arm_compute v18.11
diff --git a/src/runtime/CL/functions/CLDeconvolutionLayer.cpp b/src/runtime/CL/functions/CLDeconvolutionLayer.cpp
index 40562b5..e07feb2 100644
--- a/src/runtime/CL/functions/CLDeconvolutionLayer.cpp
+++ b/src/runtime/CL/functions/CLDeconvolutionLayer.cpp
@@ -27,6 +27,8 @@
 #include "arm_compute/core/Utils.h"
 #include "arm_compute/core/Validate.h"
 #include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "arm_compute/runtime/CL/CLScheduler.h"
+#include "arm_compute/runtime/CPP/CPPScheduler.h"
 
 #include <memory>
 #include <tuple>
@@ -38,7 +40,10 @@
     : _memory_group(std::move(memory_manager)),
       _scale_f(),
       _conv_f(),
+      _flip_weights(),
       _scaled_output(),
+      _original_weights(nullptr),
+      _weights_flipped(),
       _is_prepared(false)
 {
 }
@@ -47,9 +52,17 @@
                                       unsigned int inner_border_right, unsigned int inner_border_top, const WeightsInfo &weights_info)
 {
     ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
-    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F16, DataType::F32);
-    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) != weights->dimension(1));
-    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(0) < 1);
+    ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
+    ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
+
+    const DataLayout data_layout = input->data_layout();
+
+    const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+    const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
+
+    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h));
+    ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1);
     ARM_COMPUTE_RETURN_ERROR_ON(!info.padding_is_symmetric());
 
     const unsigned int stride_x = info.stride().first;
@@ -58,24 +71,34 @@
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_right > stride_x - 1, "inner_border_right must be smaller than stride_x");
     ARM_COMPUTE_RETURN_ERROR_ON_MSG(inner_border_top > stride_y - 1, "inner_border_top must be smaller than stride_y");
 
-    auto out_dims = deconvolution_output_dimensions(input->dimension(0), input->dimension(1), weights->dimension(0), weights->dimension(1),
-                                                    info.pad().first, info.pad().second, inner_border_right, inner_border_top, stride_x, stride_y);
+    auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h),
+                                                    info.pad().first, info.pad().second, stride_x, stride_y);
 
-    const TensorShape output_shape = deconvolution_output_shape(out_dims, input->tensor_shape(), weights->tensor_shape());
+    const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
 
     ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights);
 
     if(bias != nullptr)
     {
-        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
+        if(is_data_type_quantized_asymmetric(input->data_type()))
+        {
+            ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
+        }
+        else
+        {
+            ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
+        }
+        ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias);
     }
 
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimX) != output_shape.x(), "Output's width is invalid.");
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimY) != output_shape.y(), "Output's height is invalid.");
-    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(Window::DimZ) != output_shape.z(), "Output's depth is invalid.");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid.");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid.");
+    ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid.");
 
-    TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(compute_deconvolution_shape(*input, stride_x, stride_y, inner_border_right, inner_border_top,
-                                                                                                      info)));
+    unsigned int        padx            = 0;
+    unsigned int        pady            = 0;
+    const TensorShape   scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady);
+    TensorInfo          scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout));
     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
 
     ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, BorderSize(inner_border_right, inner_border_top), info));
@@ -84,7 +107,7 @@
     return Status{};
 }
 
-void CLDeconvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
+void CLDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
                                      unsigned int inner_border_right, unsigned int inner_border_top, const WeightsInfo &weights_info)
 {
     ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
@@ -92,36 +115,46 @@
     const unsigned int stride_x = info.stride().first;
     const unsigned int stride_y = info.stride().second;
 
-    auto out_dims = deconvolution_output_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0), weights->info()->dimension(1),
-                                                    info.pad().first, info.pad().second, inner_border_right, inner_border_top, stride_x, stride_y);
+    const DataLayout data_layout = input->info()->data_layout();
 
-    const TensorShape output_shape = deconvolution_output_shape(out_dims, input->info()->tensor_shape(), weights->info()->tensor_shape());
+    const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
+    const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
+
+    _original_weights = weights;
+    _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
+    _flip_weights.configure(weights, &_weights_flipped);
+
+    auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h),
+                                                    info.pad().first, info.pad().second, stride_x, stride_y);
+
+    const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
 
     // Output auto initialization if not yet initialized
-    auto_init_if_empty(*output->info(), output_shape, 1, input->info()->data_type());
+    auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout));
 
     // Perform validation step
     ARM_COMPUTE_ERROR_THROW_ON(CLDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info, inner_border_right, inner_border_top));
 
-    _is_prepared = false;
+    _is_prepared = weights_info.retain_internal_weights();
 
     _memory_group.manage(&_scaled_output);
 
-    // configure scale function
-    // Init and allocate intermmidiate tensor for output, same size as input but the first two axis are the same as the output tensor
-    TensorShape        scale_out_shape(input->info()->tensor_shape());
-    const unsigned int out_x = input->info()->dimension(0) + (input->info()->dimension(0) - 1) * (stride_x - 1) + inner_border_right + 2 * info.pad().first;
-    const unsigned int out_y = input->info()->dimension(1) + (input->info()->dimension(1) - 1) * (stride_y - 1) + inner_border_top + 2 * info.pad().second;
-    scale_out_shape.set(0, out_x);
-    scale_out_shape.set(1, out_y);
-    TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type());
+    // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
+    unsigned int      padx            = 0;
+    unsigned int      pady            = 0;
+    const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, inner_border_right, inner_border_top, out_dims, padx, pady);
+
+    TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
+    scale_out_info.set_data_layout(data_layout);
     _scaled_output.allocator()->init(scale_out_info);
 
-    _scale_f.configure(input, &_scaled_output, BorderSize(inner_border_top, inner_border_right), info);
+    // configure scale function
+    const PadStrideInfo upsample_info(stride_x, stride_y, padx / 2, pady / 2);
+    _scale_f.configure(input, &_scaled_output, BorderSize(inner_border_top, inner_border_right), upsample_info);
 
     // setup the function to convolve the upscaled output
     const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
-    _conv_f.configure(&_scaled_output, weights, bias, output, conv_info, weights_info);
+    _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info);
     _scaled_output.allocator()->allocate();
 }
 
@@ -141,7 +174,25 @@
 {
     if(!_is_prepared)
     {
+        ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
+
+        // Run weights flipping and mark original weights tensor as unused
+        _weights_flipped.allocator()->allocate();
+        _weights_flipped.map(true);
+        _original_weights->map(CLScheduler::get().queue(), true);
+        CPPScheduler::get().schedule(&_flip_weights, Window::DimZ);
+        _weights_flipped.unmap();
+        _original_weights->unmap(CLScheduler::get().queue());
+        _original_weights->mark_as_unused();
+
+        // Prepare convolution
         _conv_f.prepare();
+
+        if(!_weights_flipped.is_used())
+        {
+            _weights_flipped.allocator()->free();
+        }
+
         _is_prepared = true;
     }
 }