arm_compute v18.03

Change-Id: I8f9a2a9d32a6cab019b8504d313216f28671f9f5
diff --git a/documentation/annotated.xhtml b/documentation/annotated.xhtml
index b7c3c4e..2e8c1e0 100644
--- a/documentation/annotated.xhtml
+++ b/documentation/annotated.xhtml
@@ -40,7 +40,7 @@
  <tr style="height: 56px;">
   <td style="padding-left: 0.5em;">
    <div id="projectname">Compute Library
-   &#160;<span id="projectnumber">18.02</span>
+   &#160;<span id="projectnumber">18.03</span>
    </div>
   </td>
  </tr>
@@ -1013,271 +1013,270 @@
 <tr id="row_0_364_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_n_e_winograd_layer_transform_input_kernel.xhtml" target="_self">INEWinogradLayerTransformInputKernel</a></td><td class="desc"></td></tr>
 <tr id="row_0_365_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_n_e_winograd_layer_transform_output_kernel.xhtml" target="_self">INEWinogradLayerTransformOutputKernel</a></td><td class="desc"></td></tr>
 <tr id="row_0_366_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_n_e_winograd_layer_transform_weights_kernel.xhtml" target="_self">INEWinogradLayerTransformWeightsKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_367_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_interceptor.xhtml" target="_self">Interceptor</a></td><td class="desc"></td></tr>
-<tr id="row_0_368_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_i_o_format_info.xhtml" target="_self">IOFormatInfo</a></td><td class="desc">IO formatting information class </td></tr>
-<tr id="row_0_369_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pool_manager.xhtml" target="_self">IPoolManager</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> pool manager interface </td></tr>
-<tr id="row_0_370_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pyramid.xhtml" target="_self">IPyramid</a></td><td class="desc">Interface for pyramid data-object </td></tr>
-<tr id="row_0_371_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_scheduler.xhtml" target="_self">IScheduler</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_scheduler.xhtml" title="Configurable scheduler which supports multiple multithreading APIs and choosing between different sch...">Scheduler</a> interface to run kernels </td></tr>
-<tr id="row_0_372_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_simple_lifetime_manager.xhtml" target="_self">ISimpleLifetimeManager</a></td><td class="desc">Abstract class of the simple lifetime manager interface </td></tr>
-<tr id="row_0_373_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor.xhtml" target="_self">ITensor</a></td><td class="desc">Interface for NEON tensor </td></tr>
-<tr id="row_0_374_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_allocator.xhtml" target="_self">ITensorAllocator</a></td><td class="desc">Interface to allocate tensors </td></tr>
-<tr id="row_0_375_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_info.xhtml" target="_self">ITensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
-<tr id="row_0_376_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_iterator.xhtml" target="_self">Iterator</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> updated by <a class="el" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a> for each window element </td></tr>
-<tr id="row_0_377_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_kernel.xhtml" target="_self">Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> class </td></tr>
-<tr id="row_0_378_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_key_point.xhtml" target="_self">KeyPoint</a></td><td class="desc"><a class="el" href="struct_keypoint.xhtml">Keypoint</a> type </td></tr>
-<tr id="row_0_379_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_lut.xhtml" target="_self">Lut</a></td><td class="desc">Basic implementation of the LUT interface </td></tr>
-<tr id="row_0_380_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_lut_allocator.xhtml" target="_self">LutAllocator</a></td><td class="desc">Basic implementation of a CPU memory LUT allocator </td></tr>
-<tr id="row_0_381_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory.xhtml" target="_self">Memory</a></td><td class="desc">CPU implementation of memory object </td></tr>
-<tr id="row_0_382_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory_group_base.xhtml" target="_self">MemoryGroupBase</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> group </td></tr>
-<tr id="row_0_383_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory_manager_on_demand.xhtml" target="_self">MemoryManagerOnDemand</a></td><td class="desc">On-demand memory manager </td></tr>
-<tr id="row_0_384_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_min_max_location_values.xhtml" target="_self">MinMaxLocationValues</a></td><td class="desc"></td></tr>
-<tr id="row_0_385_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_h_o_g.xhtml" target="_self">MultiHOG</a></td><td class="desc">CPU implementation of multi <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> data-object </td></tr>
-<tr id="row_0_386_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image.xhtml" target="_self">MultiImage</a></td><td class="desc">Basic implementation of the multi-planar image interface </td></tr>
-<tr id="row_0_387_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image_info.xhtml" target="_self">MultiImageInfo</a></td><td class="desc">Store the multi-planar image's metadata </td></tr>
-<tr id="row_0_388_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_absolute_difference.xhtml" target="_self">NEAbsoluteDifference</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_absolute_difference_kernel.xhtml">NEAbsoluteDifferenceKernel</a> </td></tr>
-<tr id="row_0_389_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_absolute_difference_kernel.xhtml" target="_self">NEAbsoluteDifferenceKernel</a></td><td class="desc">Interface for the absolute difference kernel </td></tr>
-<tr id="row_0_390_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate.xhtml" target="_self">NEAccumulate</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_kernel.xhtml">NEAccumulateKernel</a> </td></tr>
-<tr id="row_0_391_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_kernel.xhtml" target="_self">NEAccumulateKernel</a></td><td class="desc">Interface for the accumulate kernel </td></tr>
-<tr id="row_0_392_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_squared.xhtml" target="_self">NEAccumulateSquared</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_squared_kernel.xhtml">NEAccumulateSquaredKernel</a> </td></tr>
-<tr id="row_0_393_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_squared_kernel.xhtml" target="_self">NEAccumulateSquaredKernel</a></td><td class="desc">Interface for the accumulate squared kernel </td></tr>
-<tr id="row_0_394_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted.xhtml" target="_self">NEAccumulateWeighted</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted_kernel.xhtml">NEAccumulateWeightedKernel</a> </td></tr>
-<tr id="row_0_395_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted_kernel.xhtml" target="_self">NEAccumulateWeightedKernel</a></td><td class="desc">Interface for the accumulate weighted kernel </td></tr>
-<tr id="row_0_396_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml" target="_self">NEActivationLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_activation_layer_kernel.xhtml">NEActivationLayerKernel</a> </td></tr>
-<tr id="row_0_397_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_activation_layer_kernel.xhtml" target="_self">NEActivationLayerKernel</a></td><td class="desc">Interface for the activation layer kernel </td></tr>
-<tr id="row_0_398_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition.xhtml" target="_self">NEArithmeticAddition</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition_kernel.xhtml">NEArithmeticAdditionKernel</a> </td></tr>
-<tr id="row_0_399_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition_kernel.xhtml" target="_self">NEArithmeticAdditionKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
-<tr id="row_0_400_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction.xhtml" target="_self">NEArithmeticSubtraction</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction_kernel.xhtml">NEArithmeticSubtractionKernel</a> </td></tr>
-<tr id="row_0_401_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction_kernel.xhtml" target="_self">NEArithmeticSubtractionKernel</a></td><td class="desc">Interface for the kernel to perform subtraction between two tensors </td></tr>
-<tr id="row_0_402_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer.xhtml" target="_self">NEBatchNormalizationLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml">NENormalizationLayerKernel</a> and simulate a batch normalization layer </td></tr>
-<tr id="row_0_403_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer_kernel.xhtml" target="_self">NEBatchNormalizationLayerKernel</a></td><td class="desc">Interface for the batch normalization layer kernel </td></tr>
-<tr id="row_0_404_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_and.xhtml" target="_self">NEBitwiseAnd</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_and_kernel.xhtml">NEBitwiseAndKernel</a> </td></tr>
-<tr id="row_0_405_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_and_kernel.xhtml" target="_self">NEBitwiseAndKernel</a></td><td class="desc">Interface for the kernel to perform bitwise AND between XY-planes of two tensors </td></tr>
-<tr id="row_0_406_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_not.xhtml" target="_self">NEBitwiseNot</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_not_kernel.xhtml">NEBitwiseNotKernel</a> </td></tr>
-<tr id="row_0_407_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_not_kernel.xhtml" target="_self">NEBitwiseNotKernel</a></td><td class="desc">Interface for the kernel to perform bitwise NOT operation </td></tr>
-<tr id="row_0_408_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_or.xhtml" target="_self">NEBitwiseOr</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_or_kernel.xhtml">NEBitwiseOrKernel</a> </td></tr>
-<tr id="row_0_409_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_or_kernel.xhtml" target="_self">NEBitwiseOrKernel</a></td><td class="desc">Interface for the kernel to perform bitwise inclusive OR between two tensors </td></tr>
-<tr id="row_0_410_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_xor.xhtml" target="_self">NEBitwiseXor</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_xor_kernel.xhtml">NEBitwiseXorKernel</a> </td></tr>
-<tr id="row_0_411_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_xor_kernel.xhtml" target="_self">NEBitwiseXorKernel</a></td><td class="desc">Interface for the kernel to perform bitwise exclusive OR (XOR) between two tensors </td></tr>
-<tr id="row_0_412_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_box3x3.xhtml" target="_self">NEBox3x3</a></td><td class="desc">Basic function to execute box filter 3x3 </td></tr>
-<tr id="row_0_413_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_box3x3_kernel.xhtml" target="_self">NEBox3x3Kernel</a></td><td class="desc">NEON kernel to perform a Box 3x3 filter </td></tr>
-<tr id="row_0_414_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_canny_edge.xhtml" target="_self">NECannyEdge</a></td><td class="desc">Basic function to execute canny edge on NEON </td></tr>
-<tr id="row_0_415_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_combine.xhtml" target="_self">NEChannelCombine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_channel_combine_kernel.xhtml">NEChannelCombineKernel</a> to perform channel combination </td></tr>
-<tr id="row_0_416_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_combine_kernel.xhtml" target="_self">NEChannelCombineKernel</a></td><td class="desc">Interface for the channel combine kernel </td></tr>
-<tr id="row_0_417_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_extract.xhtml" target="_self">NEChannelExtract</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_channel_extract_kernel.xhtml">NEChannelExtractKernel</a> to perform channel extraction </td></tr>
-<tr id="row_0_418_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_extract_kernel.xhtml" target="_self">NEChannelExtractKernel</a></td><td class="desc">Interface for the channel extract kernel </td></tr>
-<tr id="row_0_419_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_col2_im.xhtml" target="_self">NECol2Im</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_col2_im.xhtml">NECol2Im</a> </td></tr>
-<tr id="row_0_420_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_col2_im_kernel.xhtml" target="_self">NECol2ImKernel</a></td><td class="desc">NEON kernel to perform col2im reshaping </td></tr>
-<tr id="row_0_421_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_color_convert.xhtml" target="_self">NEColorConvert</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_color_convert_kernel.xhtml">NEColorConvertKernel</a> to perform color conversion </td></tr>
-<tr id="row_0_422_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_color_convert_kernel.xhtml" target="_self">NEColorConvertKernel</a></td><td class="desc">Interface for the color convert kernel </td></tr>
-<tr id="row_0_423_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution3x3.xhtml" target="_self">NEConvolution3x3</a></td><td class="desc">Basic function to execute convolution of size 3x3 </td></tr>
-<tr id="row_0_424_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel</a></td><td class="desc">Interface for the kernel to run an arbitrary size convolution on a tensor </td></tr>
-<tr id="row_0_425_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml" target="_self">NEConvolutionLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
-<tr id="row_0_426_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_layer_reshape_weights.xhtml" target="_self">NEConvolutionLayerReshapeWeights</a></td><td class="desc">Function to reshape and perform 1xW transposition on the weights </td></tr>
-<tr id="row_0_427_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_rectangle.xhtml" target="_self">NEConvolutionRectangle</a></td><td class="desc">Basic function to execute non-square convolution </td></tr>
-<tr id="row_0_428_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_rectangle_kernel.xhtml" target="_self">NEConvolutionRectangleKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the running convolution on a rectangle matrix </td></tr>
-<tr id="row_0_429_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_square.xhtml" target="_self">NEConvolutionSquare</a></td><td class="desc">Basic function to execute convolution of size 5x5, 7x7, 9x9 </td></tr>
-<tr id="row_0_430_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_cumulative_distribution_kernel.xhtml" target="_self">NECumulativeDistributionKernel</a></td><td class="desc">Interface for the cumulative distribution (cummulative summmation) calculation kernel </td></tr>
-<tr id="row_0_431_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_deconvolution_layer.xhtml" target="_self">NEDeconvolutionLayer</a></td><td class="desc">Function to run the deconvolution layer </td></tr>
-<tr id="row_0_432_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_concatenate_layer.xhtml" target="_self">NEDepthConcatenateLayer</a></td><td class="desc">Basic function to execute concatenate tensors along z axis </td></tr>
-<tr id="row_0_433_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_concatenate_layer_kernel.xhtml" target="_self">NEDepthConcatenateLayerKernel</a></td><td class="desc">Interface for the depth concatenate kernel </td></tr>
-<tr id="row_0_434_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer.xhtml" target="_self">NEDepthConvertLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer_kernel.xhtml">NEDepthConvertLayerKernel</a> </td></tr>
-<tr id="row_0_435_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer_kernel.xhtml" target="_self">NEDepthConvertLayerKernel</a></td><td class="desc">Depth conversion kernel </td></tr>
-<tr id="row_0_436_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer.xhtml" target="_self">NEDepthwiseConvolutionLayer</a></td><td class="desc">Basic function to execute a generic depthwise convolution </td></tr>
-<tr id="row_0_437_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer3x3.xhtml" target="_self">NEDepthwiseConvolutionLayer3x3</a></td><td class="desc">Basic function to execute a depthwise convolution for kernel size 3x3xC </td></tr>
-<tr id="row_0_438_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer3x3_kernel.xhtml" target="_self">NEDepthwiseConvolutionLayer3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 depthwise convolution on a tensor </td></tr>
-<tr id="row_0_439_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_im2_col_kernel.xhtml" target="_self">NEDepthwiseIm2ColKernel</a></td><td class="desc">Interface for the depthwise im2col reshape kernel </td></tr>
-<tr id="row_0_440_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_separable_convolution_layer.xhtml" target="_self">NEDepthwiseSeparableConvolutionLayer</a></td><td class="desc">Basic function to execute depthwise convolution </td></tr>
-<tr id="row_0_441_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_vector_to_tensor_kernel.xhtml" target="_self">NEDepthwiseVectorToTensorKernel</a></td><td class="desc">Interface for the depthwise vector to tensor kernel </td></tr>
-<tr id="row_0_442_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_weights_reshape_kernel.xhtml" target="_self">NEDepthwiseWeightsReshapeKernel</a></td><td class="desc">Interface for the depthwise weights reshape kernel </td></tr>
-<tr id="row_0_443_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dequantization_layer.xhtml" target="_self">NEDequantizationLayer</a></td><td class="desc">Basic function to simulate a dequantization layer </td></tr>
-<tr id="row_0_444_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dequantization_layer_kernel.xhtml" target="_self">NEDequantizationLayerKernel</a></td><td class="desc">Interface for the dequantization layer kernel </td></tr>
-<tr id="row_0_445_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_derivative.xhtml" target="_self">NEDerivative</a></td><td class="desc">Basic function to execute first order derivative operator </td></tr>
-<tr id="row_0_446_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_derivative_kernel.xhtml" target="_self">NEDerivativeKernel</a></td><td class="desc">Interface for the kernel to run the derivative along the X/Y directions on a tensor </td></tr>
-<tr id="row_0_447_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dilate.xhtml" target="_self">NEDilate</a></td><td class="desc">Basic function to execute dilate </td></tr>
-<tr id="row_0_448_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dilate_kernel.xhtml" target="_self">NEDilateKernel</a></td><td class="desc">Interface for the kernel to perform boolean image dilatation </td></tr>
-<tr id="row_0_449_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer.xhtml" target="_self">NEDirectConvolutionLayer</a></td><td class="desc">Function to run the direct convolution </td></tr>
-<tr id="row_0_450_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer_kernel.xhtml" target="_self">NEDirectConvolutionLayerKernel</a></td><td class="desc">NEON interface for Direct Convolution Layer kernel </td></tr>
-<tr id="row_0_451_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer_output_stage_kernel.xhtml" target="_self">NEDirectConvolutionLayerOutputStageKernel</a></td><td class="desc">NEON kernel to accumulate the biases, if provided, or downscale in case of quantized input </td></tr>
-<tr id="row_0_452_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_edge_non_max_suppression_kernel.xhtml" target="_self">NEEdgeNonMaxSuppressionKernel</a></td><td class="desc">NEON kernel to perform Non-Maxima suppression for Canny Edge </td></tr>
-<tr id="row_0_453_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_edge_trace_kernel.xhtml" target="_self">NEEdgeTraceKernel</a></td><td class="desc">NEON kernel to perform Edge tracing </td></tr>
-<tr id="row_0_454_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_equalize_histogram.xhtml" target="_self">NEEqualizeHistogram</a></td><td class="desc">Basic function to execute histogram equalization </td></tr>
-<tr id="row_0_455_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_erode.xhtml" target="_self">NEErode</a></td><td class="desc">Basic function to execute erode </td></tr>
-<tr id="row_0_456_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_erode_kernel.xhtml" target="_self">NEErodeKernel</a></td><td class="desc">Interface for the kernel to perform boolean image erosion </td></tr>
-<tr id="row_0_457_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fast_corners.xhtml" target="_self">NEFastCorners</a></td><td class="desc">Basic function to execute fast corners </td></tr>
-<tr id="row_0_458_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fast_corners_kernel.xhtml" target="_self">NEFastCornersKernel</a></td><td class="desc">NEON kernel to perform fast corners </td></tr>
-<tr id="row_0_459_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_array_kernel.xhtml" target="_self">NEFillArrayKernel</a></td><td class="desc">This kernel adds all texels greater than or equal to the threshold value to the keypoint array </td></tr>
-<tr id="row_0_460_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_border.xhtml" target="_self">NEFillBorder</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_fill_border_kernel.xhtml">NEFillBorderKernel</a> </td></tr>
-<tr id="row_0_461_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_border_kernel.xhtml" target="_self">NEFillBorderKernel</a></td><td class="desc">Interface for the kernel to fill borders </td></tr>
-<tr id="row_0_462_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_inner_border_kernel.xhtml" target="_self">NEFillInnerBorderKernel</a></td><td class="desc">Interface for the kernel to fill the interior borders </td></tr>
-<tr id="row_0_463_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_flatten_layer.xhtml" target="_self">NEFlattenLayer</a></td><td class="desc">Basic function to execute flatten </td></tr>
-<tr id="row_0_464_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_floor.xhtml" target="_self">NEFloor</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_floor_kernel.xhtml">NEFloorKernel</a> </td></tr>
-<tr id="row_0_465_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_floor_kernel.xhtml" target="_self">NEFloorKernel</a></td><td class="desc">NEON kernel to perform a floor operation </td></tr>
-<tr id="row_0_466_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml" target="_self">NEFullyConnectedLayer</a></td><td class="desc">Basic function to compute a Fully Connected layer on NEON </td></tr>
-<tr id="row_0_467_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer_reshape_weights.xhtml" target="_self">NEFullyConnectedLayerReshapeWeights</a></td><td class="desc">Basic function to reshape the weights of Fully Connected layer with NEON </td></tr>
-<tr id="row_0_468_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3.xhtml" target="_self">NEGaussian3x3</a></td><td class="desc">Basic function to execute gaussian filter 3x3 </td></tr>
-<tr id="row_0_469_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3_kernel.xhtml" target="_self">NEGaussian3x3Kernel</a></td><td class="desc">NEON kernel to perform a Gaussian 3x3 filter </td></tr>
-<tr id="row_0_470_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5.xhtml" target="_self">NEGaussian5x5</a></td><td class="desc">Basic function to execute gaussian filter 5x5 </td></tr>
-<tr id="row_0_471_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_hor_kernel.xhtml" target="_self">NEGaussian5x5HorKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (horizontal pass) </td></tr>
-<tr id="row_0_472_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_vert_kernel.xhtml" target="_self">NEGaussian5x5VertKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (vertical pass) </td></tr>
-<tr id="row_0_473_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid.xhtml" target="_self">NEGaussianPyramid</a></td><td class="desc">Common interface for all Gaussian pyramid functions </td></tr>
-<tr id="row_0_474_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_half.xhtml" target="_self">NEGaussianPyramidHalf</a></td><td class="desc">Basic function to execute gaussian pyramid with HALF scale factor </td></tr>
-<tr id="row_0_475_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_hor_kernel.xhtml" target="_self">NEGaussianPyramidHorKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (horizontal pass) </td></tr>
-<tr id="row_0_476_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_orb.xhtml" target="_self">NEGaussianPyramidOrb</a></td><td class="desc">Basic function to execute gaussian pyramid with ORB scale factor </td></tr>
-<tr id="row_0_477_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_vert_kernel.xhtml" target="_self">NEGaussianPyramidVertKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (vertical pass) </td></tr>
-<tr id="row_0_478_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m.xhtml" target="_self">NEGEMM</a></td><td class="desc">Basic function to execute GEMM on NEON </td></tr>
-<tr id="row_0_479_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch32_kernel.xhtml" target="_self">NEGEMMAArch32Kernel</a></td><td class="desc">AArch32/armv7a NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_480_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch64_kernel.xhtml" target="_self">NEGEMMAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_481_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch64_native_kernel.xhtml" target="_self">NEGEMMAArch64NativeKernel</a></td><td class="desc">Native AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_482_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_assembly_base_kernel.xhtml" target="_self">NEGEMMAssemblyBaseKernel</a></td><td class="desc">Base class for GEMM NEON kernels implemented in Assembly </td></tr>
-<tr id="row_0_483_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_convolution_layer.xhtml" target="_self">NEGEMMConvolutionLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
-<tr id="row_0_484_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4.xhtml" target="_self">NEGEMMInterleave4x4</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" title="NEON kernel to interleave the elements of a matrix. ">NEGEMMInterleave4x4Kernel</a> </td></tr>
-<tr id="row_0_485_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">NEGEMMInterleave4x4Kernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
-<tr id="row_0_486_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave_blocked_kernel.xhtml" target="_self">NEGEMMInterleaveBlockedKernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
-<tr id="row_0_487_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_a53_kernel.xhtml" target="_self">NEGEMMLowpAArch64A53Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_488_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_kernel.xhtml" target="_self">NEGEMMLowpAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_489_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_v8_p4_kernel.xhtml" target="_self">NEGEMMLowpAArch64V8P4Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_490_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_assembly_matrix_multiply_core.xhtml" target="_self">NEGEMMLowpAssemblyMatrixMultiplyCore</a></td><td class="desc">Basic function to execute matrix multiply assembly kernels </td></tr>
-<tr id="row_0_491_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_a_reduction_kernel.xhtml" target="_self">NEGEMMLowpMatrixAReductionKernel</a></td><td class="desc">NEON kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A </td></tr>
-<tr id="row_0_492_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_b_reduction_kernel.xhtml" target="_self">NEGEMMLowpMatrixBReductionKernel</a></td><td class="desc">NEON kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B </td></tr>
-<tr id="row_0_493_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_core.xhtml" target="_self">NEGEMMLowpMatrixMultiplyCore</a></td><td class="desc">Basic function to execute GEMMLowpMatrixMultiplyCore on NEON </td></tr>
-<tr id="row_0_494_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">NEGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply matrices </td></tr>
-<tr id="row_0_495_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_offset_contribution_kernel.xhtml" target="_self">NEGEMMLowpOffsetContributionKernel</a></td><td class="desc">NEON kernel used to add the offset contribution after <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml">NEGEMMLowpMatrixMultiplyKernel</a> </td></tr>
-<tr id="row_0_496_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8Scale</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale.xhtml" title="Basic function to execute NEGEMMLowpQuantizeDownInt32ToUint8Scale on NEON. ">NEGEMMLowpQuantizeDownInt32ToUint8Scale</a> on NEON </td></tr>
-<tr id="row_0_497_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point.xhtml" title="Basic function to execute NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint on NEON. ">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint</a> on NEON </td></tr>
-<tr id="row_0_498_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point_kernel.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel</a></td><td class="desc">NEON kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8 </td></tr>
-<tr id="row_0_499_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_kernel.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel</a></td><td class="desc">NEON kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8 </td></tr>
-<tr id="row_0_500_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">NEGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">NEON kernel to add a bias to each row of the input tensor </td></tr>
-<tr id="row_0_501_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">NEGEMMMatrixAdditionKernel</a></td><td class="desc">NEON kernel to perform the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: </td></tr>
-<tr id="row_0_502_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">NEGEMMMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_503_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_vector_multiply_kernel.xhtml" target="_self">NEGEMMMatrixVectorMultiplyKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_504_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w.xhtml" target="_self">NEGEMMTranspose1xW</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" title="NEON kernel which transposes the elements of a matrix in chunks of 1xW, where W is equal to (16 / ele...">NEGEMMTranspose1xWKernel</a> </td></tr>
-<tr id="row_0_505_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">NEGEMMTranspose1xWKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix in chunks of 1xW, where W is equal to (16 / element size of the tensor) </td></tr>
-<tr id="row_0_506_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_v_a_arch64_kernel.xhtml" target="_self">NEGEMVAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply an input vector "A" and a matrix "B" </td></tr>
-<tr id="row_0_507_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_kernel.xhtml" target="_self">NEGradientKernel</a></td><td class="desc">Computes magnitude and quantised phase from inputs gradients </td></tr>
-<tr id="row_0_508_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_corners.xhtml" target="_self">NEHarrisCorners</a></td><td class="desc">Basic function to execute harris corners detection </td></tr>
-<tr id="row_0_509_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_score_kernel.xhtml" target="_self">NEHarrisScoreKernel</a></td><td class="desc">Template NEON kernel to perform Harris Score </td></tr>
-<tr id="row_0_510_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_g_e_m_m_a_arch64_f_p16_kernel.xhtml" target="_self">NEHGEMMAArch64FP16Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
-<tr id="row_0_511_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram.xhtml" target="_self">NEHistogram</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml">NEHistogramKernel</a> </td></tr>
-<tr id="row_0_512_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml" target="_self">NEHistogramKernel</a></td><td class="desc">Interface for the histogram kernel </td></tr>
-<tr id="row_0_513_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_block_normalization_kernel.xhtml" target="_self">NEHOGBlockNormalizationKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> block normalization </td></tr>
-<tr id="row_0_514_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_descriptor.xhtml" target="_self">NEHOGDescriptor</a></td><td class="desc">Basic function to calculate <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> descriptor </td></tr>
-<tr id="row_0_515_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector.xhtml" target="_self">NEHOGDetector</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector based on linear SVM </td></tr>
-<tr id="row_0_516_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector_kernel.xhtml" target="_self">NEHOGDetectorKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector kernel using linear SVM </td></tr>
-<tr id="row_0_517_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_gradient.xhtml" target="_self">NEHOGGradient</a></td><td class="desc">Basic function to calculate the gradient for <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
-<tr id="row_0_518_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_multi_detection.xhtml" target="_self">NEHOGMultiDetection</a></td><td class="desc">Basic function to detect multiple objects (or the same object at different scales) on the same input image using <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
-<tr id="row_0_519_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_orientation_binning_kernel.xhtml" target="_self">NEHOGOrientationBinningKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> Orientation Binning </td></tr>
-<tr id="row_0_520_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col.xhtml" target="_self">NEIm2Col</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml">NEIm2ColKernel</a> </td></tr>
-<tr id="row_0_521_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml" target="_self">NEIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
-<tr id="row_0_522_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image.xhtml" target="_self">NEIntegralImage</a></td><td class="desc">Basic function to run a <a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml">NEIntegralImageKernel</a> </td></tr>
-<tr id="row_0_523_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml" target="_self">NEIntegralImageKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform an image integral on an image </td></tr>
-<tr id="row_0_524_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l2_normalize_layer.xhtml" target="_self">NEL2NormalizeLayer</a></td><td class="desc">Basic function to perform a L2 normalization on a given axis </td></tr>
-<tr id="row_0_525_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l2_normalize_layer_kernel.xhtml" target="_self">NEL2NormalizeLayerKernel</a></td><td class="desc">Interface for performing a L2 normalize on a given axis given the square sum of it in this axis </td></tr>
-<tr id="row_0_526_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_laplacian_pyramid.xhtml" target="_self">NELaplacianPyramid</a></td><td class="desc">Basic function to execute laplacian pyramid </td></tr>
-<tr id="row_0_527_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_laplacian_reconstruct.xhtml" target="_self">NELaplacianReconstruct</a></td><td class="desc">Basic function to execute laplacian reconstruction </td></tr>
-<tr id="row_0_528_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_n_e_l_k_internal_keypoint.xhtml" target="_self">NELKInternalKeypoint</a></td><td class="desc">Internal keypoint class for Lucas-Kanade Optical Flow </td></tr>
-<tr id="row_0_529_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l_k_tracker_kernel.xhtml" target="_self">NELKTrackerKernel</a></td><td class="desc">Interface for the Lucas-Kanade tracker kernel </td></tr>
-<tr id="row_0_530_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_locally_connected_layer.xhtml" target="_self">NELocallyConnectedLayer</a></td><td class="desc">Basic function to compute the locally connected layer </td></tr>
-<tr id="row_0_531_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_locally_connected_matrix_multiply_kernel.xhtml" target="_self">NELocallyConnectedMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply each row of first tensor with low 2 dimensions of second tensor </td></tr>
-<tr id="row_0_532_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_max_kernel.xhtml" target="_self">NELogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
-<tr id="row_0_533_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_softmax_kernel.xhtml" target="_self">NELogits1DSoftmaxKernel</a></td><td class="desc">Interface for softmax computation for QASYMM8 with pre-computed max </td></tr>
-<tr id="row_0_534_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude.xhtml" target="_self">NEMagnitude</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
-<tr id="row_0_535_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" target="_self">NEMagnitudePhaseKernel</a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
-<tr id="row_0_536_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev.xhtml" target="_self">NEMeanStdDev</a></td><td class="desc">Basic function to execute mean and std deviation </td></tr>
-<tr id="row_0_537_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev_kernel.xhtml" target="_self">NEMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
-<tr id="row_0_538_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3.xhtml" target="_self">NEMedian3x3</a></td><td class="desc">Basic function to execute median filter </td></tr>
-<tr id="row_0_539_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3_kernel.xhtml" target="_self">NEMedian3x3Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform a median filter on a tensor </td></tr>
-<tr id="row_0_540_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_kernel.xhtml" target="_self">NEMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
-<tr id="row_0_541_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_layer_kernel.xhtml" target="_self">NEMinMaxLayerKernel</a></td><td class="desc">Interface for the kernel to perform min max search on a 3D tensor </td></tr>
-<tr id="row_0_542_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location.xhtml" target="_self">NEMinMaxLocation</a></td><td class="desc">Basic function to execute min and max location </td></tr>
-<tr id="row_0_543_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location_kernel.xhtml" target="_self">NEMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
-<tr id="row_0_544_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter.xhtml" target="_self">NENonLinearFilter</a></td><td class="desc">Basic function to execute non linear filter </td></tr>
-<tr id="row_0_545_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter_kernel.xhtml" target="_self">NENonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
-<tr id="row_0_546_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3.xhtml" target="_self">NENonMaximaSuppression3x3</a></td><td class="desc">Basic function to execute non-maxima suppression over a 3x3 window </td></tr>
-<tr id="row_0_547_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_kernel.xhtml" target="_self">NENonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using NEON </td></tr>
-<tr id="row_0_548_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml" target="_self">NENormalizationLayer</a></td><td class="desc">Basic function to compute a normalization layer </td></tr>
-<tr id="row_0_549_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml" target="_self">NENormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
-<tr id="row_0_550_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_optical_flow.xhtml" target="_self">NEOpticalFlow</a></td><td class="desc">Basic function to execute optical flow </td></tr>
-<tr id="row_0_551_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_permute.xhtml" target="_self">NEPermute</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_permute_kernel.xhtml">NEPermuteKernel</a> </td></tr>
-<tr id="row_0_552_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_permute_kernel.xhtml" target="_self">NEPermuteKernel</a></td><td class="desc">NEON kernel to perform tensor permutation </td></tr>
-<tr id="row_0_553_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_phase.xhtml" target="_self">NEPhase</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
-<tr id="row_0_554_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication.xhtml" target="_self">NEPixelWiseMultiplication</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml">NEPixelWiseMultiplicationKernel</a> </td></tr>
-<tr id="row_0_555_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml" target="_self">NEPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
-<tr id="row_0_556_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml" target="_self">NEPoolingLayer</a></td><td class="desc">Basic function to simulate a pooling layer with the specified pooling operation </td></tr>
-<tr id="row_0_557_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer_kernel.xhtml" target="_self">NEPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
-<tr id="row_0_558_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_quantization_layer.xhtml" target="_self">NEQuantizationLayer</a></td><td class="desc">Basic function to simulate a quantization layer </td></tr>
-<tr id="row_0_559_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_quantization_layer_kernel.xhtml" target="_self">NEQuantizationLayerKernel</a></td><td class="desc">Interface for the quantization layer kernel </td></tr>
-<tr id="row_0_560_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reduction_operation.xhtml" target="_self">NEReductionOperation</a></td><td class="desc">Basic function to simulate a reduction operation </td></tr>
-<tr id="row_0_561_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reduction_operation_kernel.xhtml" target="_self">NEReductionOperationKernel</a></td><td class="desc">NEON kernel to perform a reduction operation </td></tr>
-<tr id="row_0_562_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap.xhtml" target="_self">NERemap</a></td><td class="desc">Basic function to execute remap </td></tr>
-<tr id="row_0_563_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap_kernel.xhtml" target="_self">NERemapKernel</a></td><td class="desc">NEON kernel to perform a remap on a tensor </td></tr>
-<tr id="row_0_564_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reshape_layer.xhtml" target="_self">NEReshapeLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_reshape_layer_kernel.xhtml">NEReshapeLayerKernel</a> </td></tr>
-<tr id="row_0_565_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reshape_layer_kernel.xhtml" target="_self">NEReshapeLayerKernel</a></td><td class="desc">Interface for the kernel to perform tensor reshaping </td></tr>
-<tr id="row_0_566_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer.xhtml" target="_self">NEROIPoolingLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer_kernel.xhtml">NEROIPoolingLayerKernel</a> </td></tr>
-<tr id="row_0_567_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer_kernel.xhtml" target="_self">NEROIPoolingLayerKernel</a></td><td class="desc">Interface for the <a class="el" href="structarm__compute_1_1_r_o_i.xhtml" title="Region of interest. ">ROI</a> pooling layer kernel </td></tr>
-<tr id="row_0_568_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale.xhtml" target="_self">NEScale</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml">NEScaleKernel</a> </td></tr>
-<tr id="row_0_569_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml" target="_self">NEScaleKernel</a></td><td class="desc">NEON kernel to perform scaling on a tensor </td></tr>
-<tr id="row_0_570_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3.xhtml" target="_self">NEScharr3x3</a></td><td class="desc">Basic function to execute scharr 3x3 filter </td></tr>
-<tr id="row_0_571_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3_kernel.xhtml" target="_self">NEScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
-<tr id="row_0_572_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
-<tr id="row_0_573_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
-<tr id="row_0_574_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3.xhtml" target="_self">NESobel3x3</a></td><td class="desc">Basic function to execute sobel 3x3 filter </td></tr>
-<tr id="row_0_575_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3_kernel.xhtml" target="_self">NESobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel X filter on a tensor </td></tr>
-<tr id="row_0_576_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5.xhtml" target="_self">NESobel5x5</a></td><td class="desc">Basic function to execute sobel 5x5 filter </td></tr>
-<tr id="row_0_577_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_hor_kernel.xhtml" target="_self">NESobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
-<tr id="row_0_578_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_vert_kernel.xhtml" target="_self">NESobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel Y filter on a tensor </td></tr>
-<tr id="row_0_579_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7.xhtml" target="_self">NESobel7x7</a></td><td class="desc">Basic function to execute sobel 7x7 filter </td></tr>
-<tr id="row_0_580_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_hor_kernel.xhtml" target="_self">NESobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
-<tr id="row_0_581_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_vert_kernel.xhtml" target="_self">NESobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel Y filter on a tensor </td></tr>
-<tr id="row_0_582_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml" target="_self">NESoftmaxLayer</a></td><td class="desc">Basic function to compute a SoftmaxLayer </td></tr>
-<tr id="row_0_583_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup.xhtml" target="_self">NETableLookup</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml">NETableLookupKernel</a> </td></tr>
-<tr id="row_0_584_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml" target="_self">NETableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
-<tr id="row_0_585_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold.xhtml" target="_self">NEThreshold</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml">NEThresholdKernel</a> </td></tr>
-<tr id="row_0_586_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml" target="_self">NEThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
-<tr id="row_0_587_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose.xhtml" target="_self">NETranspose</a></td><td class="desc">Basic function to transpose a matrix on NEON </td></tr>
-<tr id="row_0_588_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose_kernel.xhtml" target="_self">NETransposeKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix </td></tr>
-<tr id="row_0_589_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine.xhtml" target="_self">NEWarpAffine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml">NEWarpAffineKernel</a> </td></tr>
-<tr id="row_0_590_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml" target="_self">NEWarpAffineKernel</a></td><td class="desc">Template interface for the kernel to compute warp affine </td></tr>
-<tr id="row_0_591_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective.xhtml" target="_self">NEWarpPerspective</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml">NEWarpPerspectiveKernel</a> </td></tr>
-<tr id="row_0_592_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml" target="_self">NEWarpPerspectiveKernel</a></td><td class="desc">Template interface for the kernel to compute warp perspective </td></tr>
-<tr id="row_0_593_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_weights_reshape_kernel.xhtml" target="_self">NEWeightsReshapeKernel</a></td><td class="desc">NEON kernel to perform reshaping on the weights used by convolution and locally connected layer </td></tr>
-<tr id="row_0_594_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer.xhtml" target="_self">NEWinogradLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
-<tr id="row_0_595_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_batched_g_e_m_m_kernel.xhtml" target="_self">NEWinogradLayerBatchedGEMMKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_596_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_input_kernel.xhtml" target="_self">NEWinogradLayerTransformInputKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_597_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_output_kernel.xhtml" target="_self">NEWinogradLayerTransformOutputKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_598_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_weights_kernel.xhtml" target="_self">NEWinogradLayerTransformWeightsKernel</a></td><td class="desc"></td></tr>
-<tr id="row_0_599_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_normalization_layer_info.xhtml" target="_self">NormalizationLayerInfo</a></td><td class="desc">Normalization Layer Information class </td></tr>
-<tr id="row_0_600_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_offset_lifetime_manager.xhtml" target="_self">OffsetLifetimeManager</a></td><td class="desc">Concrete class that tracks the lifetime of registered tensors and calculates the systems memory requirements in terms of a single blob and a list of offsets </td></tr>
-<tr id="row_0_601_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_offset_memory_pool.xhtml" target="_self">OffsetMemoryPool</a></td><td class="desc">Offset based memory pool </td></tr>
-<tr id="row_0_602_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_o_m_p_scheduler.xhtml" target="_self">OMPScheduler</a></td><td class="desc">Pool of threads to automatically split a kernel's execution among several threads </td></tr>
-<tr id="row_0_603_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pad_stride_info.xhtml" target="_self">PadStrideInfo</a></td><td class="desc">Padding and stride information class </td></tr>
-<tr id="row_0_604_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pixel_value.xhtml" target="_self">PixelValue</a></td><td class="desc">Class describing the value of a pixel for any image format </td></tr>
-<tr id="row_0_605_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pooling_layer_info.xhtml" target="_self">PoolingLayerInfo</a></td><td class="desc">Pooling Layer Information class </td></tr>
-<tr id="row_0_606_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pool_manager.xhtml" target="_self">PoolManager</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> pool manager </td></tr>
-<tr id="row_0_607_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_program.xhtml" target="_self">Program</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_program.xhtml" title="Program class. ">Program</a> class </td></tr>
-<tr id="row_0_608_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid.xhtml" target="_self">Pyramid</a></td><td class="desc">Basic implementation of the pyramid interface </td></tr>
-<tr id="row_0_609_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid_info.xhtml" target="_self">PyramidInfo</a></td><td class="desc">Store the <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a>'s metadata </td></tr>
-<tr id="row_0_610_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_quantization_info.xhtml" target="_self">QuantizationInfo</a></td><td class="desc">Quantization settings (used for QASYMM8 data type) </td></tr>
-<tr id="row_0_611_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_rectangle.xhtml" target="_self">Rectangle</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_rectangle.xhtml" title="Rectangle type. ">Rectangle</a> type </td></tr>
-<tr id="row_0_612_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_r_o_i.xhtml" target="_self">ROI</a></td><td class="desc">Region of interest </td></tr>
-<tr id="row_0_613_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_r_o_i_pooling_layer_info.xhtml" target="_self">ROIPoolingLayerInfo</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_r_o_i.xhtml" title="Region of interest. ">ROI</a> Pooling Layer Information class </td></tr>
-<tr id="row_0_614_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_scheduler.xhtml" target="_self">Scheduler</a></td><td class="desc">Configurable scheduler which supports multiple multithreading APIs and choosing between different schedulers at runtime </td></tr>
-<tr id="row_0_615_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_semaphore.xhtml" target="_self">Semaphore</a></td><td class="desc">Semamphore class </td></tr>
-<tr id="row_0_616_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_single_thread_scheduler.xhtml" target="_self">SingleThreadScheduler</a></td><td class="desc">Pool of threads to automatically split a kernel's execution among several threads </td></tr>
-<tr id="row_0_617_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_size2_d.xhtml" target="_self">Size2D</a></td><td class="desc">Class for specifying the size of an image or rectangle </td></tr>
-<tr id="row_0_618_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_status.xhtml" target="_self">Status</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_status.xhtml" title="Status class. ">Status</a> class </td></tr>
-<tr id="row_0_619_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_steps.xhtml" target="_self">Steps</a></td><td class="desc">Class to describe a number of elements in each dimension </td></tr>
-<tr id="row_0_620_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_strides.xhtml" target="_self">Strides</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_strides.xhtml" title="Strides of an item in bytes. ">Strides</a> of an item in bytes </td></tr>
-<tr id="row_0_621_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_sub_tensor.xhtml" target="_self">SubTensor</a></td><td class="desc">Basic implementation of the sub-tensor interface </td></tr>
-<tr id="row_0_622_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_sub_tensor_info.xhtml" target="_self">SubTensorInfo</a></td><td class="desc">Store the sub tensor's metadata </td></tr>
-<tr id="row_0_623_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor.xhtml" target="_self">Tensor</a></td><td class="desc">Basic implementation of the tensor interface </td></tr>
-<tr id="row_0_624_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml" target="_self">TensorAllocator</a></td><td class="desc">Basic implementation of a CPU memory tensor allocator </td></tr>
-<tr id="row_0_625_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_info.xhtml" target="_self">TensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
-<tr id="row_0_626_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_shape.xhtml" target="_self">TensorShape</a></td><td class="desc">Shape of a tensor </td></tr>
-<tr id="row_0_627_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_thread_info.xhtml" target="_self">ThreadInfo</a></td><td class="desc"></td></tr>
-<tr id="row_0_628_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_valid_region.xhtml" target="_self">ValidRegion</a></td><td class="desc"></td></tr>
-<tr id="row_0_629_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_weights_info.xhtml" target="_self">WeightsInfo</a></td><td class="desc">Convolution Layer Weights Information class </td></tr>
-<tr id="row_0_630_" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;">&#160;</span><span id="arr_0_630_" class="arrow" onclick="toggleFolder('0_630_')">&#9658;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window.xhtml" target="_self">Window</a></td><td class="desc">Describe a multidimensional execution window </td></tr>
-<tr id="row_0_630_0_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window_1_1_dimension.xhtml" target="_self">Dimension</a></td><td class="desc">Describe one of the image's dimensions with a start, end and step </td></tr>
+<tr id="row_0_367_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_i_o_format_info.xhtml" target="_self">IOFormatInfo</a></td><td class="desc">IO formatting information class </td></tr>
+<tr id="row_0_368_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pool_manager.xhtml" target="_self">IPoolManager</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> pool manager interface </td></tr>
+<tr id="row_0_369_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_pyramid.xhtml" target="_self">IPyramid</a></td><td class="desc">Interface for pyramid data-object </td></tr>
+<tr id="row_0_370_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_scheduler.xhtml" target="_self">IScheduler</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_scheduler.xhtml" title="Configurable scheduler which supports multiple multithreading APIs and choosing between different sch...">Scheduler</a> interface to run kernels </td></tr>
+<tr id="row_0_371_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_simple_lifetime_manager.xhtml" target="_self">ISimpleLifetimeManager</a></td><td class="desc">Abstract class of the simple lifetime manager interface </td></tr>
+<tr id="row_0_372_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor.xhtml" target="_self">ITensor</a></td><td class="desc">Interface for NEON tensor </td></tr>
+<tr id="row_0_373_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_allocator.xhtml" target="_self">ITensorAllocator</a></td><td class="desc">Interface to allocate tensors </td></tr>
+<tr id="row_0_374_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_i_tensor_info.xhtml" target="_self">ITensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
+<tr id="row_0_375_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_iterator.xhtml" target="_self">Iterator</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_iterator.xhtml" title="Iterator updated by execute_window_loop for each window element. ">Iterator</a> updated by <a class="el" href="namespacearm__compute.xhtml#a6c0dcc38187027dcb89cd9724bc5a823">execute_window_loop</a> for each window element </td></tr>
+<tr id="row_0_376_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_kernel.xhtml" target="_self">Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> class </td></tr>
+<tr id="row_0_377_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_key_point.xhtml" target="_self">KeyPoint</a></td><td class="desc"><a class="el" href="struct_keypoint.xhtml">Keypoint</a> type </td></tr>
+<tr id="row_0_378_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_lut.xhtml" target="_self">Lut</a></td><td class="desc">Basic implementation of the LUT interface </td></tr>
+<tr id="row_0_379_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_lut_allocator.xhtml" target="_self">LutAllocator</a></td><td class="desc">Basic implementation of a CPU memory LUT allocator </td></tr>
+<tr id="row_0_380_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory.xhtml" target="_self">Memory</a></td><td class="desc">CPU implementation of memory object </td></tr>
+<tr id="row_0_381_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory_group_base.xhtml" target="_self">MemoryGroupBase</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> group </td></tr>
+<tr id="row_0_382_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_memory_manager_on_demand.xhtml" target="_self">MemoryManagerOnDemand</a></td><td class="desc">On-demand memory manager </td></tr>
+<tr id="row_0_383_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_min_max_location_values.xhtml" target="_self">MinMaxLocationValues</a></td><td class="desc"></td></tr>
+<tr id="row_0_384_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_h_o_g.xhtml" target="_self">MultiHOG</a></td><td class="desc">CPU implementation of multi <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> data-object </td></tr>
+<tr id="row_0_385_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image.xhtml" target="_self">MultiImage</a></td><td class="desc">Basic implementation of the multi-planar image interface </td></tr>
+<tr id="row_0_386_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_multi_image_info.xhtml" target="_self">MultiImageInfo</a></td><td class="desc">Store the multi-planar image's metadata </td></tr>
+<tr id="row_0_387_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_absolute_difference.xhtml" target="_self">NEAbsoluteDifference</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_absolute_difference_kernel.xhtml">NEAbsoluteDifferenceKernel</a> </td></tr>
+<tr id="row_0_388_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_absolute_difference_kernel.xhtml" target="_self">NEAbsoluteDifferenceKernel</a></td><td class="desc">Interface for the absolute difference kernel </td></tr>
+<tr id="row_0_389_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate.xhtml" target="_self">NEAccumulate</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_kernel.xhtml">NEAccumulateKernel</a> </td></tr>
+<tr id="row_0_390_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_kernel.xhtml" target="_self">NEAccumulateKernel</a></td><td class="desc">Interface for the accumulate kernel </td></tr>
+<tr id="row_0_391_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_squared.xhtml" target="_self">NEAccumulateSquared</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_squared_kernel.xhtml">NEAccumulateSquaredKernel</a> </td></tr>
+<tr id="row_0_392_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_squared_kernel.xhtml" target="_self">NEAccumulateSquaredKernel</a></td><td class="desc">Interface for the accumulate squared kernel </td></tr>
+<tr id="row_0_393_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted.xhtml" target="_self">NEAccumulateWeighted</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted_kernel.xhtml">NEAccumulateWeightedKernel</a> </td></tr>
+<tr id="row_0_394_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_accumulate_weighted_kernel.xhtml" target="_self">NEAccumulateWeightedKernel</a></td><td class="desc">Interface for the accumulate weighted kernel </td></tr>
+<tr id="row_0_395_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_activation_layer.xhtml" target="_self">NEActivationLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_activation_layer_kernel.xhtml">NEActivationLayerKernel</a> </td></tr>
+<tr id="row_0_396_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_activation_layer_kernel.xhtml" target="_self">NEActivationLayerKernel</a></td><td class="desc">Interface for the activation layer kernel </td></tr>
+<tr id="row_0_397_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition.xhtml" target="_self">NEArithmeticAddition</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition_kernel.xhtml">NEArithmeticAdditionKernel</a> </td></tr>
+<tr id="row_0_398_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_addition_kernel.xhtml" target="_self">NEArithmeticAdditionKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
+<tr id="row_0_399_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction.xhtml" target="_self">NEArithmeticSubtraction</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction_kernel.xhtml">NEArithmeticSubtractionKernel</a> </td></tr>
+<tr id="row_0_400_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_arithmetic_subtraction_kernel.xhtml" target="_self">NEArithmeticSubtractionKernel</a></td><td class="desc">Interface for the kernel to perform subtraction between two tensors </td></tr>
+<tr id="row_0_401_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer.xhtml" target="_self">NEBatchNormalizationLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml">NENormalizationLayerKernel</a> and simulate a batch normalization layer </td></tr>
+<tr id="row_0_402_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_batch_normalization_layer_kernel.xhtml" target="_self">NEBatchNormalizationLayerKernel</a></td><td class="desc">Interface for the batch normalization layer kernel </td></tr>
+<tr id="row_0_403_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_and.xhtml" target="_self">NEBitwiseAnd</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_and_kernel.xhtml">NEBitwiseAndKernel</a> </td></tr>
+<tr id="row_0_404_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_and_kernel.xhtml" target="_self">NEBitwiseAndKernel</a></td><td class="desc">Interface for the kernel to perform bitwise AND between XY-planes of two tensors </td></tr>
+<tr id="row_0_405_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_not.xhtml" target="_self">NEBitwiseNot</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_not_kernel.xhtml">NEBitwiseNotKernel</a> </td></tr>
+<tr id="row_0_406_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_not_kernel.xhtml" target="_self">NEBitwiseNotKernel</a></td><td class="desc">Interface for the kernel to perform bitwise NOT operation </td></tr>
+<tr id="row_0_407_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_or.xhtml" target="_self">NEBitwiseOr</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_or_kernel.xhtml">NEBitwiseOrKernel</a> </td></tr>
+<tr id="row_0_408_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_or_kernel.xhtml" target="_self">NEBitwiseOrKernel</a></td><td class="desc">Interface for the kernel to perform bitwise inclusive OR between two tensors </td></tr>
+<tr id="row_0_409_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_xor.xhtml" target="_self">NEBitwiseXor</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_bitwise_xor_kernel.xhtml">NEBitwiseXorKernel</a> </td></tr>
+<tr id="row_0_410_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_bitwise_xor_kernel.xhtml" target="_self">NEBitwiseXorKernel</a></td><td class="desc">Interface for the kernel to perform bitwise exclusive OR (XOR) between two tensors </td></tr>
+<tr id="row_0_411_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_box3x3.xhtml" target="_self">NEBox3x3</a></td><td class="desc">Basic function to execute box filter 3x3 </td></tr>
+<tr id="row_0_412_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_box3x3_kernel.xhtml" target="_self">NEBox3x3Kernel</a></td><td class="desc">NEON kernel to perform a Box 3x3 filter </td></tr>
+<tr id="row_0_413_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_canny_edge.xhtml" target="_self">NECannyEdge</a></td><td class="desc">Basic function to execute canny edge on NEON </td></tr>
+<tr id="row_0_414_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_combine.xhtml" target="_self">NEChannelCombine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_channel_combine_kernel.xhtml">NEChannelCombineKernel</a> to perform channel combination </td></tr>
+<tr id="row_0_415_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_combine_kernel.xhtml" target="_self">NEChannelCombineKernel</a></td><td class="desc">Interface for the channel combine kernel </td></tr>
+<tr id="row_0_416_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_extract.xhtml" target="_self">NEChannelExtract</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_channel_extract_kernel.xhtml">NEChannelExtractKernel</a> to perform channel extraction </td></tr>
+<tr id="row_0_417_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_channel_extract_kernel.xhtml" target="_self">NEChannelExtractKernel</a></td><td class="desc">Interface for the channel extract kernel </td></tr>
+<tr id="row_0_418_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_col2_im.xhtml" target="_self">NECol2Im</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_col2_im.xhtml">NECol2Im</a> </td></tr>
+<tr id="row_0_419_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_col2_im_kernel.xhtml" target="_self">NECol2ImKernel</a></td><td class="desc">NEON kernel to perform col2im reshaping </td></tr>
+<tr id="row_0_420_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_color_convert.xhtml" target="_self">NEColorConvert</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_color_convert_kernel.xhtml">NEColorConvertKernel</a> to perform color conversion </td></tr>
+<tr id="row_0_421_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_color_convert_kernel.xhtml" target="_self">NEColorConvertKernel</a></td><td class="desc">Interface for the color convert kernel </td></tr>
+<tr id="row_0_422_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution3x3.xhtml" target="_self">NEConvolution3x3</a></td><td class="desc">Basic function to execute convolution of size 3x3 </td></tr>
+<tr id="row_0_423_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_kernel.xhtml" target="_self">NEConvolutionKernel</a></td><td class="desc">Interface for the kernel to run an arbitrary size convolution on a tensor </td></tr>
+<tr id="row_0_424_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_layer.xhtml" target="_self">NEConvolutionLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
+<tr id="row_0_425_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_layer_reshape_weights.xhtml" target="_self">NEConvolutionLayerReshapeWeights</a></td><td class="desc">Function to reshape and perform 1xW transposition on the weights </td></tr>
+<tr id="row_0_426_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_rectangle.xhtml" target="_self">NEConvolutionRectangle</a></td><td class="desc">Basic function to execute non-square convolution </td></tr>
+<tr id="row_0_427_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_rectangle_kernel.xhtml" target="_self">NEConvolutionRectangleKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the running convolution on a rectangle matrix </td></tr>
+<tr id="row_0_428_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_convolution_square.xhtml" target="_self">NEConvolutionSquare</a></td><td class="desc">Basic function to execute convolution of size 5x5, 7x7, 9x9 </td></tr>
+<tr id="row_0_429_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_cumulative_distribution_kernel.xhtml" target="_self">NECumulativeDistributionKernel</a></td><td class="desc">Interface for the cumulative distribution (cummulative summmation) calculation kernel </td></tr>
+<tr id="row_0_430_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_deconvolution_layer.xhtml" target="_self">NEDeconvolutionLayer</a></td><td class="desc">Function to run the deconvolution layer </td></tr>
+<tr id="row_0_431_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_concatenate_layer.xhtml" target="_self">NEDepthConcatenateLayer</a></td><td class="desc">Basic function to execute concatenate tensors along z axis </td></tr>
+<tr id="row_0_432_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_concatenate_layer_kernel.xhtml" target="_self">NEDepthConcatenateLayerKernel</a></td><td class="desc">Interface for the depth concatenate kernel </td></tr>
+<tr id="row_0_433_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer.xhtml" target="_self">NEDepthConvertLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer_kernel.xhtml">NEDepthConvertLayerKernel</a> </td></tr>
+<tr id="row_0_434_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depth_convert_layer_kernel.xhtml" target="_self">NEDepthConvertLayerKernel</a></td><td class="desc">Depth conversion kernel </td></tr>
+<tr id="row_0_435_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer.xhtml" target="_self">NEDepthwiseConvolutionLayer</a></td><td class="desc">Basic function to execute a generic depthwise convolution </td></tr>
+<tr id="row_0_436_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer3x3.xhtml" target="_self">NEDepthwiseConvolutionLayer3x3</a></td><td class="desc">Basic function to execute a depthwise convolution for kernel size 3x3xC </td></tr>
+<tr id="row_0_437_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_convolution_layer3x3_kernel.xhtml" target="_self">NEDepthwiseConvolutionLayer3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 depthwise convolution on a tensor </td></tr>
+<tr id="row_0_438_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_im2_col_kernel.xhtml" target="_self">NEDepthwiseIm2ColKernel</a></td><td class="desc">Interface for the depthwise im2col reshape kernel </td></tr>
+<tr id="row_0_439_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_separable_convolution_layer.xhtml" target="_self">NEDepthwiseSeparableConvolutionLayer</a></td><td class="desc">Basic function to execute depthwise convolution </td></tr>
+<tr id="row_0_440_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_vector_to_tensor_kernel.xhtml" target="_self">NEDepthwiseVectorToTensorKernel</a></td><td class="desc">Interface for the depthwise vector to tensor kernel </td></tr>
+<tr id="row_0_441_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_depthwise_weights_reshape_kernel.xhtml" target="_self">NEDepthwiseWeightsReshapeKernel</a></td><td class="desc">Interface for the depthwise weights reshape kernel </td></tr>
+<tr id="row_0_442_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dequantization_layer.xhtml" target="_self">NEDequantizationLayer</a></td><td class="desc">Basic function to simulate a dequantization layer </td></tr>
+<tr id="row_0_443_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dequantization_layer_kernel.xhtml" target="_self">NEDequantizationLayerKernel</a></td><td class="desc">Interface for the dequantization layer kernel </td></tr>
+<tr id="row_0_444_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_derivative.xhtml" target="_self">NEDerivative</a></td><td class="desc">Basic function to execute first order derivative operator </td></tr>
+<tr id="row_0_445_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_derivative_kernel.xhtml" target="_self">NEDerivativeKernel</a></td><td class="desc">Interface for the kernel to run the derivative along the X/Y directions on a tensor </td></tr>
+<tr id="row_0_446_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dilate.xhtml" target="_self">NEDilate</a></td><td class="desc">Basic function to execute dilate </td></tr>
+<tr id="row_0_447_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_dilate_kernel.xhtml" target="_self">NEDilateKernel</a></td><td class="desc">Interface for the kernel to perform boolean image dilatation </td></tr>
+<tr id="row_0_448_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer.xhtml" target="_self">NEDirectConvolutionLayer</a></td><td class="desc">Function to run the direct convolution </td></tr>
+<tr id="row_0_449_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer_kernel.xhtml" target="_self">NEDirectConvolutionLayerKernel</a></td><td class="desc">NEON interface for Direct Convolution Layer kernel </td></tr>
+<tr id="row_0_450_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_direct_convolution_layer_output_stage_kernel.xhtml" target="_self">NEDirectConvolutionLayerOutputStageKernel</a></td><td class="desc">NEON kernel to accumulate the biases, if provided, or downscale in case of quantized input </td></tr>
+<tr id="row_0_451_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_edge_non_max_suppression_kernel.xhtml" target="_self">NEEdgeNonMaxSuppressionKernel</a></td><td class="desc">NEON kernel to perform Non-Maxima suppression for Canny Edge </td></tr>
+<tr id="row_0_452_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_edge_trace_kernel.xhtml" target="_self">NEEdgeTraceKernel</a></td><td class="desc">NEON kernel to perform Edge tracing </td></tr>
+<tr id="row_0_453_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_equalize_histogram.xhtml" target="_self">NEEqualizeHistogram</a></td><td class="desc">Basic function to execute histogram equalization </td></tr>
+<tr id="row_0_454_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_erode.xhtml" target="_self">NEErode</a></td><td class="desc">Basic function to execute erode </td></tr>
+<tr id="row_0_455_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_erode_kernel.xhtml" target="_self">NEErodeKernel</a></td><td class="desc">Interface for the kernel to perform boolean image erosion </td></tr>
+<tr id="row_0_456_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fast_corners.xhtml" target="_self">NEFastCorners</a></td><td class="desc">Basic function to execute fast corners </td></tr>
+<tr id="row_0_457_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fast_corners_kernel.xhtml" target="_self">NEFastCornersKernel</a></td><td class="desc">NEON kernel to perform fast corners </td></tr>
+<tr id="row_0_458_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_array_kernel.xhtml" target="_self">NEFillArrayKernel</a></td><td class="desc">This kernel adds all texels greater than or equal to the threshold value to the keypoint array </td></tr>
+<tr id="row_0_459_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_border.xhtml" target="_self">NEFillBorder</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_fill_border_kernel.xhtml">NEFillBorderKernel</a> </td></tr>
+<tr id="row_0_460_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_border_kernel.xhtml" target="_self">NEFillBorderKernel</a></td><td class="desc">Interface for the kernel to fill borders </td></tr>
+<tr id="row_0_461_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fill_inner_border_kernel.xhtml" target="_self">NEFillInnerBorderKernel</a></td><td class="desc">Interface for the kernel to fill the interior borders </td></tr>
+<tr id="row_0_462_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_flatten_layer.xhtml" target="_self">NEFlattenLayer</a></td><td class="desc">Basic function to execute flatten </td></tr>
+<tr id="row_0_463_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_floor.xhtml" target="_self">NEFloor</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_floor_kernel.xhtml">NEFloorKernel</a> </td></tr>
+<tr id="row_0_464_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_floor_kernel.xhtml" target="_self">NEFloorKernel</a></td><td class="desc">NEON kernel to perform a floor operation </td></tr>
+<tr id="row_0_465_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer.xhtml" target="_self">NEFullyConnectedLayer</a></td><td class="desc">Basic function to compute a Fully Connected layer on NEON </td></tr>
+<tr id="row_0_466_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_fully_connected_layer_reshape_weights.xhtml" target="_self">NEFullyConnectedLayerReshapeWeights</a></td><td class="desc">Basic function to reshape the weights of Fully Connected layer with NEON </td></tr>
+<tr id="row_0_467_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3.xhtml" target="_self">NEGaussian3x3</a></td><td class="desc">Basic function to execute gaussian filter 3x3 </td></tr>
+<tr id="row_0_468_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian3x3_kernel.xhtml" target="_self">NEGaussian3x3Kernel</a></td><td class="desc">NEON kernel to perform a Gaussian 3x3 filter </td></tr>
+<tr id="row_0_469_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5.xhtml" target="_self">NEGaussian5x5</a></td><td class="desc">Basic function to execute gaussian filter 5x5 </td></tr>
+<tr id="row_0_470_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_hor_kernel.xhtml" target="_self">NEGaussian5x5HorKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (horizontal pass) </td></tr>
+<tr id="row_0_471_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian5x5_vert_kernel.xhtml" target="_self">NEGaussian5x5VertKernel</a></td><td class="desc">NEON kernel to perform a Gaussian 5x5 filter (vertical pass) </td></tr>
+<tr id="row_0_472_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid.xhtml" target="_self">NEGaussianPyramid</a></td><td class="desc">Common interface for all Gaussian pyramid functions </td></tr>
+<tr id="row_0_473_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_half.xhtml" target="_self">NEGaussianPyramidHalf</a></td><td class="desc">Basic function to execute gaussian pyramid with HALF scale factor </td></tr>
+<tr id="row_0_474_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_hor_kernel.xhtml" target="_self">NEGaussianPyramidHorKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (horizontal pass) </td></tr>
+<tr id="row_0_475_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_orb.xhtml" target="_self">NEGaussianPyramidOrb</a></td><td class="desc">Basic function to execute gaussian pyramid with ORB scale factor </td></tr>
+<tr id="row_0_476_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gaussian_pyramid_vert_kernel.xhtml" target="_self">NEGaussianPyramidVertKernel</a></td><td class="desc">NEON kernel to perform a GaussianPyramid (vertical pass) </td></tr>
+<tr id="row_0_477_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m.xhtml" target="_self">NEGEMM</a></td><td class="desc">Basic function to execute GEMM on NEON </td></tr>
+<tr id="row_0_478_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch32_kernel.xhtml" target="_self">NEGEMMAArch32Kernel</a></td><td class="desc">AArch32/armv7a NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_479_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch64_kernel.xhtml" target="_self">NEGEMMAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_480_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_a_arch64_native_kernel.xhtml" target="_self">NEGEMMAArch64NativeKernel</a></td><td class="desc">Native AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_481_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_assembly_base_kernel.xhtml" target="_self">NEGEMMAssemblyBaseKernel</a></td><td class="desc">Base class for GEMM NEON kernels implemented in Assembly </td></tr>
+<tr id="row_0_482_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_convolution_layer.xhtml" target="_self">NEGEMMConvolutionLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
+<tr id="row_0_483_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4.xhtml" target="_self">NEGEMMInterleave4x4</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" title="NEON kernel to interleave the elements of a matrix. ">NEGEMMInterleave4x4Kernel</a> </td></tr>
+<tr id="row_0_484_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave4x4_kernel.xhtml" target="_self">NEGEMMInterleave4x4Kernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
+<tr id="row_0_485_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_interleave_blocked_kernel.xhtml" target="_self">NEGEMMInterleaveBlockedKernel</a></td><td class="desc">NEON kernel to interleave the elements of a matrix </td></tr>
+<tr id="row_0_486_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_a53_kernel.xhtml" target="_self">NEGEMMLowpAArch64A53Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_487_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_kernel.xhtml" target="_self">NEGEMMLowpAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_488_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_a_arch64_v8_p4_kernel.xhtml" target="_self">NEGEMMLowpAArch64V8P4Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_489_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_assembly_matrix_multiply_core.xhtml" target="_self">NEGEMMLowpAssemblyMatrixMultiplyCore</a></td><td class="desc">Basic function to execute matrix multiply assembly kernels </td></tr>
+<tr id="row_0_490_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_a_reduction_kernel.xhtml" target="_self">NEGEMMLowpMatrixAReductionKernel</a></td><td class="desc">NEON kernel used to compute the row-vectors of sums of all the entries in each row of Matrix A </td></tr>
+<tr id="row_0_491_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_b_reduction_kernel.xhtml" target="_self">NEGEMMLowpMatrixBReductionKernel</a></td><td class="desc">NEON kernel used to compute the row-vectors of sums of all the entries in each column of Matrix B </td></tr>
+<tr id="row_0_492_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_core.xhtml" target="_self">NEGEMMLowpMatrixMultiplyCore</a></td><td class="desc">Basic function to execute GEMMLowpMatrixMultiplyCore on NEON </td></tr>
+<tr id="row_0_493_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml" target="_self">NEGEMMLowpMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply matrices </td></tr>
+<tr id="row_0_494_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_offset_contribution_kernel.xhtml" target="_self">NEGEMMLowpOffsetContributionKernel</a></td><td class="desc">NEON kernel used to add the offset contribution after <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_matrix_multiply_kernel.xhtml">NEGEMMLowpMatrixMultiplyKernel</a> </td></tr>
+<tr id="row_0_495_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8Scale</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale.xhtml" title="Basic function to execute NEGEMMLowpQuantizeDownInt32ToUint8Scale on NEON. ">NEGEMMLowpQuantizeDownInt32ToUint8Scale</a> on NEON </td></tr>
+<tr id="row_0_496_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point.xhtml" title="Basic function to execute NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint on NEON. ">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPoint</a> on NEON </td></tr>
+<tr id="row_0_497_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_by_fixed_point_kernel.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleByFixedPointKernel</a></td><td class="desc">NEON kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8 </td></tr>
+<tr id="row_0_498_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_lowp_quantize_down_int32_to_uint8_scale_kernel.xhtml" target="_self">NEGEMMLowpQuantizeDownInt32ToUint8ScaleKernel</a></td><td class="desc">NEON kernel used to quantize down the int32 accumulator values of GEMMLowp to QASYMM8 </td></tr>
+<tr id="row_0_499_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_accumulate_biases_kernel.xhtml" target="_self">NEGEMMMatrixAccumulateBiasesKernel</a></td><td class="desc">NEON kernel to add a bias to each row of the input tensor </td></tr>
+<tr id="row_0_500_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_addition_kernel.xhtml" target="_self">NEGEMMMatrixAdditionKernel</a></td><td class="desc">NEON kernel to perform the in-place matrix addition between 2 matrices taking into account that the second matrix might be weighted by a scalar value beta: </td></tr>
+<tr id="row_0_501_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_multiply_kernel.xhtml" target="_self">NEGEMMMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_502_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_matrix_vector_multiply_kernel.xhtml" target="_self">NEGEMMMatrixVectorMultiplyKernel</a></td><td class="desc"></td></tr>
+<tr id="row_0_503_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w.xhtml" target="_self">NEGEMMTranspose1xW</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" title="NEON kernel which transposes the elements of a matrix in chunks of 1xW, where W is equal to (16 / ele...">NEGEMMTranspose1xWKernel</a> </td></tr>
+<tr id="row_0_504_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_m_transpose1x_w_kernel.xhtml" target="_self">NEGEMMTranspose1xWKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix in chunks of 1xW, where W is equal to (16 / element size of the tensor) </td></tr>
+<tr id="row_0_505_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_g_e_m_v_a_arch64_kernel.xhtml" target="_self">NEGEMVAArch64Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply an input vector "A" and a matrix "B" </td></tr>
+<tr id="row_0_506_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_gradient_kernel.xhtml" target="_self">NEGradientKernel</a></td><td class="desc">Computes magnitude and quantised phase from inputs gradients </td></tr>
+<tr id="row_0_507_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_corners.xhtml" target="_self">NEHarrisCorners</a></td><td class="desc">Basic function to execute harris corners detection </td></tr>
+<tr id="row_0_508_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_harris_score_kernel.xhtml" target="_self">NEHarrisScoreKernel</a></td><td class="desc">Template NEON kernel to perform Harris Score </td></tr>
+<tr id="row_0_509_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_g_e_m_m_a_arch64_f_p16_kernel.xhtml" target="_self">NEHGEMMAArch64FP16Kernel</a></td><td class="desc">AArch64 NEON kernel to multiply two input matrices "A" and "B" </td></tr>
+<tr id="row_0_510_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram.xhtml" target="_self">NEHistogram</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml">NEHistogramKernel</a> </td></tr>
+<tr id="row_0_511_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_histogram_kernel.xhtml" target="_self">NEHistogramKernel</a></td><td class="desc">Interface for the histogram kernel </td></tr>
+<tr id="row_0_512_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_block_normalization_kernel.xhtml" target="_self">NEHOGBlockNormalizationKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> block normalization </td></tr>
+<tr id="row_0_513_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_descriptor.xhtml" target="_self">NEHOGDescriptor</a></td><td class="desc">Basic function to calculate <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> descriptor </td></tr>
+<tr id="row_0_514_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector.xhtml" target="_self">NEHOGDetector</a></td><td class="desc">Basic function to execute <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector based on linear SVM </td></tr>
+<tr id="row_0_515_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_detector_kernel.xhtml" target="_self">NEHOGDetectorKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> detector kernel using linear SVM </td></tr>
+<tr id="row_0_516_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_gradient.xhtml" target="_self">NEHOGGradient</a></td><td class="desc">Basic function to calculate the gradient for <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
+<tr id="row_0_517_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_multi_detection.xhtml" target="_self">NEHOGMultiDetection</a></td><td class="desc">Basic function to detect multiple objects (or the same object at different scales) on the same input image using <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> </td></tr>
+<tr id="row_0_518_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_h_o_g_orientation_binning_kernel.xhtml" target="_self">NEHOGOrientationBinningKernel</a></td><td class="desc">NEON kernel to perform <a class="el" href="classarm__compute_1_1_h_o_g.xhtml" title="CPU implementation of HOG data-object. ">HOG</a> Orientation Binning </td></tr>
+<tr id="row_0_519_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col.xhtml" target="_self">NEIm2Col</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml">NEIm2ColKernel</a> </td></tr>
+<tr id="row_0_520_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_im2_col_kernel.xhtml" target="_self">NEIm2ColKernel</a></td><td class="desc">Interface for the im2col reshape kernel </td></tr>
+<tr id="row_0_521_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image.xhtml" target="_self">NEIntegralImage</a></td><td class="desc">Basic function to run a <a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml">NEIntegralImageKernel</a> </td></tr>
+<tr id="row_0_522_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_integral_image_kernel.xhtml" target="_self">NEIntegralImageKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform an image integral on an image </td></tr>
+<tr id="row_0_523_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l2_normalize_layer.xhtml" target="_self">NEL2NormalizeLayer</a></td><td class="desc">Basic function to perform a L2 normalization on a given axis </td></tr>
+<tr id="row_0_524_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l2_normalize_layer_kernel.xhtml" target="_self">NEL2NormalizeLayerKernel</a></td><td class="desc">Interface for performing a L2 normalize on a given axis given the square sum of it in this axis </td></tr>
+<tr id="row_0_525_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_laplacian_pyramid.xhtml" target="_self">NELaplacianPyramid</a></td><td class="desc">Basic function to execute laplacian pyramid </td></tr>
+<tr id="row_0_526_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_laplacian_reconstruct.xhtml" target="_self">NELaplacianReconstruct</a></td><td class="desc">Basic function to execute laplacian reconstruction </td></tr>
+<tr id="row_0_527_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_n_e_l_k_internal_keypoint.xhtml" target="_self">NELKInternalKeypoint</a></td><td class="desc">Internal keypoint class for Lucas-Kanade Optical Flow </td></tr>
+<tr id="row_0_528_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_l_k_tracker_kernel.xhtml" target="_self">NELKTrackerKernel</a></td><td class="desc">Interface for the Lucas-Kanade tracker kernel </td></tr>
+<tr id="row_0_529_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_locally_connected_layer.xhtml" target="_self">NELocallyConnectedLayer</a></td><td class="desc">Basic function to compute the locally connected layer </td></tr>
+<tr id="row_0_530_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_locally_connected_matrix_multiply_kernel.xhtml" target="_self">NELocallyConnectedMatrixMultiplyKernel</a></td><td class="desc">NEON kernel to multiply each row of first tensor with low 2 dimensions of second tensor </td></tr>
+<tr id="row_0_531_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_max_kernel.xhtml" target="_self">NELogits1DMaxKernel</a></td><td class="desc">Interface for the identifying the max value of 1D Logits </td></tr>
+<tr id="row_0_532_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_logits1_d_softmax_kernel.xhtml" target="_self">NELogits1DSoftmaxKernel</a></td><td class="desc">Interface for softmax computation for QASYMM8 with pre-computed max </td></tr>
+<tr id="row_0_533_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude.xhtml" target="_self">NEMagnitude</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
+<tr id="row_0_534_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" target="_self">NEMagnitudePhaseKernel</a></td><td class="desc">Template interface for the kernel to compute magnitude and phase </td></tr>
+<tr id="row_0_535_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev.xhtml" target="_self">NEMeanStdDev</a></td><td class="desc">Basic function to execute mean and std deviation </td></tr>
+<tr id="row_0_536_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_mean_std_dev_kernel.xhtml" target="_self">NEMeanStdDevKernel</a></td><td class="desc">Interface for the kernel to calculate mean and standard deviation of input image pixels </td></tr>
+<tr id="row_0_537_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3.xhtml" target="_self">NEMedian3x3</a></td><td class="desc">Basic function to execute median filter </td></tr>
+<tr id="row_0_538_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_median3x3_kernel.xhtml" target="_self">NEMedian3x3Kernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> to perform a median filter on a tensor </td></tr>
+<tr id="row_0_539_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_kernel.xhtml" target="_self">NEMinMaxKernel</a></td><td class="desc">Interface for the kernel to perform min max search on an image </td></tr>
+<tr id="row_0_540_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_layer_kernel.xhtml" target="_self">NEMinMaxLayerKernel</a></td><td class="desc">Interface for the kernel to perform min max search on a 3D tensor </td></tr>
+<tr id="row_0_541_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location.xhtml" target="_self">NEMinMaxLocation</a></td><td class="desc">Basic function to execute min and max location </td></tr>
+<tr id="row_0_542_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_min_max_location_kernel.xhtml" target="_self">NEMinMaxLocationKernel</a></td><td class="desc">Interface for the kernel to find min max locations of an image </td></tr>
+<tr id="row_0_543_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter.xhtml" target="_self">NENonLinearFilter</a></td><td class="desc">Basic function to execute non linear filter </td></tr>
+<tr id="row_0_544_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_linear_filter_kernel.xhtml" target="_self">NENonLinearFilterKernel</a></td><td class="desc">Interface for the kernel to apply a non-linear filter </td></tr>
+<tr id="row_0_545_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3.xhtml" target="_self">NENonMaximaSuppression3x3</a></td><td class="desc">Basic function to execute non-maxima suppression over a 3x3 window </td></tr>
+<tr id="row_0_546_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_non_maxima_suppression3x3_kernel.xhtml" target="_self">NENonMaximaSuppression3x3Kernel</a></td><td class="desc">Interface to perform Non-Maxima suppression over a 3x3 window using NEON </td></tr>
+<tr id="row_0_547_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer.xhtml" target="_self">NENormalizationLayer</a></td><td class="desc">Basic function to compute a normalization layer </td></tr>
+<tr id="row_0_548_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_normalization_layer_kernel.xhtml" target="_self">NENormalizationLayerKernel</a></td><td class="desc">Interface for the normalization layer kernel </td></tr>
+<tr id="row_0_549_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_optical_flow.xhtml" target="_self">NEOpticalFlow</a></td><td class="desc">Basic function to execute optical flow </td></tr>
+<tr id="row_0_550_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_permute.xhtml" target="_self">NEPermute</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_permute_kernel.xhtml">NEPermuteKernel</a> </td></tr>
+<tr id="row_0_551_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_permute_kernel.xhtml" target="_self">NEPermuteKernel</a></td><td class="desc">NEON kernel to perform tensor permutation </td></tr>
+<tr id="row_0_552_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_phase.xhtml" target="_self">NEPhase</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_magnitude_phase_kernel.xhtml" title="Template interface for the kernel to compute magnitude and phase. ">NEMagnitudePhaseKernel</a> </td></tr>
+<tr id="row_0_553_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication.xhtml" target="_self">NEPixelWiseMultiplication</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml">NEPixelWiseMultiplicationKernel</a> </td></tr>
+<tr id="row_0_554_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pixel_wise_multiplication_kernel.xhtml" target="_self">NEPixelWiseMultiplicationKernel</a></td><td class="desc">Interface for the kernel to perform addition between two tensors </td></tr>
+<tr id="row_0_555_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer.xhtml" target="_self">NEPoolingLayer</a></td><td class="desc">Basic function to simulate a pooling layer with the specified pooling operation </td></tr>
+<tr id="row_0_556_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_pooling_layer_kernel.xhtml" target="_self">NEPoolingLayerKernel</a></td><td class="desc">Interface for the pooling layer kernel </td></tr>
+<tr id="row_0_557_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_quantization_layer.xhtml" target="_self">NEQuantizationLayer</a></td><td class="desc">Basic function to simulate a quantization layer </td></tr>
+<tr id="row_0_558_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_quantization_layer_kernel.xhtml" target="_self">NEQuantizationLayerKernel</a></td><td class="desc">Interface for the quantization layer kernel </td></tr>
+<tr id="row_0_559_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reduction_operation.xhtml" target="_self">NEReductionOperation</a></td><td class="desc">Basic function to simulate a reduction operation </td></tr>
+<tr id="row_0_560_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reduction_operation_kernel.xhtml" target="_self">NEReductionOperationKernel</a></td><td class="desc">NEON kernel to perform a reduction operation </td></tr>
+<tr id="row_0_561_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap.xhtml" target="_self">NERemap</a></td><td class="desc">Basic function to execute remap </td></tr>
+<tr id="row_0_562_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_remap_kernel.xhtml" target="_self">NERemapKernel</a></td><td class="desc">NEON kernel to perform a remap on a tensor </td></tr>
+<tr id="row_0_563_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reshape_layer.xhtml" target="_self">NEReshapeLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_reshape_layer_kernel.xhtml">NEReshapeLayerKernel</a> </td></tr>
+<tr id="row_0_564_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_reshape_layer_kernel.xhtml" target="_self">NEReshapeLayerKernel</a></td><td class="desc">Interface for the kernel to perform tensor reshaping </td></tr>
+<tr id="row_0_565_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer.xhtml" target="_self">NEROIPoolingLayer</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer_kernel.xhtml">NEROIPoolingLayerKernel</a> </td></tr>
+<tr id="row_0_566_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_r_o_i_pooling_layer_kernel.xhtml" target="_self">NEROIPoolingLayerKernel</a></td><td class="desc">Interface for the <a class="el" href="structarm__compute_1_1_r_o_i.xhtml" title="Region of interest. ">ROI</a> pooling layer kernel </td></tr>
+<tr id="row_0_567_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale.xhtml" target="_self">NEScale</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml">NEScaleKernel</a> </td></tr>
+<tr id="row_0_568_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scale_kernel.xhtml" target="_self">NEScaleKernel</a></td><td class="desc">NEON kernel to perform scaling on a tensor </td></tr>
+<tr id="row_0_569_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3.xhtml" target="_self">NEScharr3x3</a></td><td class="desc">Basic function to execute scharr 3x3 filter </td></tr>
+<tr id="row_0_570_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_scharr3x3_kernel.xhtml" target="_self">NEScharr3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Scharr filter on a tensor </td></tr>
+<tr id="row_0_571_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_hor_kernel.xhtml" target="_self">NESeparableConvolutionHorKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Horizontal pass of a Separable Convolution </td></tr>
+<tr id="row_0_572_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_separable_convolution_vert_kernel.xhtml" target="_self">NESeparableConvolutionVertKernel</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_kernel.xhtml" title="Kernel class. ">Kernel</a> for the Vertical pass of a Separable Convolution </td></tr>
+<tr id="row_0_573_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3.xhtml" target="_self">NESobel3x3</a></td><td class="desc">Basic function to execute sobel 3x3 filter </td></tr>
+<tr id="row_0_574_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel3x3_kernel.xhtml" target="_self">NESobel3x3Kernel</a></td><td class="desc">Interface for the kernel to run a 3x3 Sobel X filter on a tensor </td></tr>
+<tr id="row_0_575_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5.xhtml" target="_self">NESobel5x5</a></td><td class="desc">Basic function to execute sobel 5x5 filter </td></tr>
+<tr id="row_0_576_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_hor_kernel.xhtml" target="_self">NESobel5x5HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 5x5 Sobel filter on a tensor </td></tr>
+<tr id="row_0_577_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel5x5_vert_kernel.xhtml" target="_self">NESobel5x5VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 5x5 Sobel Y filter on a tensor </td></tr>
+<tr id="row_0_578_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7.xhtml" target="_self">NESobel7x7</a></td><td class="desc">Basic function to execute sobel 7x7 filter </td></tr>
+<tr id="row_0_579_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_hor_kernel.xhtml" target="_self">NESobel7x7HorKernel</a></td><td class="desc">Interface for the kernel to run the horizontal pass of 7x7 Sobel filter on a tensor </td></tr>
+<tr id="row_0_580_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_sobel7x7_vert_kernel.xhtml" target="_self">NESobel7x7VertKernel</a></td><td class="desc">Interface for the kernel to run the vertical pass of 7x7 Sobel Y filter on a tensor </td></tr>
+<tr id="row_0_581_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_softmax_layer.xhtml" target="_self">NESoftmaxLayer</a></td><td class="desc">Basic function to compute a SoftmaxLayer </td></tr>
+<tr id="row_0_582_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup.xhtml" target="_self">NETableLookup</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml">NETableLookupKernel</a> </td></tr>
+<tr id="row_0_583_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_table_lookup_kernel.xhtml" target="_self">NETableLookupKernel</a></td><td class="desc">Interface for the kernel to perform table lookup calculations </td></tr>
+<tr id="row_0_584_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold.xhtml" target="_self">NEThreshold</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml">NEThresholdKernel</a> </td></tr>
+<tr id="row_0_585_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_threshold_kernel.xhtml" target="_self">NEThresholdKernel</a></td><td class="desc">Interface for the thresholding kernel </td></tr>
+<tr id="row_0_586_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose.xhtml" target="_self">NETranspose</a></td><td class="desc">Basic function to transpose a matrix on NEON </td></tr>
+<tr id="row_0_587_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_transpose_kernel.xhtml" target="_self">NETransposeKernel</a></td><td class="desc">NEON kernel which transposes the elements of a matrix </td></tr>
+<tr id="row_0_588_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine.xhtml" target="_self">NEWarpAffine</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml">NEWarpAffineKernel</a> </td></tr>
+<tr id="row_0_589_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_affine_kernel.xhtml" target="_self">NEWarpAffineKernel</a></td><td class="desc">Template interface for the kernel to compute warp affine </td></tr>
+<tr id="row_0_590_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective.xhtml" target="_self">NEWarpPerspective</a></td><td class="desc">Basic function to run <a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml">NEWarpPerspectiveKernel</a> </td></tr>
+<tr id="row_0_591_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_warp_perspective_kernel.xhtml" target="_self">NEWarpPerspectiveKernel</a></td><td class="desc">Template interface for the kernel to compute warp perspective </td></tr>
+<tr id="row_0_592_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_weights_reshape_kernel.xhtml" target="_self">NEWeightsReshapeKernel</a></td><td class="desc">NEON kernel to perform reshaping on the weights used by convolution and locally connected layer </td></tr>
+<tr id="row_0_593_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer.xhtml" target="_self">NEWinogradLayer</a></td><td class="desc">Basic function to simulate a convolution layer </td></tr>
+<tr id="row_0_594_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_batched_g_e_m_m_kernel.xhtml" target="_self">NEWinogradLayerBatchedGEMMKernel</a></td><td class="desc"></td></tr>
+<tr id="row_0_595_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_input_kernel.xhtml" target="_self">NEWinogradLayerTransformInputKernel</a></td><td class="desc"></td></tr>
+<tr id="row_0_596_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_output_kernel.xhtml" target="_self">NEWinogradLayerTransformOutputKernel</a></td><td class="desc"></td></tr>
+<tr id="row_0_597_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_n_e_winograd_layer_transform_weights_kernel.xhtml" target="_self">NEWinogradLayerTransformWeightsKernel</a></td><td class="desc"></td></tr>
+<tr id="row_0_598_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_normalization_layer_info.xhtml" target="_self">NormalizationLayerInfo</a></td><td class="desc">Normalization Layer Information class </td></tr>
+<tr id="row_0_599_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_offset_lifetime_manager.xhtml" target="_self">OffsetLifetimeManager</a></td><td class="desc">Concrete class that tracks the lifetime of registered tensors and calculates the systems memory requirements in terms of a single blob and a list of offsets </td></tr>
+<tr id="row_0_600_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_offset_memory_pool.xhtml" target="_self">OffsetMemoryPool</a></td><td class="desc">Offset based memory pool </td></tr>
+<tr id="row_0_601_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_o_m_p_scheduler.xhtml" target="_self">OMPScheduler</a></td><td class="desc">Pool of threads to automatically split a kernel's execution among several threads </td></tr>
+<tr id="row_0_602_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pad_stride_info.xhtml" target="_self">PadStrideInfo</a></td><td class="desc">Padding and stride information class </td></tr>
+<tr id="row_0_603_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pixel_value.xhtml" target="_self">PixelValue</a></td><td class="desc">Class describing the value of a pixel for any image format </td></tr>
+<tr id="row_0_604_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pooling_layer_info.xhtml" target="_self">PoolingLayerInfo</a></td><td class="desc">Pooling Layer Information class </td></tr>
+<tr id="row_0_605_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pool_manager.xhtml" target="_self">PoolManager</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_memory.xhtml" title="CPU implementation of memory object. ">Memory</a> pool manager </td></tr>
+<tr id="row_0_606_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_program.xhtml" target="_self">Program</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_program.xhtml" title="Program class. ">Program</a> class </td></tr>
+<tr id="row_0_607_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid.xhtml" target="_self">Pyramid</a></td><td class="desc">Basic implementation of the pyramid interface </td></tr>
+<tr id="row_0_608_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_pyramid_info.xhtml" target="_self">PyramidInfo</a></td><td class="desc">Store the <a class="el" href="classarm__compute_1_1_pyramid.xhtml" title="Basic implementation of the pyramid interface. ">Pyramid</a>'s metadata </td></tr>
+<tr id="row_0_609_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_quantization_info.xhtml" target="_self">QuantizationInfo</a></td><td class="desc">Quantization settings (used for QASYMM8 data type) </td></tr>
+<tr id="row_0_610_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_rectangle.xhtml" target="_self">Rectangle</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_rectangle.xhtml" title="Rectangle type. ">Rectangle</a> type </td></tr>
+<tr id="row_0_611_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_r_o_i.xhtml" target="_self">ROI</a></td><td class="desc">Region of interest </td></tr>
+<tr id="row_0_612_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_r_o_i_pooling_layer_info.xhtml" target="_self">ROIPoolingLayerInfo</a></td><td class="desc"><a class="el" href="structarm__compute_1_1_r_o_i.xhtml" title="Region of interest. ">ROI</a> Pooling Layer Information class </td></tr>
+<tr id="row_0_613_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_scheduler.xhtml" target="_self">Scheduler</a></td><td class="desc">Configurable scheduler which supports multiple multithreading APIs and choosing between different schedulers at runtime </td></tr>
+<tr id="row_0_614_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_semaphore.xhtml" target="_self">Semaphore</a></td><td class="desc">Semamphore class </td></tr>
+<tr id="row_0_615_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_single_thread_scheduler.xhtml" target="_self">SingleThreadScheduler</a></td><td class="desc">Pool of threads to automatically split a kernel's execution among several threads </td></tr>
+<tr id="row_0_616_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_size2_d.xhtml" target="_self">Size2D</a></td><td class="desc">Class for specifying the size of an image or rectangle </td></tr>
+<tr id="row_0_617_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_status.xhtml" target="_self">Status</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_status.xhtml" title="Status class. ">Status</a> class </td></tr>
+<tr id="row_0_618_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_steps.xhtml" target="_self">Steps</a></td><td class="desc">Class to describe a number of elements in each dimension </td></tr>
+<tr id="row_0_619_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_strides.xhtml" target="_self">Strides</a></td><td class="desc"><a class="el" href="classarm__compute_1_1_strides.xhtml" title="Strides of an item in bytes. ">Strides</a> of an item in bytes </td></tr>
+<tr id="row_0_620_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_sub_tensor.xhtml" target="_self">SubTensor</a></td><td class="desc">Basic implementation of the sub-tensor interface </td></tr>
+<tr id="row_0_621_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_sub_tensor_info.xhtml" target="_self">SubTensorInfo</a></td><td class="desc">Store the sub tensor's metadata </td></tr>
+<tr id="row_0_622_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor.xhtml" target="_self">Tensor</a></td><td class="desc">Basic implementation of the tensor interface </td></tr>
+<tr id="row_0_623_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_allocator.xhtml" target="_self">TensorAllocator</a></td><td class="desc">Basic implementation of a CPU memory tensor allocator </td></tr>
+<tr id="row_0_624_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_info.xhtml" target="_self">TensorInfo</a></td><td class="desc">Store the tensor's metadata </td></tr>
+<tr id="row_0_625_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_tensor_shape.xhtml" target="_self">TensorShape</a></td><td class="desc">Shape of a tensor </td></tr>
+<tr id="row_0_626_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_thread_info.xhtml" target="_self">ThreadInfo</a></td><td class="desc"></td></tr>
+<tr id="row_0_627_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structarm__compute_1_1_valid_region.xhtml" target="_self">ValidRegion</a></td><td class="desc"></td></tr>
+<tr id="row_0_628_" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_weights_info.xhtml" target="_self">WeightsInfo</a></td><td class="desc">Convolution Layer Weights Information class </td></tr>
+<tr id="row_0_629_" style="display:none;"><td class="entry"><span style="width:16px;display:inline-block;">&#160;</span><span id="arr_0_629_" class="arrow" onclick="toggleFolder('0_629_')">&#9658;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window.xhtml" target="_self">Window</a></td><td class="desc">Describe a multidimensional execution window </td></tr>
+<tr id="row_0_629_0_" style="display:none;"><td class="entry"><span style="width:48px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="classarm__compute_1_1_window_1_1_dimension.xhtml" target="_self">Dimension</a></td><td class="desc">Describe one of the image's dimensions with a start, end and step </td></tr>
 <tr id="row_1_"><td class="entry"><span style="width:0px;display:inline-block;">&#160;</span><span id="arr_1_" class="arrow" onclick="toggleFolder('1_')">&#9658;</span><span class="icona"><span class="icon">N</span></span><a class="el" href="namespacemali__userspace.xhtml" target="_self">mali_userspace</a></td><td class="desc"></td></tr>
 <tr id="row_1_0_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structmali__userspace_1_1_counter_mapping.xhtml" target="_self">CounterMapping</a></td><td class="desc"></td></tr>
 <tr id="row_1_1_" class="even" style="display:none;"><td class="entry"><span style="width:32px;display:inline-block;">&#160;</span><span class="icona"><span class="icon">C</span></span><a class="el" href="structmali__userspace_1_1gpu__props.xhtml" target="_self">gpu_props</a></td><td class="desc"></td></tr>
@@ -1307,7 +1306,7 @@
 <!-- start footer part -->
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
-    <li class="footer">Generated on Thu Feb 22 2018 15:45:28 for Compute Library by
+    <li class="footer">Generated on Fri Mar 2 2018 12:38:01 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
   </ul>