arm_compute v18.03

Change-Id: I8f9a2a9d32a6cab019b8504d313216f28671f9f5
diff --git a/examples/graph_inception_v4.cpp b/examples/graph_inception_v4.cpp
new file mode 100644
index 0000000..f004b41
--- /dev/null
+++ b/examples/graph_inception_v4.cpp
@@ -0,0 +1,736 @@
+/*
+ * Copyright (c) 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#include "arm_compute/graph/Graph.h"
+#include "arm_compute/graph/Nodes.h"
+#include "arm_compute/graph/SubGraph.h"
+#include "support/ToolchainSupport.h"
+#include "utils/GraphUtils.h"
+#include "utils/Utils.h"
+
+#include <cstdlib>
+#include <tuple>
+
+using namespace arm_compute::utils;
+using namespace arm_compute::graph;
+using namespace arm_compute::graph_utils;
+
+/** Example demonstrating how to implement InceptionV4's network using the Compute Library's graph API
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels )
+ */
+class InceptionV4Example final : public Example
+{
+public:
+    void do_setup(int argc, char **argv) override
+    {
+        std::string data_path; /* Path to the trainable data */
+        std::string image;     /* Image data */
+        std::string label;     /* Label data */
+
+        // Create a preprocessor object
+        std::unique_ptr<IPreprocessor> preprocessor = arm_compute::support::cpp14::make_unique<TFPreproccessor>();
+
+        // Set target. 0 (NEON), 1 (OpenCL), 2 (OpenCL with Tuner). By default it is NEON
+        const int  int_target_hint = argc > 1 ? std::strtol(argv[1], nullptr, 10) : 0;
+        TargetHint target_hint     = set_target_hint(int_target_hint);
+
+        // Parse arguments
+        if(argc < 2)
+        {
+            // Print help
+            std::cout << "Usage: " << argv[0] << " [target] [path_to_data] [image] [labels]\n\n";
+            std::cout << "No data folder provided: using random values\n\n";
+        }
+        else if(argc == 2)
+        {
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " [path_to_data] [image] [labels]\n\n";
+            std::cout << "No data folder provided: using random values\n\n";
+        }
+        else if(argc == 3)
+        {
+            data_path = argv[2];
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " [image] [labels]\n\n";
+            std::cout << "No image provided: using random values\n\n";
+        }
+        else if(argc == 4)
+        {
+            data_path = argv[2];
+            image     = argv[3];
+            std::cout << "Usage: " << argv[0] << " " << argv[1] << " " << argv[2] << " " << argv[3] << " [labels]\n\n";
+            std::cout << "No text file with labels provided: skipping output accessor\n\n";
+        }
+        else
+        {
+            data_path = argv[2];
+            image     = argv[3];
+            label     = argv[4];
+        }
+
+        graph << target_hint << Tensor(TensorInfo(TensorShape(299U, 299U, 3U, 1U), 1, DataType::F32),
+                                       get_input_accessor(image, std::move(preprocessor), false))
+
+              // Conv2d_1a_3x3
+              << ConvolutionLayer(3U, 3U, 32U,
+                                  get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_weights.npy"),
+                                  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+              << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                         get_random_accessor(1.f, 1.f),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                         0.001f)
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              // Conv2d_2a_3x3
+              << ConvolutionLayer(3U, 3U, 32U,
+                                  get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_weights.npy"),
+                                  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+              << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_moving_mean.npy"),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_moving_variance.npy"),
+                                         get_random_accessor(1.f, 1.f),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2a_3x3_BatchNorm_beta.npy"),
+                                         0.001f)
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+              // Conv2d_2b_3x3
+              << ConvolutionLayer(3U, 3U, 64U,
+                                  get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_weights.npy"),
+                                  std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
+              << BatchNormalizationLayer(get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_moving_mean.npy"),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_moving_variance.npy"),
+                                         get_random_accessor(1.f, 1.f),
+                                         get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Conv2d_2b_3x3_BatchNorm_beta.npy"),
+                                         0.001f)
+              << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+
+              << get_mixed_3a(data_path)
+              << get_mixed_4a(data_path)
+              << get_mixed_5a(data_path)
+              // 4 inception A blocks
+              << get_inceptionA_block(data_path, "Mixed_5b")
+              << get_inceptionA_block(data_path, "Mixed_5c")
+              << get_inceptionA_block(data_path, "Mixed_5d")
+              << get_inceptionA_block(data_path, "Mixed_5e")
+              // reduction A block
+              << get_reductionA_block(data_path)
+              // 7 inception B blocks
+              << get_inceptionB_block(data_path, "Mixed_6b")
+              << get_inceptionB_block(data_path, "Mixed_6c")
+              << get_inceptionB_block(data_path, "Mixed_6d")
+              << get_inceptionB_block(data_path, "Mixed_6e")
+              << get_inceptionB_block(data_path, "Mixed_6f")
+              << get_inceptionB_block(data_path, "Mixed_6g")
+              << get_inceptionB_block(data_path, "Mixed_6h")
+              // reduction B block
+              << get_reductionB_block(data_path)
+              // 3 inception C blocks
+              << get_inceptionC_block(data_path, "Mixed_7b")
+              << get_inceptionC_block(data_path, "Mixed_7c")
+              << get_inceptionC_block(data_path, "Mixed_7d")
+              << PoolingLayer(PoolingLayerInfo(PoolingType::AVG))
+              << FlattenLayer()
+              << FullyConnectedLayer(
+                  1001U,
+                  get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Logits_Logits_weights.npy"),
+                  get_weights_accessor(data_path, "/cnn_data/inceptionv4_model/Logits_Logits_biases.npy"))
+              << SoftmaxLayer()
+              << Tensor(get_output_accessor(label, 5));
+
+        // In order to enable the OpenCL tuner, graph_init() has to be called only when all nodes have been instantiated
+        graph.graph_init(int_target_hint == 2);
+    }
+
+    void do_run() override
+    {
+        graph.run();
+    }
+
+private:
+    Graph graph{};
+
+private:
+    BranchLayer get_mixed_3a(const std::string &data_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/Mixed_3a_";
+
+        SubGraph i_a;
+        i_a << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true))
+            // TODO (geopin01) : Remove once we understand why a single node graph does not run in CL
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b));
+    }
+
+    BranchLayer get_mixed_4a(const std::string &data_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/Mixed_4a_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(1U, 1U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(1U, 1U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(7U, 1U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(1U, 7U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b));
+    }
+
+    BranchLayer get_mixed_5a(const std::string &data_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/Mixed_5a_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(3U, 3U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true))
+            // TODO (geopin01) : Remove once we understand why a single node graph does not run in CL
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b));
+    }
+
+    BranchLayer get_inceptionA_block(const std::string &data_path, std::string &&param_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(1U, 1U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(1U, 1U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c;
+        i_c << ConvolutionLayer(1U, 1U, 64U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_d;
+        i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true))
+            << ConvolutionLayer(1U, 1U, 96U,
+                                get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
+    }
+
+    BranchLayer get_reductionA_block(const std::string &data_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/Mixed_6a_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(3U, 3U, 384U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(1U, 1U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 224U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 1, 1))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c;
+        i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true))
+            // TODO (geopin01) : Remove once we understand why a single node graph does not run in CL
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f));
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c));
+    }
+
+    BranchLayer get_inceptionB_block(const std::string &data_path, std::string &&param_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(1U, 1U, 384U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(1U, 1U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(7U, 1U, 224U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(1U, 7U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c;
+        i_c << ConvolutionLayer(1U, 1U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(1U, 7U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_7x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(7U, 1U, 224U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x7_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(1U, 7U, 224U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_7x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(7U, 1U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_1x7_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_d;
+        i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true))
+            << ConvolutionLayer(1U, 1U, 128U,
+                                get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
+    }
+
+    BranchLayer get_reductionB_block(const std::string &data_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/Mixed_7a_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(1U, 1U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 192U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(1U, 1U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(7U, 1U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 3, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x7_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(1U, 7U, 320U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 3))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_7x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(3U, 3U, 320U,
+                                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(2, 2, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_1a_3x3_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c;
+        i_c << PoolingLayer(PoolingLayerInfo(PoolingType::MAX, 3, PadStrideInfo(2, 2, 0, 0, DimensionRoundingType::CEIL), true))
+            // TODO (geopin01) : Remove once we understand why a single node graph does not run in CL
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::LINEAR, 1.f, 0.f));
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c));
+    }
+
+    BranchLayer get_inceptionC_block(const std::string &data_path, std::string &&param_path)
+    {
+        std::string total_path = "/cnn_data/inceptionv4_model/" + param_path + "_";
+
+        SubGraph i_a;
+        i_a << ConvolutionLayer(1U, 1U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_0_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b1;
+        i_b1 << ConvolutionLayer(
+                 3U, 1U, 256U,
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_weights.npy"),
+                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                 PadStrideInfo(1, 1, 1, 0))
+             << BatchNormalizationLayer(
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_mean.npy"),
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_moving_variance.npy"),
+                 get_random_accessor(1.f, 1.f),
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0b_1x3_BatchNorm_beta.npy"),
+                 0.001f)
+             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b2;
+        i_b2 << ConvolutionLayer(
+                 1U, 3U, 256U,
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_weights.npy"),
+                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                 PadStrideInfo(1, 1, 0, 1))
+             << BatchNormalizationLayer(
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_mean.npy"),
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_moving_variance.npy"),
+                 get_random_accessor(1.f, 1.f),
+                 get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0c_3x1_BatchNorm_beta.npy"),
+                 0.001f)
+             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_b;
+        i_b << ConvolutionLayer(
+                1U, 1U, 384U,
+                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_weights.npy"),
+                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(
+                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                get_random_accessor(1.f, 1.f),
+                get_weights_accessor(data_path, total_path + "Branch_1_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_b1), std::move(i_b2));
+
+        SubGraph i_c1;
+        i_c1 << ConvolutionLayer(
+                 3U, 1U, 256U,
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_weights.npy"),
+                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                 PadStrideInfo(1, 1, 1, 0))
+             << BatchNormalizationLayer(
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_moving_mean.npy"),
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_moving_variance.npy"),
+                 get_random_accessor(1.f, 1.f),
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0d_1x3_BatchNorm_beta.npy"),
+                 0.001f)
+             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c2;
+        i_c2 << ConvolutionLayer(
+                 1U, 3U, 256U,
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_weights.npy"),
+                 std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                 PadStrideInfo(1, 1, 0, 1))
+             << BatchNormalizationLayer(
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_moving_mean.npy"),
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_moving_variance.npy"),
+                 get_random_accessor(1.f, 1.f),
+                 get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0e_3x1_BatchNorm_beta.npy"),
+                 0.001f)
+             << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        SubGraph i_c;
+        i_c << ConvolutionLayer(
+                1U, 1U, 384U,
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_weights.npy"),
+                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_mean.npy"),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_moving_variance.npy"),
+                get_random_accessor(1.f, 1.f),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0a_1x1_BatchNorm_beta.npy"),
+                0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(
+                1U, 3U, 448U,
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_weights.npy"),
+                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                PadStrideInfo(1, 1, 0, 1))
+            << BatchNormalizationLayer(
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_moving_mean.npy"),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_moving_variance.npy"),
+                get_random_accessor(1.f, 1.f),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0b_3x1_BatchNorm_beta.npy"),
+                0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << ConvolutionLayer(
+                3U, 1U, 512U,
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_weights.npy"),
+                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr),
+                PadStrideInfo(1, 1, 1, 0))
+            << BatchNormalizationLayer(
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_mean.npy"),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_moving_variance.npy"),
+                get_random_accessor(1.f, 1.f),
+                get_weights_accessor(data_path, total_path + "Branch_2_Conv2d_0c_1x3_BatchNorm_beta.npy"),
+                0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU))
+            << BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_c1), std::move(i_c2));
+
+        SubGraph i_d;
+        i_d << PoolingLayer(PoolingLayerInfo(PoolingType::AVG, 3, PadStrideInfo(1, 1, 1, 1, DimensionRoundingType::CEIL), true))
+            << ConvolutionLayer(1U, 1U, 256U,
+                                get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_weights.npy"),
+                                std::unique_ptr<arm_compute::graph::ITensorAccessor>(nullptr), PadStrideInfo(1, 1, 0, 0))
+            << BatchNormalizationLayer(get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_mean.npy"),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_moving_variance.npy"),
+                                       get_random_accessor(1.f, 1.f),
+                                       get_weights_accessor(data_path, total_path + "Branch_3_Conv2d_0b_1x1_BatchNorm_beta.npy"),
+                                       0.001f)
+            << ActivationLayer(ActivationLayerInfo(ActivationLayerInfo::ActivationFunction::RELU));
+
+        return BranchLayer(BranchMergeMethod::DEPTH_CONCATENATE, std::move(i_a), std::move(i_b), std::move(i_c), std::move(i_d));
+    }
+};
+
+/** Main program for Inception V4
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments ( [optional] Target (0 = NEON, 1 = OpenCL, 2 = OpenCL with Tuner), [optional] Path to the weights folder, [optional] image, [optional] labels )
+ */
+int main(int argc, char **argv)
+{
+    return arm_compute::utils::run_example<InceptionV4Example>(argc, argv);
+}