imatrix4x4_5x5 },
+        { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix2x2_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::FILTER), fmatrix4x4_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::FILTER), fmatrix4x4_5x5 },
+        { WinogradKey(std::pair<int, int>(2, 2), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix2x2_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(3, 3), WinogradTransformType::OUTPUT), omatrix4x4_3x3 },
+        { WinogradKey(std::pair<int, int>(4, 4), std::pair<int, int>(5, 5), WinogradTransformType::OUTPUT), omatrix4x4_5x5 },
+    };
+
+    // Find transformation matrix
+    std::map<WinogradKey, const float *>::iterator it;
+
+    it = matrix_map.find(WinogradKey(std::pair<int, int>(output_tile_size.width, output_tile_size.height),
+                                     std::pair<int, int>(kernel_size.width, kernel_size.height),
+                                     winograd_transform_type));
+
+    float const *matrix_values = nullptr;
+    if(it != matrix_map.end())
+    {
+        // Get matrix pointer
+        matrix_values = it->second;
+    }
+    else
+    {
+        ARM_COMPUTE_ERROR("Winograd configuration not supported");
+    }
+
+    // Copy values
+    std::copy(&matrix_values[0], &matrix_values[0] + src.num_elements(), &src[0]);
+}
+} // namespace
+
+template <typename T>
+SimpleTensor<T> winograd_input_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
+{
+    ARM_COMPUTE_ERROR_ON(in.data_layout() != DataLayout::NCHW);
+
+    const PadStrideInfo conv_info        = winograd_info.convolution_info;
+    const Size2D        output_tile_size = winograd_info.output_tile_size;
+    const Size2D        kernel_size      = winograd_info.kernel_size;
+
+    SimpleTensor<T> out{ output_shape, in.data_type() };
+
+    // Calculate dimensions for the tile
+    const unsigned int tile_w = output_tile_size.width + kernel_size.width - 1;
+    const unsigned int tile_h = output_tile_size.height + kernel_size.height - 1;
+
+    TensorShape tile_dims(tile_w, tile_h);
+
+    // Simple tensor for the input tile
+    SimpleTensor<T> src_tile{ tile_dims, in.data_type() };
+
+    // Simple tensor for the temporary tile
+    SimpleTensor<T> tmp_tile{ tile_dims, in.data_type() };
+
+    // Simple tensor for the output tile
+    SimpleTensor<T> dst_tile{ tile_dims, in.data_type() };
+
+    // Simple tensor for the transformation matrix
+    SimpleTensor<T> matrix{ tile_dims, in.data_type() };
+
+    // Simple tensor for the transformation matrix transposed
+    SimpleTensor<T> matrix_transposed{ tile_dims, in.data_type() };
+
+    // Initialize matrix for the input transform
+    initialize_matrix_transform(matrix, output_tile_size, kernel_size, WinogradTransformType::INPUT);
+
+    // Transpose matrix
+    transpose_matrix(matrix, matrix_transposed);
+
+    const int in_w        = in.shape().x();
+    const int in_h        = in.shape().y();
+    const int in_d        = in.shape().z();
+    const int out_d       = out.shape().z();
+    const int num_batches = in.shape().total_size() / (in_w * in_h * in_d);
+    const int num_tiles_x = std::ceil((in_w - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right()) / static_cast<float>(output_tile_size.width));
+    const int num_tiles_y = std::ceil((in_h - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom()) / static_cast<float>(output_tile_size.height));
+    const int step_x      = output_tile_size.width;
+    const int step_y      = output_tile_size.height;
+
+    ARM_COMPUTE_ERROR_ON((num_tiles_x * num_tiles_y) != static_cast<int>(out.shape().y()));
+
+    for(int b = 0; b < num_batches; ++b)
+    {
+        for(int z = 0; z < in_d; ++z)
+        {
+            for(int y = 0; y < num_tiles_y; ++y)
+            {
+                for(int x = 0; x < num_tiles_x; ++x)
+                {
+                    int xi = x * step_x - conv_info.pad_left();
+                    int yi = y * step_y - conv_info.pad_top();
+
+                    // Get the tile from the input tensor
+                    get_tile(in, src_tile, Coordinates(xi, yi, z, b));
+
+                    // Compute the transformation
+                    matrix_multiply(matrix, src_tile, tmp_tile);
+                    matrix_multiply(tmp_tile, matrix_transposed, dst_tile);
+
+                    // Store the output tile across the channels
+                    for(int i = 0; i < out_d; ++i)
+                    {
+                        int xo = z;
+                        int yo = x + y * num_tiles_x;
+                        out[coords2index(out.shape(), Coordinates(xo, yo, i, b))] = dst_tile[i];
+                    }
+                }
+            }
+        }
+    }
+
+    return out;
+}
+
+template <typename T>
+SimpleTensor<T> winograd_filter_transform(const SimpleTensor<T> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info)
+{
+    ARM_COMPUTE_ERROR_ON_MSG(in.data_layout() != DataLayout::NCHW, "Only supported NCHW data format");
+
+    // Create reference
+    SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
+
+    const Size2D output_tile_size = winograd_info.output_tile_size;
+    const Size2D kernel_size      = winograd_info.kernel_size;
+
+    TensorShape kernel_tile_dims(kernel_size.width, kernel_size.height);
+
+    // Calculate dimensions for the tile
+    const unsigned int input_tile_w    = output_tile_size.width + kernel_size.width - 1;
+    const unsigned int input_tile_h    = output_tile_size.height + kernel_size.height - 1;
+    const unsigned int input_tile_area = input_tile_w * input_tile_h;
+
+    // Simple tensor for the input tile
+    SimpleTensor<T> input_tile{ kernel_tile_dims, in.data_type(), 1 };
+
+    // Simple tensor for the transformation matrix
+    SimpleTensor<T> trans_matrix{ TensorShape(kernel_tile_dims[0], input_tile_w), in.data_type(), 1 };
+
+    // Simple tensor for the transformation matrix transpose
+    SimpleTensor<T> trans_matrix_transposed{ TensorShape(input_tile_w, kernel_tile_dims[0]), in.data_type(), 1 };
+
+    // Simple tensor for the temporary tile
+    SimpleTensor<T> tmp_tile{ TensorShape(kernel_tile_dims[0], input_tile_w), in.data_type(), 1 };
+
+    // Simple tensor for the output tile
+    SimpleTensor<T> transf_tile{ TensorShape(input_tile_w, input_tile_w), in.data_type(), 1 };
+
+    // Initialize matrix for the filter transform
+    initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::FILTER);
+
+    // Transpose the transformation matrix
+    transpose_matrix(trans_matrix, trans_matrix_transposed);
+
+    const int num_channels = in.shape()[2];
+    const int num_filters  = in.shape()[3];
+    const int num_batches  = in.shape().total_size() / (kernel_size.area() * num_channels * num_filters);
+
+    for(int n = 0; n < num_batches; ++n)
+    {
+        for(int w = 0; w < num_filters; ++w)
+        {
+            for(int z = 0; z < num_channels; ++z)
+            {
+                // Load the tile from the input tensor
+                get_tile(in, input_tile, Coordinates(0, 0, z, w, n));
+
+                // First transformation
+                matrix_multiply(trans_matrix, input_tile, tmp_tile);
+
+                // Second transformation
+                matrix_multiply(tmp_tile, trans_matrix_transposed, transf_tile);
+
+                // Store the output tile across the channels
+                const int output_offset = w + z * num_filters;
+
+                // Store the values across the channels
+                for(unsigned int i = 0; i < input_tile_area; ++i)
+                {
+                    out[output_offset + i * num_filters * num_channels] = transf_tile[i];
+                }
+            }
+        }
+    }
+
+    return out;
+}
+
+template <typename T>
+SimpleTensor<T> winograd_output_transform(const SimpleTensor<T> &in, const SimpleTensor<T> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info)
+{
+    ARM_COMPUTE_ERROR_ON_MSG(winograd_info.output_data_layout != DataLayout::NCHW, "Only supported NCHW data format");
+
+    const PadStrideInfo conv_info        = winograd_info.convolution_info;
+    const Size2D        input_dimensions = winograd_info.input_dimensions;
+    const Size2D        output_tile_size = winograd_info.output_tile_size;
+    const Size2D        kernel_size      = winograd_info.kernel_size;
+
+    // Create reference
+    SimpleTensor<T> out{ output_shape, in.data_type(), 1 };
+
+    // Calculate dimensions for the tiles
+    const unsigned int in_tile_w  = output_tile_size.width + kernel_size.width - 1;
+    const unsigned int in_tile_h  = output_tile_size.height + kernel_size.height - 1;
+    const unsigned int out_tile_w = output_tile_size.width;
+    const unsigned int out_tile_h = output_tile_size.height;
+
+    ARM_COMPUTE_ERROR_ON(in.shape()[2] != (in_tile_w * in_tile_h));
+    ARM_COMPUTE_ERROR_ON(in.shape()[0] != out.shape()[2]);
+
+    // Compute tile dimensions
+    // Input tile dimensions
+    TensorShape in_tile_dims(in_tile_w, in_tile_h);
+
+    // Output tile dimensions
+    TensorShape out_tile_dims(output_tile_size.width, output_tile_size.height);
+
+    // Transformation matrix dimensions
+    TensorShape tr_tile_dims(in_tile_w, output_tile_size.width);
+
+    // Create tensors
+    // Simple tensor for the input tile
+    SimpleTensor<T> input_tile{ in_tile_dims, in.data_type(), 1 };
+
+    // Simple tensor for the transformation matrix
+    SimpleTensor<T> trans_matrix{ tr_tile_dims, in.data_type(), 1 };
+
+    // Simple tensor for the transformation matrix transpose
+    SimpleTensor<T> trans_matrix_transposed{ TensorShape(tr_tile_dims[1], tr_tile_dims[0]), in.data_type(), 1 };
+
+    // Simple tensor for the temporary tile
+    SimpleTensor<T> tmp_tile{ tr_tile_dims, in.data_type(), 1 };
+
+    // Simple tensor for the output tile
+    SimpleTensor<T> output_tile{ out_tile_dims, in.data_type(), 1 };
+
+    // Initialize matrix for the output transform
+    initialize_matrix_transform(trans_matrix, output_tile_size, kernel_size, WinogradTransformType::OUTPUT);
+
+    // Transpose the transformation matrix
+    transpose_matrix(trans_matrix, trans_matrix_transposed);
+
+    const int w_in        = in.shape()[0];
+    const int h_in        = in.shape()[1];
+    const int c_in        = in.shape()[2];
+    const int w_out       = out.shape()[0];
+    const int h_out       = out.shape()[1];
+    const int c_out       = out.shape()[2];
+    const int num_batches = in.shape().total_size() / (w_in * h_in * c_in);
+
+    // Input strides
+    const int stridey_in = w_in;
+    const int stridez_in = stridey_in * h_in;
+    const int stridew_in = stridez_in * c_in;
+
+    // Output strides
+    const int stridey_out = w_out;
+    const int stridez_out = stridey_out * h_out;
+    const int stridew_out = stridez_out * c_out;
+
+    // Compute number of elements to process in the X and Y direction
+    const int num_elements_x = input_dimensions.width - (kernel_size.width - 1) + conv_info.pad_left() + conv_info.pad_right();
+    const int num_elements_y = input_dimensions.height - (kernel_size.height - 1) + conv_info.pad_top() + conv_info.pad_bottom();
+    const int num_tiles_x    = std::ceil(num_elements_x / static_cast<float>(output_tile_size.width));
+    const int num_tiles_y    = std::ceil(num_elements_y / static_cast<float>(output_tile_size.height));
+
+    ARM_COMPUTE_UNUSED(num_tiles_y);
+    ARM_COMPUTE_ERROR_ON(in.shape()[1] != static_cast<unsigned int>(num_tiles_x * num_tiles_y));
+
+    for(int n = 0; n < num_batches; ++n)
+    {
+        for(int y = 0; y < h_in; ++y)
+        {
+            for(int x = 0; x < w_in; ++x)
+            {
+                // Load the input tile tile across the channels of the input tensor
+                for(int z = 0; z < c_in; ++z)
+                {
+                    input_tile[z] = in[x + (y * stridey_in) + (z * stridez_in) + (n * stridew_in)];
+                }
+
+                // First transformation
+                matrix_multiply(trans_matrix, input_tile, tmp_tile);
+
+                // Second transformation
+                matrix_multiply(tmp_tile, trans_matrix_transposed, output_tile);
+
+                // Store the output tile
+                const int xo = (y % num_tiles_x) * out_tile_w;
+                const int yo = (y / num_tiles_x) * out_tile_h;
+                const int zo = x;
+
+                const int output_offset = xo + (yo * stridey_out) + (zo * stridez_out) + (n * stridew_out);
+
+                for(int yi = 0; yi < static_cast<int>(out_tile_h); ++yi)
+                {
+                    for(int xi = 0; xi < static_cast<int>(out_tile_w); ++xi)
+                    {
+                        // Check out-of-bound writes
+                        if((xo + xi < w_out) && (yo + yi < h_out))
+                        {
+                            out[output_offset + yi * stridey_out + xi] = output_tile[xi + yi * out_tile_w];
+
+                            // Add bias
+                            out[output_offset + yi * stridey_out + xi] += b[zo];
+                        }
+                    }
+                }
+            }
+        }
+    }
+
+    return out;
+}
+
+template SimpleTensor<float> winograd_filter_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
+template SimpleTensor<float> winograd_input_transform(const SimpleTensor<float> &in, const TensorShape &output_shape, const WinogradInfo &winograd_info);
+template SimpleTensor<float> winograd_output_transform(const SimpleTensor<float> &in, const SimpleTensor<float> &b, const TensorShape &output_shape, const WinogradInfo &winograd_info);
+} // namespace reference
+} // namespace validation
+} // namespace test
+} // namespace arm_compute