arm_compute v17.06
diff --git a/src/runtime/NEON/functions/NEConvolutionLayer.cpp b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
index aae4a67..bd688cf 100644
--- a/src/runtime/NEON/functions/NEConvolutionLayer.cpp
+++ b/src/runtime/NEON/functions/NEConvolutionLayer.cpp
@@ -33,33 +33,93 @@
 
 using namespace arm_compute;
 
-NEConvolutionLayer::NEConvolutionLayer()
-    : _input_im2col_kernel(), _input_interleave_kernel(), _weights_reshape_kernel(), _weights_transposed_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(),
-      _input_interleaved_reshaped(), _weights_reshaped(), _weights_transposed(), _gemm_output(), _is_first_run(false), _has_bias(false)
+NEConvolutionLayerReshapeWeights::NEConvolutionLayerReshapeWeights()
+    : _weights_reshape_kernel(), _weights_transposed_kernel(), _weights_reshaped(), _transpose1xW(false)
 {
 }
 
-void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info)
+void NEConvolutionLayerReshapeWeights::configure(const ITensor *weights, const ITensor *biases, ITensor *output, bool transpose1xW)
 {
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
-    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
-    ARM_COMPUTE_ERROR_ON(weights->info()->dimension(2) != input->info()->dimension(2));
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, output);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, output);
     ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
 
     if(biases != nullptr)
     {
-        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::F32);
-        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
+        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::QS8, DataType::F32);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(weights, biases);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(weights, biases);
         ARM_COMPUTE_ERROR_ON(biases->info()->dimension(0) != weights->info()->dimension(3));
         ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
     }
 
-    _has_bias     = (biases != nullptr);
-    _is_first_run = true;
+    // Check if bias are present, if yes they will be embedded to the weights matrix
+    const bool _has_bias = (biases != nullptr);
 
-    // Get parameters for conv_info
+    _transpose1xW = transpose1xW;
+
+    if(transpose1xW)
+    {
+        // Create tensor to store the reshaped weights
+        const unsigned int mat_weights_cols = weights->info()->dimension(3);
+        const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
+        TensorShape        shape_wr(mat_weights_cols, mat_weights_rows);
+        TensorInfo         info_wr(shape_wr, 1, weights->info()->data_type(), weights->info()->fixed_point_position());
+
+        _weights_reshaped.allocator()->init(info_wr);
+        _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
+        _weights_transposed_kernel.configure(&_weights_reshaped, output);
+        _weights_reshaped.allocator()->allocate();
+    }
+    else
+    {
+        _weights_reshape_kernel.configure(weights, biases, output);
+    }
+}
+
+void NEConvolutionLayerReshapeWeights::run()
+{
+    NEScheduler::get().schedule(&_weights_reshape_kernel, 3);
+    if(_transpose1xW)
+    {
+        NEScheduler::get().schedule(&_weights_transposed_kernel, Window::DimY);
+    }
+}
+
+NEConvolutionLayer::NEConvolutionLayer()
+    : _input_im2col_kernel(), _input_interleave_kernel(), _reshape_weights(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(), _input_interleaved_reshaped(), _weights_reshaped(),
+      _gemm_output(), _has_bias(false), _is_fully_connected_convolution(false), _are_weights_reshaped(false)
+{
+}
+
+void NEConvolutionLayer::configure(const ITensor *input, const ITensor *weights, const ITensor *biases, ITensor *output, const PadStrideInfo &conv_info, const WeightsInfo &weights_info)
+{
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QS8, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(weights, 1, DataType::QS8, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::QS8, DataType::F32);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights, output);
+    ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, weights, output);
+    ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && weights->info()->dimension(2) != input->info()->dimension(2));
+    ARM_COMPUTE_ERROR_ON(weights->info()->num_dimensions() > 4);
+
+    if(biases != nullptr)
+    {
+        ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(biases, 1, DataType::QS8, DataType::F32);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, biases);
+        ARM_COMPUTE_ERROR_ON_MISMATCHING_FIXED_POINT(input, biases);
+        ARM_COMPUTE_ERROR_ON(!weights_info.are_reshaped() && biases->info()->dimension(0) != weights->info()->dimension(3));
+        ARM_COMPUTE_ERROR_ON(biases->info()->num_dimensions() > 1);
+    }
+
+    const DataType dt                   = input->info()->data_type();
+    const int      fixed_point_position = input->info()->fixed_point_position();
+
+    _has_bias             = (biases != nullptr);
+    _are_weights_reshaped = weights_info.are_reshaped();
+
+    // Get parameters from conv_info
     unsigned int stride_x = 0;
     unsigned int stride_y = 0;
     unsigned int pad_x    = 0;
@@ -70,21 +130,46 @@
     // Get convolved dimensions
     unsigned int conv_w = 0;
     unsigned int conv_h = 0;
-    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights->info()->dimension(0),
+
+    const unsigned int kernel_width = (_are_weights_reshaped) ? weights_info.kernel_size() : weights->info()->dimension(0);
+    std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width,
                                                  stride_x, stride_y, pad_x, pad_y, conv_info.round());
     ARM_COMPUTE_ERROR_ON_MSG((output->info()->dimension(0) != conv_w) || (output->info()->dimension(1) != conv_h), "Output shape does not match the expected one");
 
-    // Create tensor to store the reshaped weights
-    const unsigned int mat_weights_cols = weights->info()->dimension(3);
-    const unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
-    TensorShape        shape_wr(mat_weights_cols, mat_weights_rows);
-    TensorInfo         info_wr(shape_wr, 1, weights->info()->data_type());
-    _weights_reshaped.allocator()->init(info_wr);
+    // Check if its a "fully connected" convolution
+    _is_fully_connected_convolution = ((conv_w == 1) && (conv_h == 1));
 
-    // Create tensor to store transposed weights
-    TensorShape shape_wt(mat_weights_rows * 4, static_cast<unsigned int>(std::ceil(mat_weights_cols / 4.f)));
-    TensorInfo  info_wt(shape_wt, 1, weights->info()->data_type());
-    _weights_transposed.allocator()->init(info_wt);
+    unsigned int mat_weights_cols = weights->info()->dimension(3);
+    unsigned int mat_weights_rows = weights->info()->dimension(0) * weights->info()->dimension(1) * weights->info()->dimension(2) + (_has_bias ? 1 : 0);
+
+    // Reshape weights if needed
+    if(_are_weights_reshaped)
+    {
+        mat_weights_cols                         = output->info()->dimension(2);
+        const unsigned int quarter_reshaped_cols = weights->info()->dimension(0) / 4;
+        mat_weights_rows                         = (_has_bias ? 1 + quarter_reshaped_cols : quarter_reshaped_cols);
+    }
+    else
+    {
+        if(_is_fully_connected_convolution)
+        {
+            // Create tensor to store the reshaped weights
+            TensorShape shape_wr(mat_weights_cols, mat_weights_rows);
+            TensorInfo  info_wr(shape_wr, 1, dt, fixed_point_position);
+            _weights_reshaped.allocator()->init(info_wr);
+            _reshape_weights.configure(weights, biases, &_weights_reshaped, false /* 1xW transpose */);
+        }
+        else
+        {
+            // Create tensor to store transposed weights
+            const float transpose_width = 16.0f / input->info()->element_size();
+            TensorShape shape_wt(mat_weights_rows * static_cast<unsigned int>(transpose_width), static_cast<unsigned int>(std::ceil(mat_weights_cols / transpose_width)));
+            TensorInfo  info_wt(shape_wt, 1, dt, fixed_point_position);
+            _weights_reshaped.allocator()->init(info_wt);
+            _reshape_weights.configure(weights, biases, &_weights_reshaped, true /* 1xW transpose */);
+        }
+        weights = &_weights_reshaped;
+    }
 
     // Create tensor to store im2col reshaped inputs
     const unsigned int mat_input_cols = mat_weights_rows;
@@ -93,58 +178,69 @@
     shape_im2col.set(0, mat_input_cols);
     shape_im2col.set(1, mat_input_rows);
     shape_im2col.set(2, 1);
-    TensorInfo info_im2col(shape_im2col, 1, input->info()->data_type());
-    _input_im2col_reshaped.allocator()->init(info_im2col);
+    _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, dt, fixed_point_position));
 
-    // Create tensor to prepare input tensor for GEMM
-    TensorShape shape_interleaved = shape_im2col;
-    shape_interleaved.set(0, shape_interleaved.x() * 4);
-    shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
-    TensorInfo info_interleaved(shape_interleaved, 1, input->info()->data_type());
-    _input_interleaved_reshaped.allocator()->init(info_interleaved);
+    // Create tensor (interleave) to prepare input tensor for GEMM
+    if(!_is_fully_connected_convolution)
+    {
+        TensorShape shape_interleaved = shape_im2col;
+        shape_interleaved.set(0, shape_interleaved.x() * 4);
+        shape_interleaved.set(1, std::ceil(shape_interleaved.y() / 4.f));
+        _input_interleaved_reshaped.allocator()->init(TensorInfo(shape_interleaved, 1, dt, fixed_point_position));
+    }
 
     // Create GEMM output tensor
     TensorShape shape_gemm = _input_im2col_reshaped.info()->tensor_shape();
     shape_gemm.set(0, mat_weights_cols);
     shape_gemm.set(1, mat_input_rows);
-    TensorInfo info_gemm(shape_gemm, 1, input->info()->data_type());
-    _gemm_output.allocator()->init(info_gemm);
+    _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, dt, fixed_point_position));
 
     // Configure kernels
     _input_im2col_kernel.configure(input, &_input_im2col_reshaped, std::make_pair(conv_w, conv_h), conv_info, _has_bias);
-    _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
-    _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
-    _weights_transposed_kernel.configure(&_weights_reshaped, &_weights_transposed);
-    _mm_kernel.configure(&_input_interleaved_reshaped, &_weights_transposed, &_gemm_output, 1.0f);
+    if(_is_fully_connected_convolution)
+    {
+        _mm_kernel.configure(&_input_im2col_reshaped, weights, &_gemm_output, 1.0f);
+    }
+    else
+    {
+        _input_interleave_kernel.configure(&_input_im2col_reshaped, &_input_interleaved_reshaped);
+        _mm_kernel.configure(&_input_interleaved_reshaped, weights, &_gemm_output, 1.0f);
+    }
     _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
 
-    // Allocate the tensors once the all configure methods have been called
-    _weights_reshaped.allocator()->allocate();
-    _weights_transposed.allocator()->allocate();
+    // Allocate intermediate tensor
+    if(!_are_weights_reshaped)
+    {
+        _weights_reshaped.allocator()->allocate();
+    }
     _input_im2col_reshaped.allocator()->allocate();
-    _input_interleaved_reshaped.allocator()->allocate();
+    if(!_is_fully_connected_convolution)
+    {
+        _input_interleaved_reshaped.allocator()->allocate();
+    }
     _gemm_output.allocator()->allocate();
 }
 
 void NEConvolutionLayer::run()
 {
     // Run weights reshaping (Runs once for every configure)
-    if(_is_first_run)
+    if(!_are_weights_reshaped)
     {
-        _is_first_run = false;
-        NEScheduler::get().multithread(&_weights_reshape_kernel, 3);
-        NEScheduler::get().multithread(&_weights_transposed_kernel);
+        _are_weights_reshaped = true;
+        _reshape_weights.run();
     }
 
     // Run input reshaping
-    NEScheduler::get().multithread(&_input_im2col_kernel);
+    NEScheduler::get().schedule(&_input_im2col_kernel, Window::DimY);
+    if(!_is_fully_connected_convolution)
+    {
+        // Run interleave
+        NEScheduler::get().schedule(&_input_interleave_kernel, Window::DimY);
+    }
 
-    // Run interleave
-    NEScheduler::get().multithread(&_input_interleave_kernel);
-
-    // Runs GEMM on reshaped matrices
-    NEScheduler::get().multithread(&_mm_kernel);
+    // Runs matrix multiply on reshaped matrices
+    NEScheduler::get().schedule(&_mm_kernel, Window::DimY);
 
     // Reshape output matrix
-    NEScheduler::get().multithread(&_output_col2im_kernel);
+    NEScheduler::get().schedule(&_output_col2im_kernel, Window::DimY);
 }