arm_compute v18.11
diff --git a/documentation/direct__convolution3x3_8cl_source.xhtml b/documentation/direct__convolution3x3_8cl_source.xhtml
index 5afbcd6..45de34f 100644
--- a/documentation/direct__convolution3x3_8cl_source.xhtml
+++ b/documentation/direct__convolution3x3_8cl_source.xhtml
@@ -4,7 +4,7 @@
<head>
<meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/>
<meta http-equiv="X-UA-Compatible" content="IE=9"/>
-<meta name="generator" content="Doxygen 1.8.11"/>
+<meta name="generator" content="Doxygen 1.8.13"/>
<meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines -->
<title>Compute Library: src/core/CL/cl_kernels/direct_convolution3x3.cl Source File</title>
<link href="tabs.css" rel="stylesheet" type="text/css"/>
@@ -16,14 +16,10 @@
<script type="text/javascript" src="navtree.js"></script>
<script type="text/javascript">
$(document).ready(initResizable);
- $(window).load(resizeHeight);
</script>
<link href="search/search.css" rel="stylesheet" type="text/css"/>
<script type="text/javascript" src="search/searchdata.js"></script>
<script type="text/javascript" src="search/search.js"></script>
-<script type="text/javascript">
- $(document).ready(function() { init_search(); });
-</script>
<script type="text/x-mathjax-config">
MathJax.Hub.Config({
extensions: ["tex2jax.js"],
@@ -40,7 +36,7 @@
<tr style="height: 56px;">
<td style="padding-left: 0.5em;">
<div id="projectname">Compute Library
-  <span id="projectnumber">18.08</span>
+  <span id="projectnumber">18.11</span>
</div>
</td>
</tr>
@@ -48,41 +44,19 @@
</table>
</div>
<!-- end header part -->
-<!-- Generated by Doxygen 1.8.11 -->
+<!-- Generated by Doxygen 1.8.13 -->
<script type="text/javascript">
var searchBox = new SearchBox("searchBox", "search",false,'Search');
</script>
- <div id="navrow1" class="tabs">
- <ul class="tablist">
- <li><a href="index.xhtml"><span>Main Page</span></a></li>
- <li><a href="pages.xhtml"><span>Related Pages</span></a></li>
- <li><a href="namespaces.xhtml"><span>Namespaces</span></a></li>
- <li><a href="annotated.xhtml"><span>Data Structures</span></a></li>
- <li class="current"><a href="files.xhtml"><span>Files</span></a></li>
- <li>
- <div id="MSearchBox" class="MSearchBoxInactive">
- <span class="left">
- <img id="MSearchSelect" src="search/mag_sel.png"
- onmouseover="return searchBox.OnSearchSelectShow()"
- onmouseout="return searchBox.OnSearchSelectHide()"
- alt=""/>
- <input type="text" id="MSearchField" value="Search" accesskey="S"
- onfocus="searchBox.OnSearchFieldFocus(true)"
- onblur="searchBox.OnSearchFieldFocus(false)"
- onkeyup="searchBox.OnSearchFieldChange(event)"/>
- </span><span class="right">
- <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a>
- </span>
- </div>
- </li>
- </ul>
- </div>
- <div id="navrow2" class="tabs2">
- <ul class="tablist">
- <li><a href="files.xhtml"><span>File List</span></a></li>
- <li><a href="globals.xhtml"><span>Globals</span></a></li>
- </ul>
- </div>
+<script type="text/javascript" src="menudata.js"></script>
+<script type="text/javascript" src="menu.js"></script>
+<script type="text/javascript">
+$(function() {
+ initMenu('',true,false,'search.php','Search');
+ $(document).ready(function() { init_search(); });
+});
+</script>
+<div id="main-nav"></div>
</div><!-- top -->
<div id="side-nav" class="ui-resizable side-nav-resizable">
<div id="nav-tree">
@@ -117,35 +91,35 @@
<div class="title">direct_convolution3x3.cl</div> </div>
</div><!--header-->
<div class="contents">
-<a href="direct__convolution3x3_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2016-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> * of this software and associated documentation files (the "Software"), to</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="preprocessor">#include "<a class="code" href="helpers_8h.xhtml">helpers.h</a>"</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span> </div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="preprocessor">#undef CONVERT_SAT</span></div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span> </div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39"> 28</a></span> <span class="preprocessor">#define ADD_OP(a, b) ((a) + (b))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da"> 29</a></span> <span class="preprocessor">#define MUL_OP(a, b) ((a) * (b))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2"> 30</a></span> <span class="preprocessor">#define CONVERT_SAT(a, b) ((a))</span></div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span> </div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="preprocessor">#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span> </div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="preprocessor">#if STRIDE_X == 1</span></div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span> <span class="preprocessor">#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)</span></div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="preprocessor">#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)</span></div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span> <span class="preprocessor">#error "STRIDE_X larger than 2 is not supported"</span></div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span> <span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00041"></a><span class="lineno"> 41</span> </div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr) \</span></div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="preprocessor"> weights_values0 = vload3(0, weights_row_ptr); \</span></div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 8) \</span></div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span> <span class="preprocessor"> src0 = vload8(0, src_row_ptr); \</span></div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 2) \</span></div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span> <span class="preprocessor"> src1 = vload2(0, src_row_ptr + 8); \</span></div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \</span></div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \</span></div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \</span></div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span> </div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr) \</span></div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span> <span class="preprocessor"> weights_values0 = vload3(0, weights_row_ptr); \</span></div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 16) \</span></div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span> <span class="preprocessor"> src0 = vload16(0, src_row_ptr); \</span></div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span> <span class="preprocessor"> DATA_TYPE src1 = *(src_row_ptr + 16); \</span></div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0.even, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \</span></div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \</span></div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \</span></div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span> </div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span> <span class="preprocessor">#if defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span> </div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span> <span class="preprocessor">#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))</span></div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span> </div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span> <span class="preprocessor">#if STRIDE_X == 1</span></div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span> <span class="preprocessor">#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr)</span></div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span> <span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span> <span class="preprocessor">#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr)</span></div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span> <span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span> <span class="preprocessor">#error "STRIDE_X larger than 2 is not supported"</span></div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span> <span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span> </div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr) \</span></div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span> <span class="preprocessor"> { \</span></div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 8) \</span></div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span> <span class="preprocessor"> src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \</span></div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 2) \</span></div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span> <span class="preprocessor"> src1 = (VEC_DATA_TYPE(DATA_TYPE, 2))( \</span></div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span> <span class="preprocessor"> weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \</span></div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \</span></div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \</span></div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \</span></div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span> <span class="preprocessor"> }</span></div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span> </div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr) \</span></div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span> <span class="preprocessor"> { \</span></div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 16) \</span></div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span> <span class="preprocessor"> src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \</span></div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span> <span class="preprocessor"> DATA_TYPE src1 = PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE); \</span></div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span> <span class="preprocessor"> weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \</span></div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0.s02468ACE, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \</span></div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \</span></div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \</span></div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span> <span class="preprocessor"> }</span></div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span> </div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3_nhwc(</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <a class="code" href="helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span> {</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> weights = <a class="code" href="helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(weights);</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span> </div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  <a class="code" href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  values0 = 0;</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id0 = get_global_id(0);</div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id1 = get_global_id(1);</div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id2 = get_global_id(2);</div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span> </div><div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  __global uchar *weights_addr = (__global uchar *)<a class="code" href="helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a>(&weights, 0, 0, 0);</div><div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;</div><div class="line"><a name="l00197"></a><span class="lineno"> 197</span> </div><div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  weights_addr += id0 * weights_stride_w;</div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span> </div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> coordy = ((id2 * STRIDE_Y) - PAD_TOP);</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d < WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  {</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span> <span class="preprocessor">#if PAD_TOP > 0</span></div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  <span class="keywordflow">if</span>(coordy < 0) <span class="comment">// special case Z = -1 doesn't exists</span></div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  {</div><div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  <span class="comment">//skip first row and load the two next ones</span></div><div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00208"></a><span class="lineno"> 208</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  }</div><div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(coordy == (SRC_HEIGHT - PAD_TOP - 1))</div><div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  {</div><div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  <span class="comment">// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the</span></div><div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  <span class="comment">// Z axis has no padding at all.</span></div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  }</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <span class="keywordflow">else</span></div><div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  {</div><div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  }</div><div class="line"><a name="l00223"></a><span class="lineno"> 223</span> <span class="preprocessor">#else // PAD_TOP > 0</span></div><div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00227"></a><span class="lineno"> 227</span> <span class="preprocessor">#endif // PAD_TOP > 0</span></div><div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  src_addr += src_stride_x;</div><div class="line"><a name="l00229"></a><span class="lineno"> 229</span>  weights_addr += weights_stride_x;</div><div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  }</div><div class="line"><a name="l00231"></a><span class="lineno"> 231</span> </div><div class="line"><a name="l00232"></a><span class="lineno"> 232</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  values0 = <a class="code" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values0, (<a class="code" href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, id0))));</div><div class="line"><a name="l00235"></a><span class="lineno"> 235</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00236"></a><span class="lineno"> 236</span> </div><div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 0 * dst_stride_y)) = values0.s0;</div><div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 1 * dst_stride_y)) = values0.s1;</div><div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 2 * dst_stride_y)) = values0.s2;</div><div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 3 * dst_stride_y)) = values0.s3;</div><div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 4 * dst_stride_y)) = values0.s4;</div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 5 * dst_stride_y)) = values0.s5;</div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 6 * dst_stride_y)) = values0.s6;</div><div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 7 * dst_stride_y)) = values0.s7;</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span> }</div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span> <span class="preprocessor">#endif // defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span> </div><div class="line"><a name="l00285"></a><span class="lineno"> 285</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3(</div><div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00289"></a><span class="lineno"> 289</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00290"></a><span class="lineno"> 290</span>  <a class="code" href="helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00291"></a><span class="lineno"> 291</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00293"></a><span class="lineno"> 293</span> {</div><div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> weights = <a class="code" href="helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(weights);</div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span> </div><div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  <a class="code" href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00299"></a><span class="lineno"> 299</span>  values0 = 0;</div><div class="line"><a name="l00300"></a><span class="lineno"> 300</span> </div><div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  __global uchar *weights_addr = (__global uchar *)<a class="code" href="helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a>(&weights, 0, 0, 0);</div><div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0);</div><div class="line"><a name="l00303"></a><span class="lineno"> 303</span> </div><div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  weights_addr += kernel_index * weights_stride_w;</div><div class="line"><a name="l00306"></a><span class="lineno"> 306</span> </div><div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d < WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  {</div><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 0 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 0 * weights_stride_y));</div><div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 1 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 1 * weights_stride_y));</div><div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 2 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 2 * weights_stride_y));</div><div class="line"><a name="l00312"></a><span class="lineno"> 312</span> </div><div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  src_addr += src_stride_z;</div><div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  weights_addr += weights_stride_z;</div><div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div><div class="line"><a name="l00316"></a><span class="lineno"> 316</span> </div><div class="line"><a name="l00317"></a><span class="lineno"> 317</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00319"></a><span class="lineno"> 319</span> </div><div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  values0 = <a class="code" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values0, (<a class="code" href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, kernel_index))));</div><div class="line"><a name="l00321"></a><span class="lineno"> 321</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00322"></a><span class="lineno"> 322</span> </div><div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  vstore8(<a class="code" href="direct__convolution3x3_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(values0, <a class="code" href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>);</div><div class="line"><a name="l00324"></a><span class="lineno"> 324</span> }</div><div class="line"><a name="l00325"></a><span class="lineno"> 325</span> <span class="preprocessor">#endif //defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00326"></a><span class="lineno"> 326</span> </div><div class="line"><a name="l00327"></a><span class="lineno"> 327</span> <span class="preprocessor">#if defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00328"></a><span class="lineno"> 328</span> </div><div class="line"><a name="l00329"></a><span class="lineno"> 329</span> <span class="preprocessor">#define CONVOLUTION1x3_BIFROST(acc, src0, src1, weights_row0) \</span></div><div class="line"><a name="l00330"></a><span class="lineno"> 330</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00331"></a><span class="lineno"> 331</span> <span class="preprocessor"> acc.s0 = mad(src0.s0, weights_row0.s0, acc.s0); \</span></div><div class="line"><a name="l00332"></a><span class="lineno"> 332</span> <span class="preprocessor"> acc.s1 = mad(src0.s1, weights_row0.s0, acc.s1); \</span></div><div class="line"><a name="l00333"></a><span class="lineno"> 333</span> <span class="preprocessor"> acc.s2 = mad(src0.s2, weights_row0.s0, acc.s2); \</span></div><div class="line"><a name="l00334"></a><span class="lineno"> 334</span> <span class="preprocessor"> acc.s3 = mad(src0.s3, weights_row0.s0, acc.s3); \</span></div><div class="line"><a name="l00335"></a><span class="lineno"> 335</span> <span class="preprocessor"> acc.s0 = mad(src0.s1, weights_row0.s1, acc.s0); \</span></div><div class="line"><a name="l00336"></a><span class="lineno"> 336</span> <span class="preprocessor"> acc.s1 = mad(src0.s2, weights_row0.s1, acc.s1); \</span></div><div class="line"><a name="l00337"></a><span class="lineno"> 337</span> <span class="preprocessor"> acc.s2 = mad(src0.s3, weights_row0.s1, acc.s2); \</span></div><div class="line"><a name="l00338"></a><span class="lineno"> 338</span> <span class="preprocessor"> acc.s3 = mad(src1.s0, weights_row0.s1, acc.s3); \</span></div><div class="line"><a name="l00339"></a><span class="lineno"> 339</span> <span class="preprocessor"> acc.s0 = mad(src0.s2, weights_row0.s2, acc.s0); \</span></div><div class="line"><a name="l00340"></a><span class="lineno"> 340</span> <span class="preprocessor"> acc.s1 = mad(src0.s3, weights_row0.s2, acc.s1); \</span></div><div class="line"><a name="l00341"></a><span class="lineno"> 341</span> <span class="preprocessor"> acc.s2 = mad(src1.s0, weights_row0.s2, acc.s2); \</span></div><div class="line"><a name="l00342"></a><span class="lineno"> 342</span> <span class="preprocessor"> acc.s3 = mad(src1.s1, weights_row0.s2, acc.s3); \</span></div><div class="line"><a name="l00343"></a><span class="lineno"> 343</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00344"></a><span class="lineno"> 344</span> </div><div class="line"><a name="l00381"></a><span class="lineno"> 381</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3_f32_bifrost(</div><div class="line"><a name="l00382"></a><span class="lineno"> 382</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00383"></a><span class="lineno"> 383</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00384"></a><span class="lineno"> 384</span>  <a class="code" href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00385"></a><span class="lineno"> 385</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00386"></a><span class="lineno"> 386</span>  <a class="code" href="helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00387"></a><span class="lineno"> 387</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00389"></a><span class="lineno"> 389</span> {</div><div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <span class="comment">// Get the kernel index</span></div><div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00392"></a><span class="lineno"> 392</span> </div><div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00395"></a><span class="lineno"> 395</span> </div><div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  float4 values0 = 0;</div><div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  float4 values1 = 0;</div><div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  float4 values2 = 0;</div><div class="line"><a name="l00399"></a><span class="lineno"> 399</span> </div><div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);</div><div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0);</div><div class="line"><a name="l00402"></a><span class="lineno"> 402</span> </div><div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  <span class="comment">// Note: Since each work-item computes 4x3 elements, we need to load 5 rows from the input tensor</span></div><div class="line"><a name="l00404"></a><span class="lineno"> 404</span> </div><div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <span class="keywordflow">for</span>(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  {</div><div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  <span class="comment">// Load the weights</span></div><div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  float3 weights_row0 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 0 * weights_stride_y));</div><div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  float3 weights_row1 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 1 * weights_stride_y));</div><div class="line"><a name="l00410"></a><span class="lineno"> 410</span>  float3 weights_row2 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 2 * weights_stride_y));</div><div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  float4 src0;</div><div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  float2 src1;</div><div class="line"><a name="l00413"></a><span class="lineno"> 413</span> </div><div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  <span class="comment">// Load values from row0 of input tensor</span></div><div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y));</div><div class="line"><a name="l00416"></a><span class="lineno"> 416</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y) + 4);</div><div class="line"><a name="l00417"></a><span class="lineno"> 417</span> </div><div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row0);</div><div class="line"><a name="l00419"></a><span class="lineno"> 419</span> </div><div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  <span class="comment">// Load values from row1 of input tensor</span></div><div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y));</div><div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y) + 4);</div><div class="line"><a name="l00423"></a><span class="lineno"> 423</span> </div><div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row1);</div><div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row0);</div><div class="line"><a name="l00427"></a><span class="lineno"> 427</span> </div><div class="line"><a name="l00428"></a><span class="lineno"> 428</span>  <span class="comment">// Load values from row2 of input tensor</span></div><div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y));</div><div class="line"><a name="l00430"></a><span class="lineno"> 430</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y) + 4);</div><div class="line"><a name="l00431"></a><span class="lineno"> 431</span> </div><div class="line"><a name="l00432"></a><span class="lineno"> 432</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00433"></a><span class="lineno"> 433</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row2);</div><div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row1);</div><div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row0);</div><div class="line"><a name="l00436"></a><span class="lineno"> 436</span> </div><div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  <span class="comment">// Load values from row3 of input tensor</span></div><div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y));</div><div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y) + 4);</div><div class="line"><a name="l00440"></a><span class="lineno"> 440</span> </div><div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00442"></a><span class="lineno"> 442</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row2);</div><div class="line"><a name="l00443"></a><span class="lineno"> 443</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row1);</div><div class="line"><a name="l00444"></a><span class="lineno"> 444</span> </div><div class="line"><a name="l00445"></a><span class="lineno"> 445</span>  <span class="comment">// Row4</span></div><div class="line"><a name="l00446"></a><span class="lineno"> 446</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 4 * src_stride_y));</div><div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 4 * src_stride_y) + 4);</div><div class="line"><a name="l00448"></a><span class="lineno"> 448</span> </div><div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row2);</div><div class="line"><a name="l00451"></a><span class="lineno"> 451</span> </div><div class="line"><a name="l00452"></a><span class="lineno"> 452</span>  src_addr += src_stride_z;</div><div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  weights_addr += weights_stride_z;</div><div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  }</div><div class="line"><a name="l00455"></a><span class="lineno"> 455</span> </div><div class="line"><a name="l00456"></a><span class="lineno"> 456</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00458"></a><span class="lineno"> 458</span> </div><div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  <span class="keywordtype">float</span> bias = (float) * ((__global <span class="keywordtype">float</span> *)(<a class="code" href="helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, kernel_index)));</div><div class="line"><a name="l00460"></a><span class="lineno"> 460</span> </div><div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  values0 += (float4)bias;</div><div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  values1 += (float4)bias;</div><div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  values2 += (float4)bias;</div><div class="line"><a name="l00464"></a><span class="lineno"> 464</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00465"></a><span class="lineno"> 465</span> </div><div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  vstore4(values0, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 0 * dst_stride_y));</div><div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  vstore4(values1, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 1 * dst_stride_y));</div><div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  vstore4(values2, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 2 * dst_stride_y));</div><div class="line"><a name="l00469"></a><span class="lineno"> 469</span> }</div><div class="line"><a name="l00470"></a><span class="lineno"> 470</span> <span class="preprocessor">#endif // defined(WEIGHTS_DEPTH)</span></div><div class="ttc" id="struct_vector_xhtml"><div class="ttname"><a href="struct_vector.xhtml">Vector</a></div><div class="ttdoc">Structure to hold Vector information. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00142">helpers.h:142</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a31c8c760f08fb1a331b16b7c204321dc"><div class="ttname"><a href="helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00127">helpers.h:127</a></div></div>
+<a href="direct__convolution3x3_8cl.xhtml">Go to the documentation of this file.</a><div class="fragment"><div class="line"><a name="l00001"></a><span class="lineno"> 1</span> <span class="comment">/*</span></div><div class="line"><a name="l00002"></a><span class="lineno"> 2</span> <span class="comment"> * Copyright (c) 2016-2018 ARM Limited.</span></div><div class="line"><a name="l00003"></a><span class="lineno"> 3</span> <span class="comment"> *</span></div><div class="line"><a name="l00004"></a><span class="lineno"> 4</span> <span class="comment"> * SPDX-License-Identifier: MIT</span></div><div class="line"><a name="l00005"></a><span class="lineno"> 5</span> <span class="comment"> *</span></div><div class="line"><a name="l00006"></a><span class="lineno"> 6</span> <span class="comment"> * Permission is hereby granted, free of charge, to any person obtaining a copy</span></div><div class="line"><a name="l00007"></a><span class="lineno"> 7</span> <span class="comment"> * of this software and associated documentation files (the "Software"), to</span></div><div class="line"><a name="l00008"></a><span class="lineno"> 8</span> <span class="comment"> * deal in the Software without restriction, including without limitation the</span></div><div class="line"><a name="l00009"></a><span class="lineno"> 9</span> <span class="comment"> * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or</span></div><div class="line"><a name="l00010"></a><span class="lineno"> 10</span> <span class="comment"> * sell copies of the Software, and to permit persons to whom the Software is</span></div><div class="line"><a name="l00011"></a><span class="lineno"> 11</span> <span class="comment"> * furnished to do so, subject to the following conditions:</span></div><div class="line"><a name="l00012"></a><span class="lineno"> 12</span> <span class="comment"> *</span></div><div class="line"><a name="l00013"></a><span class="lineno"> 13</span> <span class="comment"> * The above copyright notice and this permission notice shall be included in all</span></div><div class="line"><a name="l00014"></a><span class="lineno"> 14</span> <span class="comment"> * copies or substantial portions of the Software.</span></div><div class="line"><a name="l00015"></a><span class="lineno"> 15</span> <span class="comment"> *</span></div><div class="line"><a name="l00016"></a><span class="lineno"> 16</span> <span class="comment"> * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR</span></div><div class="line"><a name="l00017"></a><span class="lineno"> 17</span> <span class="comment"> * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,</span></div><div class="line"><a name="l00018"></a><span class="lineno"> 18</span> <span class="comment"> * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE</span></div><div class="line"><a name="l00019"></a><span class="lineno"> 19</span> <span class="comment"> * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER</span></div><div class="line"><a name="l00020"></a><span class="lineno"> 20</span> <span class="comment"> * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,</span></div><div class="line"><a name="l00021"></a><span class="lineno"> 21</span> <span class="comment"> * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE</span></div><div class="line"><a name="l00022"></a><span class="lineno"> 22</span> <span class="comment"> * SOFTWARE.</span></div><div class="line"><a name="l00023"></a><span class="lineno"> 23</span> <span class="comment"> */</span></div><div class="line"><a name="l00024"></a><span class="lineno"> 24</span> <span class="preprocessor">#include "<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a>"</span></div><div class="line"><a name="l00025"></a><span class="lineno"> 25</span> </div><div class="line"><a name="l00026"></a><span class="lineno"> 26</span> <span class="preprocessor">#undef CONVERT_SAT</span></div><div class="line"><a name="l00027"></a><span class="lineno"> 27</span> </div><div class="line"><a name="l00028"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39"> 28</a></span> <span class="preprocessor">#define ADD_OP(a, b) ((a) + (b))</span></div><div class="line"><a name="l00029"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#ad3cc858846806e6b1d3694b9d0a2e6da"> 29</a></span> <span class="preprocessor">#define MUL_OP(a, b) ((a) * (b))</span></div><div class="line"><a name="l00030"></a><span class="lineno"><a class="line" href="direct__convolution3x3_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2"> 30</a></span> <span class="preprocessor">#define CONVERT_SAT(a, b) ((a))</span></div><div class="line"><a name="l00031"></a><span class="lineno"> 31</span> </div><div class="line"><a name="l00032"></a><span class="lineno"> 32</span> <span class="preprocessor">#if defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00033"></a><span class="lineno"> 33</span> </div><div class="line"><a name="l00034"></a><span class="lineno"> 34</span> <span class="preprocessor">#if STRIDE_X == 1</span></div><div class="line"><a name="l00035"></a><span class="lineno"> 35</span> <span class="preprocessor">#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr)</span></div><div class="line"><a name="l00036"></a><span class="lineno"> 36</span> <span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00037"></a><span class="lineno"> 37</span> <span class="preprocessor">#define CONVOLUTION1x3(acc, src_row_ptr, weights_row_ptr) CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr)</span></div><div class="line"><a name="l00038"></a><span class="lineno"> 38</span> <span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00039"></a><span class="lineno"> 39</span> <span class="preprocessor">#error "STRIDE_X larger than 2 is not supported"</span></div><div class="line"><a name="l00040"></a><span class="lineno"> 40</span> <span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00041"></a><span class="lineno"> 41</span> </div><div class="line"><a name="l00042"></a><span class="lineno"> 42</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE1(acc, src_row_ptr, weights_row_ptr) \</span></div><div class="line"><a name="l00043"></a><span class="lineno"> 43</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00044"></a><span class="lineno"> 44</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00045"></a><span class="lineno"> 45</span> <span class="preprocessor"> weights_values0 = vload3(0, weights_row_ptr); \</span></div><div class="line"><a name="l00046"></a><span class="lineno"> 46</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 8) \</span></div><div class="line"><a name="l00047"></a><span class="lineno"> 47</span> <span class="preprocessor"> src0 = vload8(0, src_row_ptr); \</span></div><div class="line"><a name="l00048"></a><span class="lineno"> 48</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 2) \</span></div><div class="line"><a name="l00049"></a><span class="lineno"> 49</span> <span class="preprocessor"> src1 = vload2(0, src_row_ptr + 8); \</span></div><div class="line"><a name="l00050"></a><span class="lineno"> 50</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00051"></a><span class="lineno"> 51</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \</span></div><div class="line"><a name="l00052"></a><span class="lineno"> 52</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \</span></div><div class="line"><a name="l00053"></a><span class="lineno"> 53</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \</span></div><div class="line"><a name="l00054"></a><span class="lineno"> 54</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00055"></a><span class="lineno"> 55</span> </div><div class="line"><a name="l00056"></a><span class="lineno"> 56</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE2(acc, src_row_ptr, weights_row_ptr) \</span></div><div class="line"><a name="l00057"></a><span class="lineno"> 57</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00058"></a><span class="lineno"> 58</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00059"></a><span class="lineno"> 59</span> <span class="preprocessor"> weights_values0 = vload3(0, weights_row_ptr); \</span></div><div class="line"><a name="l00060"></a><span class="lineno"> 60</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 16) \</span></div><div class="line"><a name="l00061"></a><span class="lineno"> 61</span> <span class="preprocessor"> src0 = vload16(0, src_row_ptr); \</span></div><div class="line"><a name="l00062"></a><span class="lineno"> 62</span> <span class="preprocessor"> DATA_TYPE src1 = *(src_row_ptr + 16); \</span></div><div class="line"><a name="l00063"></a><span class="lineno"> 63</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00064"></a><span class="lineno"> 64</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0.even, (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s0)); \</span></div><div class="line"><a name="l00065"></a><span class="lineno"> 65</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s1)); \</span></div><div class="line"><a name="l00066"></a><span class="lineno"> 66</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights_values0.s2)); \</span></div><div class="line"><a name="l00067"></a><span class="lineno"> 67</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00068"></a><span class="lineno"> 68</span> </div><div class="line"><a name="l00069"></a><span class="lineno"> 69</span> <span class="preprocessor">#if defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00070"></a><span class="lineno"> 70</span> </div><div class="line"><a name="l00071"></a><span class="lineno"> 71</span> <span class="preprocessor">#define PTR_TO_VALUE(PTR, DATA_TYPE) *((__global DATA_TYPE *)(PTR))</span></div><div class="line"><a name="l00072"></a><span class="lineno"> 72</span> </div><div class="line"><a name="l00073"></a><span class="lineno"> 73</span> <span class="preprocessor">#if STRIDE_X == 1</span></div><div class="line"><a name="l00074"></a><span class="lineno"> 74</span> <span class="preprocessor">#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr)</span></div><div class="line"><a name="l00075"></a><span class="lineno"> 75</span> <span class="preprocessor">#elif STRIDE_X == 2 </span><span class="comment">/* STRIDE_X == 1 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00076"></a><span class="lineno"> 76</span> <span class="preprocessor">#define CONVOLUTION1x3_NHWC(acc, row_ptr, weights_ptr) CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr)</span></div><div class="line"><a name="l00077"></a><span class="lineno"> 77</span> <span class="preprocessor">#else </span><span class="comment">/* STRIDE_X not equals 1 or 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00078"></a><span class="lineno"> 78</span> <span class="preprocessor">#error "STRIDE_X larger than 2 is not supported"</span></div><div class="line"><a name="l00079"></a><span class="lineno"> 79</span> <span class="preprocessor">#endif </span><span class="comment">/* STRIDE_X == 2 */</span><span class="preprocessor"></span></div><div class="line"><a name="l00080"></a><span class="lineno"> 80</span> </div><div class="line"><a name="l00081"></a><span class="lineno"> 81</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE1(acc, row_ptr, weights_ptr) \</span></div><div class="line"><a name="l00082"></a><span class="lineno"> 82</span> <span class="preprocessor"> { \</span></div><div class="line"><a name="l00083"></a><span class="lineno"> 83</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 8) \</span></div><div class="line"><a name="l00084"></a><span class="lineno"> 84</span> <span class="preprocessor"> src0 = (VEC_DATA_TYPE(DATA_TYPE, 8))( \</span></div><div class="line"><a name="l00085"></a><span class="lineno"> 85</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00086"></a><span class="lineno"> 86</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00087"></a><span class="lineno"> 87</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00088"></a><span class="lineno"> 88</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00089"></a><span class="lineno"> 89</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00090"></a><span class="lineno"> 90</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00091"></a><span class="lineno"> 91</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00092"></a><span class="lineno"> 92</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00093"></a><span class="lineno"> 93</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 2) \</span></div><div class="line"><a name="l00094"></a><span class="lineno"> 94</span> <span class="preprocessor"> src1 = (VEC_DATA_TYPE(DATA_TYPE, 2))( \</span></div><div class="line"><a name="l00095"></a><span class="lineno"> 95</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00096"></a><span class="lineno"> 96</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00097"></a><span class="lineno"> 97</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00098"></a><span class="lineno"> 98</span> <span class="preprocessor"> weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \</span></div><div class="line"><a name="l00099"></a><span class="lineno"> 99</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00100"></a><span class="lineno"> 100</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00101"></a><span class="lineno"> 101</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \</span></div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1234, src0.s567, src1.s0), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \</span></div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s234, src0.s567, src1.s01), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \</span></div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span> <span class="preprocessor"> }</span></div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span> </div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span> <span class="preprocessor">#define CONVOLUTION1x3_STRIDE_NHWC_STRIDE2(acc, row_ptr, weights_ptr) \</span></div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span> <span class="preprocessor"> { \</span></div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 16) \</span></div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span> <span class="preprocessor"> src0 = (VEC_DATA_TYPE(DATA_TYPE, 16))( \</span></div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 0 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 1 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 2 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 3 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 4 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 5 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 6 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 7 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 8 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 9 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 10 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 11 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 12 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 13 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 14 * src_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span> <span class="preprocessor"> PTR_TO_VALUE(row_ptr + 15 * src_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span> <span class="preprocessor"> DATA_TYPE src1 = PTR_TO_VALUE(row_ptr + 16 * src_stride_y, DATA_TYPE); \</span></div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span> <span class="preprocessor"> VEC_DATA_TYPE(DATA_TYPE, 3) \</span></div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span> <span class="preprocessor"> weights = (VEC_DATA_TYPE(DATA_TYPE, 3))( \</span></div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 0 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 1 * weights_stride_y, DATA_TYPE), \</span></div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span> <span class="preprocessor"> PTR_TO_VALUE((weights_ptr) + 2 * weights_stride_y, DATA_TYPE)); \</span></div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span> <span class="preprocessor"> \</span></div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP(src0.s02468ACE, (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s0)); \</span></div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s1357, src0.s9BDF), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s1)); \</span></div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span> <span class="preprocessor"> acc = ADD_OP(acc, MUL_OP((VEC_DATA_TYPE(DATA_TYPE, 8))(src0.s2468, src0.sACE, src1), (VEC_DATA_TYPE(DATA_TYPE, 8))weights.s2)); \</span></div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span> <span class="preprocessor"> }</span></div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span> </div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3_nhwc(</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span> {</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> weights = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(weights);</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span> </div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  values0 = 0;</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id0 = get_global_id(0);</div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id1 = get_global_id(1);</div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> id2 = get_global_id(2);</div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span> </div><div class="line"><a name="l00195"></a><span class="lineno"> 195</span>  __global uchar *weights_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a>(&weights, 0, 0, 0);</div><div class="line"><a name="l00196"></a><span class="lineno"> 196</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0) - src_stride_x * id0 + ((id2 * STRIDE_Y) - PAD_TOP) * (int)src_stride_z;</div><div class="line"><a name="l00197"></a><span class="lineno"> 197</span> </div><div class="line"><a name="l00198"></a><span class="lineno"> 198</span>  weights_addr += id0 * weights_stride_w;</div><div class="line"><a name="l00199"></a><span class="lineno"> 199</span> </div><div class="line"><a name="l00200"></a><span class="lineno"> 200</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> coordy = ((id2 * STRIDE_Y) - PAD_TOP);</div><div class="line"><a name="l00201"></a><span class="lineno"> 201</span>  <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d < WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00202"></a><span class="lineno"> 202</span>  {</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span> <span class="preprocessor">#if PAD_TOP > 0</span></div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span>  <span class="keywordflow">if</span>(coordy < 0) <span class="comment">// special case Z = -1 doesn't exists</span></div><div class="line"><a name="l00205"></a><span class="lineno"> 205</span>  {</div><div class="line"><a name="l00206"></a><span class="lineno"> 206</span>  <span class="comment">//skip first row and load the two next ones</span></div><div class="line"><a name="l00207"></a><span class="lineno"> 207</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00208"></a><span class="lineno"> 208</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00209"></a><span class="lineno"> 209</span>  }</div><div class="line"><a name="l00210"></a><span class="lineno"> 210</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(coordy == (SRC_HEIGHT - PAD_TOP - 1))</div><div class="line"><a name="l00211"></a><span class="lineno"> 211</span>  {</div><div class="line"><a name="l00212"></a><span class="lineno"> 212</span>  <span class="comment">// special case when computing the last row of the output we must read the last three rows from the input buffer (including padding) but the</span></div><div class="line"><a name="l00213"></a><span class="lineno"> 213</span>  <span class="comment">// Z axis has no padding at all.</span></div><div class="line"><a name="l00214"></a><span class="lineno"> 214</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00215"></a><span class="lineno"> 215</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00216"></a><span class="lineno"> 216</span>  }</div><div class="line"><a name="l00217"></a><span class="lineno"> 217</span>  <span class="keywordflow">else</span></div><div class="line"><a name="l00218"></a><span class="lineno"> 218</span>  {</div><div class="line"><a name="l00219"></a><span class="lineno"> 219</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00220"></a><span class="lineno"> 220</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00221"></a><span class="lineno"> 221</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00222"></a><span class="lineno"> 222</span>  }</div><div class="line"><a name="l00223"></a><span class="lineno"> 223</span> <span class="preprocessor">#else // PAD_TOP > 0</span></div><div class="line"><a name="l00224"></a><span class="lineno"> 224</span>  CONVOLUTION1x3_NHWC(values0, src_addr, (weights_addr + 0 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00225"></a><span class="lineno"> 225</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 1 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 1 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00226"></a><span class="lineno"> 226</span>  CONVOLUTION1x3_NHWC(values0, src_addr + 2 * (<span class="keywordtype">int</span>)src_stride_z, (weights_addr + 2 * (<span class="keywordtype">int</span>)weights_stride_z));</div><div class="line"><a name="l00227"></a><span class="lineno"> 227</span> <span class="preprocessor">#endif // PAD_TOP > 0</span></div><div class="line"><a name="l00228"></a><span class="lineno"> 228</span>  src_addr += src_stride_x;</div><div class="line"><a name="l00229"></a><span class="lineno"> 229</span>  weights_addr += weights_stride_x;</div><div class="line"><a name="l00230"></a><span class="lineno"> 230</span>  }</div><div class="line"><a name="l00231"></a><span class="lineno"> 231</span> </div><div class="line"><a name="l00232"></a><span class="lineno"> 232</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00233"></a><span class="lineno"> 233</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00234"></a><span class="lineno"> 234</span>  values0 = <a class="code" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values0, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, id0))));</div><div class="line"><a name="l00235"></a><span class="lineno"> 235</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00236"></a><span class="lineno"> 236</span> </div><div class="line"><a name="l00237"></a><span class="lineno"> 237</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 0 * dst_stride_y)) = values0.s0;</div><div class="line"><a name="l00238"></a><span class="lineno"> 238</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 1 * dst_stride_y)) = values0.s1;</div><div class="line"><a name="l00239"></a><span class="lineno"> 239</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 2 * dst_stride_y)) = values0.s2;</div><div class="line"><a name="l00240"></a><span class="lineno"> 240</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 3 * dst_stride_y)) = values0.s3;</div><div class="line"><a name="l00241"></a><span class="lineno"> 241</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 4 * dst_stride_y)) = values0.s4;</div><div class="line"><a name="l00242"></a><span class="lineno"> 242</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 5 * dst_stride_y)) = values0.s5;</div><div class="line"><a name="l00243"></a><span class="lineno"> 243</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 6 * dst_stride_y)) = values0.s6;</div><div class="line"><a name="l00244"></a><span class="lineno"> 244</span>  *((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 7 * dst_stride_y)) = values0.s7;</div><div class="line"><a name="l00245"></a><span class="lineno"> 245</span> }</div><div class="line"><a name="l00246"></a><span class="lineno"> 246</span> <span class="preprocessor">#endif // defined(DATA_LAYOUT_NHWC)</span></div><div class="line"><a name="l00247"></a><span class="lineno"> 247</span> </div><div class="line"><a name="l00285"></a><span class="lineno"> 285</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3(</div><div class="line"><a name="l00286"></a><span class="lineno"> 286</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00287"></a><span class="lineno"> 287</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00288"></a><span class="lineno"> 288</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00289"></a><span class="lineno"> 289</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00290"></a><span class="lineno"> 290</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00291"></a><span class="lineno"> 291</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00292"></a><span class="lineno"> 292</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00293"></a><span class="lineno"> 293</span> {</div><div class="line"><a name="l00294"></a><span class="lineno"> 294</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00295"></a><span class="lineno"> 295</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> weights = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a>(weights);</div><div class="line"><a name="l00296"></a><span class="lineno"> 296</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00297"></a><span class="lineno"> 297</span> </div><div class="line"><a name="l00298"></a><span class="lineno"> 298</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)</div><div class="line"><a name="l00299"></a><span class="lineno"> 299</span>  values0 = 0;</div><div class="line"><a name="l00300"></a><span class="lineno"> 300</span> </div><div class="line"><a name="l00301"></a><span class="lineno"> 301</span>  __global uchar *weights_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a>(&weights, 0, 0, 0);</div><div class="line"><a name="l00302"></a><span class="lineno"> 302</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0);</div><div class="line"><a name="l00303"></a><span class="lineno"> 303</span> </div><div class="line"><a name="l00304"></a><span class="lineno"> 304</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00305"></a><span class="lineno"> 305</span>  weights_addr += kernel_index * weights_stride_w;</div><div class="line"><a name="l00306"></a><span class="lineno"> 306</span> </div><div class="line"><a name="l00307"></a><span class="lineno"> 307</span>  <span class="keywordflow">for</span>(<span class="keyword">volatile</span> <span class="keywordtype">int</span> d = 0; d < WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00308"></a><span class="lineno"> 308</span>  {</div><div class="line"><a name="l00309"></a><span class="lineno"> 309</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 0 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 0 * weights_stride_y));</div><div class="line"><a name="l00310"></a><span class="lineno"> 310</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 1 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 1 * weights_stride_y));</div><div class="line"><a name="l00311"></a><span class="lineno"> 311</span>  CONVOLUTION1x3(values0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(src_addr + 2 * src_stride_y), (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(weights_addr + 2 * weights_stride_y));</div><div class="line"><a name="l00312"></a><span class="lineno"> 312</span> </div><div class="line"><a name="l00313"></a><span class="lineno"> 313</span>  src_addr += src_stride_z;</div><div class="line"><a name="l00314"></a><span class="lineno"> 314</span>  weights_addr += weights_stride_z;</div><div class="line"><a name="l00315"></a><span class="lineno"> 315</span>  }</div><div class="line"><a name="l00316"></a><span class="lineno"> 316</span> </div><div class="line"><a name="l00317"></a><span class="lineno"> 317</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00318"></a><span class="lineno"> 318</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00319"></a><span class="lineno"> 319</span> </div><div class="line"><a name="l00320"></a><span class="lineno"> 320</span>  values0 = <a class="code" href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a>(values0, (<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(DATA_TYPE_PROMOTED, 8)) * ((__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, kernel_index))));</div><div class="line"><a name="l00321"></a><span class="lineno"> 321</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00322"></a><span class="lineno"> 322</span> </div><div class="line"><a name="l00323"></a><span class="lineno"> 323</span>  vstore8(<a class="code" href="direct__convolution3x3_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a>(values0, <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a>(<a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a>, 8)), 0, (__global <a class="code" href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a> *)dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a>);</div><div class="line"><a name="l00324"></a><span class="lineno"> 324</span> }</div><div class="line"><a name="l00325"></a><span class="lineno"> 325</span> <span class="preprocessor">#endif //defined(DATA_TYPE) && defined(STRIDE_X) && defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00326"></a><span class="lineno"> 326</span> </div><div class="line"><a name="l00327"></a><span class="lineno"> 327</span> <span class="preprocessor">#if defined(WEIGHTS_DEPTH)</span></div><div class="line"><a name="l00328"></a><span class="lineno"> 328</span> </div><div class="line"><a name="l00329"></a><span class="lineno"> 329</span> <span class="preprocessor">#define CONVOLUTION1x3_BIFROST(acc, src0, src1, weights_row0) \</span></div><div class="line"><a name="l00330"></a><span class="lineno"> 330</span> <span class="preprocessor"> ({ \</span></div><div class="line"><a name="l00331"></a><span class="lineno"> 331</span> <span class="preprocessor"> acc.s0 = mad(src0.s0, weights_row0.s0, acc.s0); \</span></div><div class="line"><a name="l00332"></a><span class="lineno"> 332</span> <span class="preprocessor"> acc.s1 = mad(src0.s1, weights_row0.s0, acc.s1); \</span></div><div class="line"><a name="l00333"></a><span class="lineno"> 333</span> <span class="preprocessor"> acc.s2 = mad(src0.s2, weights_row0.s0, acc.s2); \</span></div><div class="line"><a name="l00334"></a><span class="lineno"> 334</span> <span class="preprocessor"> acc.s3 = mad(src0.s3, weights_row0.s0, acc.s3); \</span></div><div class="line"><a name="l00335"></a><span class="lineno"> 335</span> <span class="preprocessor"> acc.s0 = mad(src0.s1, weights_row0.s1, acc.s0); \</span></div><div class="line"><a name="l00336"></a><span class="lineno"> 336</span> <span class="preprocessor"> acc.s1 = mad(src0.s2, weights_row0.s1, acc.s1); \</span></div><div class="line"><a name="l00337"></a><span class="lineno"> 337</span> <span class="preprocessor"> acc.s2 = mad(src0.s3, weights_row0.s1, acc.s2); \</span></div><div class="line"><a name="l00338"></a><span class="lineno"> 338</span> <span class="preprocessor"> acc.s3 = mad(src1.s0, weights_row0.s1, acc.s3); \</span></div><div class="line"><a name="l00339"></a><span class="lineno"> 339</span> <span class="preprocessor"> acc.s0 = mad(src0.s2, weights_row0.s2, acc.s0); \</span></div><div class="line"><a name="l00340"></a><span class="lineno"> 340</span> <span class="preprocessor"> acc.s1 = mad(src0.s3, weights_row0.s2, acc.s1); \</span></div><div class="line"><a name="l00341"></a><span class="lineno"> 341</span> <span class="preprocessor"> acc.s2 = mad(src1.s0, weights_row0.s2, acc.s2); \</span></div><div class="line"><a name="l00342"></a><span class="lineno"> 342</span> <span class="preprocessor"> acc.s3 = mad(src1.s1, weights_row0.s2, acc.s3); \</span></div><div class="line"><a name="l00343"></a><span class="lineno"> 343</span> <span class="preprocessor"> })</span></div><div class="line"><a name="l00344"></a><span class="lineno"> 344</span> </div><div class="line"><a name="l00381"></a><span class="lineno"> 381</span> __kernel <span class="keywordtype">void</span> direct_convolution3x3_f32_bifrost(</div><div class="line"><a name="l00382"></a><span class="lineno"> 382</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a>),</div><div class="line"><a name="l00383"></a><span class="lineno"> 383</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(<a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a>),</div><div class="line"><a name="l00384"></a><span class="lineno"> 384</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a>(weights),</div><div class="line"><a name="l00385"></a><span class="lineno"> 385</span> #ifdef HAS_BIAS</div><div class="line"><a name="l00386"></a><span class="lineno"> 386</span>  <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a>(biases),</div><div class="line"><a name="l00387"></a><span class="lineno"> 387</span> #endif <span class="comment">/* defined(HAS_BIAS) */</span></div><div class="line"><a name="l00388"></a><span class="lineno"> 388</span>  <span class="keywordtype">unsigned</span> <span class="keywordtype">int</span> weights_stride_w)</div><div class="line"><a name="l00389"></a><span class="lineno"> 389</span> {</div><div class="line"><a name="l00390"></a><span class="lineno"> 390</span>  <span class="comment">// Get the kernel index</span></div><div class="line"><a name="l00391"></a><span class="lineno"> 391</span>  <span class="keyword">const</span> <span class="keywordtype">int</span> kernel_index = get_global_id(2);</div><div class="line"><a name="l00392"></a><span class="lineno"> 392</span> </div><div class="line"><a name="l00393"></a><span class="lineno"> 393</span>  <a class="code" href="struct_image.xhtml">Image</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">src</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a>(src);</div><div class="line"><a name="l00394"></a><span class="lineno"> 394</span>  <a class="code" href="struct_tensor3_d.xhtml">Tensor3D</a> <a class="code" href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">dst</a> = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a>(dst);</div><div class="line"><a name="l00395"></a><span class="lineno"> 395</span> </div><div class="line"><a name="l00396"></a><span class="lineno"> 396</span>  float4 values0 = 0;</div><div class="line"><a name="l00397"></a><span class="lineno"> 397</span>  float4 values1 = 0;</div><div class="line"><a name="l00398"></a><span class="lineno"> 398</span>  float4 values2 = 0;</div><div class="line"><a name="l00399"></a><span class="lineno"> 399</span> </div><div class="line"><a name="l00400"></a><span class="lineno"> 400</span>  __global uchar *weights_addr = (__global uchar *)(weights_ptr + weights_offset_first_element_in_bytes + kernel_index * weights_stride_w);</div><div class="line"><a name="l00401"></a><span class="lineno"> 401</span>  __global uchar *src_addr = (__global uchar *)<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a>(&src, 0, 0);</div><div class="line"><a name="l00402"></a><span class="lineno"> 402</span> </div><div class="line"><a name="l00403"></a><span class="lineno"> 403</span>  <span class="comment">// Note: Since each work-item computes 4x3 elements, we need to load 5 rows from the input tensor</span></div><div class="line"><a name="l00404"></a><span class="lineno"> 404</span> </div><div class="line"><a name="l00405"></a><span class="lineno"> 405</span>  <span class="keywordflow">for</span>(ushort d = 0; d < (ushort)WEIGHTS_DEPTH; ++d)</div><div class="line"><a name="l00406"></a><span class="lineno"> 406</span>  {</div><div class="line"><a name="l00407"></a><span class="lineno"> 407</span>  <span class="comment">// Load the weights</span></div><div class="line"><a name="l00408"></a><span class="lineno"> 408</span>  float3 weights_row0 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 0 * weights_stride_y));</div><div class="line"><a name="l00409"></a><span class="lineno"> 409</span>  float3 weights_row1 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 1 * weights_stride_y));</div><div class="line"><a name="l00410"></a><span class="lineno"> 410</span>  float3 weights_row2 = vload3(0, (__global <span class="keywordtype">float</span> *)(weights_addr + 2 * weights_stride_y));</div><div class="line"><a name="l00411"></a><span class="lineno"> 411</span>  float4 src0;</div><div class="line"><a name="l00412"></a><span class="lineno"> 412</span>  float2 src1;</div><div class="line"><a name="l00413"></a><span class="lineno"> 413</span> </div><div class="line"><a name="l00414"></a><span class="lineno"> 414</span>  <span class="comment">// Load values from row0 of input tensor</span></div><div class="line"><a name="l00415"></a><span class="lineno"> 415</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y));</div><div class="line"><a name="l00416"></a><span class="lineno"> 416</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 0 * src_stride_y) + 4);</div><div class="line"><a name="l00417"></a><span class="lineno"> 417</span> </div><div class="line"><a name="l00418"></a><span class="lineno"> 418</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row0);</div><div class="line"><a name="l00419"></a><span class="lineno"> 419</span> </div><div class="line"><a name="l00420"></a><span class="lineno"> 420</span>  <span class="comment">// Load values from row1 of input tensor</span></div><div class="line"><a name="l00421"></a><span class="lineno"> 421</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y));</div><div class="line"><a name="l00422"></a><span class="lineno"> 422</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 1 * src_stride_y) + 4);</div><div class="line"><a name="l00423"></a><span class="lineno"> 423</span> </div><div class="line"><a name="l00424"></a><span class="lineno"> 424</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00425"></a><span class="lineno"> 425</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row1);</div><div class="line"><a name="l00426"></a><span class="lineno"> 426</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row0);</div><div class="line"><a name="l00427"></a><span class="lineno"> 427</span> </div><div class="line"><a name="l00428"></a><span class="lineno"> 428</span>  <span class="comment">// Load values from row2 of input tensor</span></div><div class="line"><a name="l00429"></a><span class="lineno"> 429</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y));</div><div class="line"><a name="l00430"></a><span class="lineno"> 430</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 2 * src_stride_y) + 4);</div><div class="line"><a name="l00431"></a><span class="lineno"> 431</span> </div><div class="line"><a name="l00432"></a><span class="lineno"> 432</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00433"></a><span class="lineno"> 433</span>  CONVOLUTION1x3_BIFROST(values0, src0, src1, weights_row2);</div><div class="line"><a name="l00434"></a><span class="lineno"> 434</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row1);</div><div class="line"><a name="l00435"></a><span class="lineno"> 435</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row0);</div><div class="line"><a name="l00436"></a><span class="lineno"> 436</span> </div><div class="line"><a name="l00437"></a><span class="lineno"> 437</span>  <span class="comment">// Load values from row3 of input tensor</span></div><div class="line"><a name="l00438"></a><span class="lineno"> 438</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y));</div><div class="line"><a name="l00439"></a><span class="lineno"> 439</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 3 * src_stride_y) + 4);</div><div class="line"><a name="l00440"></a><span class="lineno"> 440</span> </div><div class="line"><a name="l00441"></a><span class="lineno"> 441</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00442"></a><span class="lineno"> 442</span>  CONVOLUTION1x3_BIFROST(values1, src0, src1, weights_row2);</div><div class="line"><a name="l00443"></a><span class="lineno"> 443</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row1);</div><div class="line"><a name="l00444"></a><span class="lineno"> 444</span> </div><div class="line"><a name="l00445"></a><span class="lineno"> 445</span>  <span class="comment">// Row4</span></div><div class="line"><a name="l00446"></a><span class="lineno"> 446</span>  src0 = vload4(0, (__global <span class="keywordtype">float</span> *)(src_addr + 4 * src_stride_y));</div><div class="line"><a name="l00447"></a><span class="lineno"> 447</span>  src1 = vload2(0, (__global <span class="keywordtype">float</span> *)(src_addr + 4 * src_stride_y) + 4);</div><div class="line"><a name="l00448"></a><span class="lineno"> 448</span> </div><div class="line"><a name="l00449"></a><span class="lineno"> 449</span>  <span class="comment">// Accumulate</span></div><div class="line"><a name="l00450"></a><span class="lineno"> 450</span>  CONVOLUTION1x3_BIFROST(values2, src0, src1, weights_row2);</div><div class="line"><a name="l00451"></a><span class="lineno"> 451</span> </div><div class="line"><a name="l00452"></a><span class="lineno"> 452</span>  src_addr += src_stride_z;</div><div class="line"><a name="l00453"></a><span class="lineno"> 453</span>  weights_addr += weights_stride_z;</div><div class="line"><a name="l00454"></a><span class="lineno"> 454</span>  }</div><div class="line"><a name="l00455"></a><span class="lineno"> 455</span> </div><div class="line"><a name="l00456"></a><span class="lineno"> 456</span> <span class="preprocessor">#ifdef HAS_BIAS</span></div><div class="line"><a name="l00457"></a><span class="lineno"> 457</span>  <a class="code" href="struct_vector.xhtml">Vector</a> biases = <a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a>(biases);</div><div class="line"><a name="l00458"></a><span class="lineno"> 458</span> </div><div class="line"><a name="l00459"></a><span class="lineno"> 459</span>  <span class="keywordtype">float</span> bias = (float) * ((__global <span class="keywordtype">float</span> *)(<a class="code" href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a>(&biases, kernel_index)));</div><div class="line"><a name="l00460"></a><span class="lineno"> 460</span> </div><div class="line"><a name="l00461"></a><span class="lineno"> 461</span>  values0 += (float4)bias;</div><div class="line"><a name="l00462"></a><span class="lineno"> 462</span>  values1 += (float4)bias;</div><div class="line"><a name="l00463"></a><span class="lineno"> 463</span>  values2 += (float4)bias;</div><div class="line"><a name="l00464"></a><span class="lineno"> 464</span> <span class="preprocessor">#endif </span><span class="comment">/* defined(HAS_BIAS) */</span><span class="preprocessor"></span></div><div class="line"><a name="l00465"></a><span class="lineno"> 465</span> </div><div class="line"><a name="l00466"></a><span class="lineno"> 466</span>  vstore4(values0, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 0 * dst_stride_y));</div><div class="line"><a name="l00467"></a><span class="lineno"> 467</span>  vstore4(values1, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 1 * dst_stride_y));</div><div class="line"><a name="l00468"></a><span class="lineno"> 468</span>  vstore4(values2, 0, (__global <span class="keywordtype">float</span> *)(dst.<a class="code" href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">ptr</a> + 2 * dst_stride_y));</div><div class="line"><a name="l00469"></a><span class="lineno"> 469</span> }</div><div class="line"><a name="l00470"></a><span class="lineno"> 470</span> <span class="preprocessor">#endif // defined(WEIGHTS_DEPTH)</span></div><div class="ttc" id="struct_vector_xhtml"><div class="ttname"><a href="struct_vector.xhtml">Vector</a></div><div class="ttdoc">Structure to hold Vector information. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00140">helpers.h:140</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00309">helpers.h:309</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_aebe814363556c244be043b13e7969197"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00110">helpers.h:110</a></div></div>
<div class="ttc" id="convolution3x3_8cl_xhtml_afb8c72ce35c4a1f4a2588d6573e54aa1"><div class="ttname"><a href="convolution3x3_8cl.xhtml#afb8c72ce35c4a1f4a2588d6573e54aa1">DATA_TYPE</a></div><div class="ttdeci">#define DATA_TYPE</div><div class="ttdef"><b>Definition:</b> <a href="convolution3x3_8cl_source.xhtml#l00027">convolution3x3.cl:27</a></div></div>
-<div class="ttc" id="struct_tensor3_d_xhtml"><div class="ttname"><a href="struct_tensor3_d.xhtml">Tensor3D</a></div><div class="ttdoc">Structure to hold 3D tensor information. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00159">helpers.h:159</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a009469e4d9b8fce3b6d5e97d2077827d"><div class="ttname"><a href="helpers_8h.xhtml#a009469e4d9b8fce3b6d5e97d2077827d">offset</a></div><div class="ttdeci">__global uchar * offset(const Image *img, int x, int y)</div><div class="ttdoc">Get the pointer position of a Image. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00311">helpers.h:311</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml"><div class="ttname"><a href="helpers_8h.xhtml">helpers.h</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_aebe814363556c244be043b13e7969197"><div class="ttname"><a href="helpers_8h.xhtml#aebe814363556c244be043b13e7969197">CONVERT_TO_IMAGE_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_IMAGE_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00112">helpers.h:112</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00056">helpers.h:56</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a2101b2fe0193ce227ae4e0945e321d85"><div class="ttname"><a href="helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a></div><div class="ttdeci">__global const uchar * tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)</div><div class="ttdoc">Get the pointer position of a Tensor3D. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00323">helpers.h:323</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a40a6eb9f2a7712f08d6bb8ff6c9e6ca7"><div class="ttname"><a href="helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a></div><div class="ttdeci">#define VECTOR_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00070">helpers.h:70</a></div></div>
+<div class="ttc" id="struct_tensor3_d_xhtml"><div class="ttname"><a href="struct_tensor3_d.xhtml">Tensor3D</a></div><div class="ttdoc">Structure to hold 3D tensor information. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00157">helpers.h:157</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a79e8e562daa6599317d2d1cd86ef1bf2"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00129">helpers.h:129</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a40a6eb9f2a7712f08d6bb8ff6c9e6ca7"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a40a6eb9f2a7712f08d6bb8ff6c9e6ca7">VECTOR_DECLARATION</a></div><div class="ttdeci">#define VECTOR_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00068">helpers.h:68</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_adbf67dcee294e673cf796f1ed8aeb6a4"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#adbf67dcee294e673cf796f1ed8aeb6a4">arm_compute::test::validation::dst</a></div><div class="ttdeci">CLTensor dst</div><div class="ttdef"><b>Definition:</b> <a href="_c_l_2_arithmetic_division_8cpp_source.xhtml#l00100">ArithmeticDivision.cpp:100</a></div></div>
-<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00150">helpers.h:150</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00084">helpers.h:84</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a79e8e562daa6599317d2d1cd86ef1bf2"><div class="ttname"><a href="helpers_8h.xhtml#a79e8e562daa6599317d2d1cd86ef1bf2">CONVERT_TO_TENSOR3D_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00131">helpers.h:131</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a64d779f80eeb923e0ab2313433f7b40b"><div class="ttname"><a href="helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00109">helpers.h:109</a></div></div>
-<div class="ttc" id="helpers_8h_xhtml_a7e4940407322d6f0ccb8b6b86b856019"><div class="ttname"><a href="helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a></div><div class="ttdeci">__global const uchar * vector_offset(const Vector *vec, int x)</div><div class="ttdoc">Get the pointer position of a Vector. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00300">helpers.h:300</a></div></div>
-<div class="ttc" id="struct_tensor3_d_xhtml_acf52c23cbd7424606c10a606524e3e32"><div class="ttname"><a href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">Tensor3D::ptr</a></div><div class="ttdeci">__global uchar * ptr</div><div class="ttdoc">Pointer to the starting postion of the buffer. </div><div class="ttdef"><b>Definition:</b> <a href="helpers_8h_source.xhtml#l00161">helpers.h:161</a></div></div>
+<div class="ttc" id="struct_image_xhtml"><div class="ttname"><a href="struct_image.xhtml">Image</a></div><div class="ttdoc">Structure to hold Image information. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00148">helpers.h:148</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a31c8c760f08fb1a331b16b7c204321dc"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a31c8c760f08fb1a331b16b7c204321dc">CONVERT_TO_TENSOR3D_STRUCT</a></div><div class="ttdeci">#define CONVERT_TO_TENSOR3D_STRUCT(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00125">helpers.h:125</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a7e4940407322d6f0ccb8b6b86b856019"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a7e4940407322d6f0ccb8b6b86b856019">vector_offset</a></div><div class="ttdeci">__global const uchar * vector_offset(const Vector *vec, int x)</div><div class="ttdoc">Get the pointer position of a Vector. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00298">helpers.h:298</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml">helpers.h</a></div></div>
+<div class="ttc" id="struct_tensor3_d_xhtml_acf52c23cbd7424606c10a606524e3e32"><div class="ttname"><a href="struct_tensor3_d.xhtml#acf52c23cbd7424606c10a606524e3e32">Tensor3D::ptr</a></div><div class="ttdeci">__global uchar * ptr</div><div class="ttdoc">Pointer to the starting postion of the buffer. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00159">helpers.h:159</a></div></div>
<div class="ttc" id="direct__convolution3x3_8cl_xhtml_a1f15728672380ade7a238f5e783d54d2"><div class="ttname"><a href="direct__convolution3x3_8cl.xhtml#a1f15728672380ade7a238f5e783d54d2">CONVERT_SAT</a></div><div class="ttdeci">#define CONVERT_SAT(a, b)</div><div class="ttdef"><b>Definition:</b> <a href="direct__convolution3x3_8cl_source.xhtml#l00030">direct_convolution3x3.cl:30</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a6b83038822d1ae7ab619b684ed3b7fc0"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a6b83038822d1ae7ab619b684ed3b7fc0">TENSOR3D_DECLARATION</a></div><div class="ttdeci">#define TENSOR3D_DECLARATION(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00082">helpers.h:82</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a64d779f80eeb923e0ab2313433f7b40b"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a64d779f80eeb923e0ab2313433f7b40b">CONVERT_TO_VECTOR_STRUCT_NO_STEP</a></div><div class="ttdeci">#define CONVERT_TO_VECTOR_STRUCT_NO_STEP(name)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00107">helpers.h:107</a></div></div>
<div class="ttc" id="direct__convolution3x3_8cl_xhtml_aebbeb1f22eca3a3f4c3e019e8f419f39"><div class="ttname"><a href="direct__convolution3x3_8cl.xhtml#aebbeb1f22eca3a3f4c3e019e8f419f39">ADD_OP</a></div><div class="ttdeci">#define ADD_OP(a, b)</div><div class="ttdef"><b>Definition:</b> <a href="direct__convolution3x3_8cl_source.xhtml#l00028">direct_convolution3x3.cl:28</a></div></div>
<div class="ttc" id="namespacearm__compute_1_1test_1_1validation_xhtml_a6743f0a130e8311e6f5b1a23df102472"><div class="ttname"><a href="namespacearm__compute_1_1test_1_1validation.xhtml#a6743f0a130e8311e6f5b1a23df102472">arm_compute::test::validation::src</a></div><div class="ttdeci">convolution configure & src</div><div class="ttdef"><b>Definition:</b> <a href="validation_2_c_l_2_convolution_8cpp_source.xhtml#l00147">Convolution.cpp:147</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a2101b2fe0193ce227ae4e0945e321d85"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a2101b2fe0193ce227ae4e0945e321d85">tensor3D_offset</a></div><div class="ttdeci">__global const uchar * tensor3D_offset(const Tensor3D *tensor, int x, int y, int z)</div><div class="ttdoc">Get the pointer position of a Tensor3D. </div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00321">helpers.h:321</a></div></div>
+<div class="ttc" id="src_2core_2_c_l_2cl__kernels_2_helpers_8h_xhtml_a36f754c05b6fddf6df0d8d0a74f8159f"><div class="ttname"><a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h.xhtml#a36f754c05b6fddf6df0d8d0a74f8159f">VEC_DATA_TYPE</a></div><div class="ttdeci">#define VEC_DATA_TYPE(type, size)</div><div class="ttdef"><b>Definition:</b> <a href="src_2core_2_c_l_2cl__kernels_2_helpers_8h_source.xhtml#l00054">helpers.h:54</a></div></div>
</div><!-- fragment --></div><!-- contents -->
</div><!-- doc-content -->
<!-- start footer part -->
<div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
<ul>
<li class="navelem"><a class="el" href="dir_68267d1309a1af8e8297ef4c3efbcdba.xhtml">src</a></li><li class="navelem"><a class="el" href="dir_aebb8dcc11953d78e620bbef0b9e2183.xhtml">core</a></li><li class="navelem"><a class="el" href="dir_8c278f79c760e5c5fbd911f9870614c1.xhtml">CL</a></li><li class="navelem"><a class="el" href="dir_25885286e9dad4fa105b7b25a8031bbf.xhtml">cl_kernels</a></li><li class="navelem"><a class="el" href="direct__convolution3x3_8cl.xhtml">direct_convolution3x3.cl</a></li>
- <li class="footer">Generated on Wed Aug 29 2018 15:31:29 for Compute Library by
+ <li class="footer">Generated on Thu Nov 22 2018 11:57:38 for Compute Library by
<a href="http://www.doxygen.org/index.html">
- <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
+ <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.13 </li>
</ul>
</div>
</body>