arm_compute v18.11
diff --git a/tests/validation/reference/ROIAlignLayer.cpp b/tests/validation/reference/ROIAlignLayer.cpp
new file mode 100644
index 0000000..8a76983
--- /dev/null
+++ b/tests/validation/reference/ROIAlignLayer.cpp
@@ -0,0 +1,191 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "ROIAlignLayer.h"
+
+#include "arm_compute/core/Types.h"
+#include "arm_compute/core/utils/misc/ShapeCalculator.h"
+#include "tests/validation/Helpers.h"
+
+#include <algorithm>
+
+namespace arm_compute
+{
+namespace test
+{
+namespace validation
+{
+namespace reference
+{
+namespace
+{
+/** Average pooling over an aligned window */
+template <typename T>
+inline T roi_align_1x1(const T *input, TensorShape input_shape,
+                       float region_start_x,
+                       float bin_size_x,
+                       int   grid_size_x,
+                       float region_end_x,
+                       float region_start_y,
+                       float bin_size_y,
+                       int   grid_size_y,
+                       float region_end_y,
+                       int   pz)
+{
+    if((region_end_x <= region_start_x) || (region_end_y <= region_start_y))
+    {
+        return T(0);
+    }
+    else
+    {
+        float avg = 0;
+        // Iterate through the aligned pooling region
+        for(int iy = 0; iy < grid_size_y; ++iy)
+        {
+            for(int ix = 0; ix < grid_size_x; ++ix)
+            {
+                // Align the window in the middle of every bin
+                float y = region_start_y + (iy + 0.5) * bin_size_y / float(grid_size_y);
+                float x = region_start_x + (ix + 0.5) * bin_size_x / float(grid_size_x);
+
+                // Interpolation in the [0,0] [0,1] [1,0] [1,1] square
+                const int y_low  = y;
+                const int x_low  = x;
+                const int y_high = y_low + 1;
+                const int x_high = x_low + 1;
+
+                const float ly = y - y_low;
+                const float lx = x - x_low;
+                const float hy = 1. - ly;
+                const float hx = 1. - lx;
+
+                const float w1 = hy * hx;
+                const float w2 = hy * lx;
+                const float w3 = ly * hx;
+                const float w4 = ly * lx;
+
+                const size_t idx1  = coord2index(input_shape, Coordinates(x_low, y_low, pz));
+                T            data1 = input[idx1];
+
+                const size_t idx2  = coord2index(input_shape, Coordinates(x_high, y_low, pz));
+                T            data2 = input[idx2];
+
+                const size_t idx3  = coord2index(input_shape, Coordinates(x_low, y_high, pz));
+                T            data3 = input[idx3];
+
+                const size_t idx4  = coord2index(input_shape, Coordinates(x_high, y_high, pz));
+                T            data4 = input[idx4];
+
+                avg += w1 * data1 + w2 * data2 + w3 * data3 + w4 * data4;
+            }
+        }
+
+        avg /= grid_size_x * grid_size_y;
+
+        return T(avg);
+    }
+}
+
+/** Clamp the value between lower and upper */
+template <typename T>
+T clamp(T value, T lower, T upper)
+{
+    return std::max(lower, std::min(value, upper));
+}
+} // namespace
+template <typename T>
+SimpleTensor<T> roi_align_layer(const SimpleTensor<T> &src, const SimpleTensor<T> &rois, const ROIPoolingLayerInfo &pool_info)
+{
+    const size_t values_per_roi = rois.shape()[0];
+    const size_t num_rois       = rois.shape()[1];
+    DataType     dst_data_type  = src.data_type();
+
+    const auto *rois_ptr = static_cast<const T *>(rois.data());
+
+    TensorShape     input_shape = src.shape();
+    TensorShape     output_shape(pool_info.pooled_width(), pool_info.pooled_height(), src.shape()[2], num_rois);
+    SimpleTensor<T> dst(output_shape, dst_data_type);
+
+    // Iterate over every pixel of the input image
+    for(size_t px = 0; px < pool_info.pooled_width(); ++px)
+    {
+        for(size_t py = 0; py < pool_info.pooled_height(); ++py)
+        {
+            for(size_t pw = 0; pw < num_rois; ++pw)
+            {
+                const unsigned int roi_batch = rois_ptr[values_per_roi * pw];
+                const auto         x1        = float(rois_ptr[values_per_roi * pw + 1]);
+                const auto         y1        = float(rois_ptr[values_per_roi * pw + 2]);
+                const auto         x2        = float(rois_ptr[values_per_roi * pw + 3]);
+                const auto         y2        = float(rois_ptr[values_per_roi * pw + 4]);
+
+                const float roi_anchor_x = x1 * pool_info.spatial_scale();
+                const float roi_anchor_y = y1 * pool_info.spatial_scale();
+                const float roi_dims_x   = std::max((x2 - x1) * pool_info.spatial_scale(), 1.0f);
+                const float roi_dims_y   = std::max((y2 - y1) * pool_info.spatial_scale(), 1.0f);
+
+                float bin_size_x     = roi_dims_x / pool_info.pooled_width();
+                float bin_size_y     = roi_dims_y / pool_info.pooled_height();
+                float region_start_x = px * bin_size_x + roi_anchor_x;
+                float region_start_y = py * bin_size_y + roi_anchor_y;
+                float region_end_x   = (px + 1) * bin_size_x + roi_anchor_x;
+                float region_end_y   = (py + 1) * bin_size_y + roi_anchor_y;
+
+                region_start_x = clamp(region_start_x, 0.0f, float(input_shape[0]));
+                region_start_y = clamp(region_start_y, 0.0f, float(input_shape[1]));
+                region_end_x   = clamp(region_end_x, 0.0f, float(input_shape[0]));
+                region_end_y   = clamp(region_end_y, 0.0f, float(input_shape[1]));
+
+                const int roi_bin_grid_x = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_x));
+                const int roi_bin_grid_y = (pool_info.sampling_ratio() > 0) ? pool_info.sampling_ratio() : int(ceil(bin_size_y));
+
+                // Move input and output pointer across the fourth dimension
+                const size_t input_stride_w  = input_shape[0] * input_shape[1] * input_shape[2];
+                const size_t output_stride_w = output_shape[0] * output_shape[1] * output_shape[2];
+                const T     *input_ptr       = src.data() + roi_batch * input_stride_w;
+                T           *output_ptr      = dst.data() + px + py * output_shape[0] + pw * output_stride_w;
+
+                for(int pz = 0; pz < int(input_shape[2]); ++pz)
+                {
+                    // For every pixel pool over an aligned region
+                    *(output_ptr + pz * output_shape[0] * output_shape[1]) = roi_align_1x1(input_ptr, input_shape,
+                                                                                           region_start_x,
+                                                                                           bin_size_x,
+                                                                                           roi_bin_grid_x,
+                                                                                           region_end_x,
+                                                                                           region_start_y,
+                                                                                           bin_size_y,
+                                                                                           roi_bin_grid_y,
+                                                                                           region_end_y, pz);
+                }
+            }
+        }
+    }
+    return dst;
+}
+template SimpleTensor<float> roi_align_layer(const SimpleTensor<float> &src, const SimpleTensor<float> &rois, const ROIPoolingLayerInfo &pool_info);
+template SimpleTensor<half> roi_align_layer(const SimpleTensor<half> &src, const SimpleTensor<half> &rois, const ROIPoolingLayerInfo &pool_info);
+} // namespace reference
+} // namespace validation
+} // namespace test
+} // namespace arm_compute