arm_compute v18.01

Change-Id: I9bfa178c2e38bfd5fc812e62aab6760d87748e05
diff --git a/documentation/graph__vgg19_8cpp.xhtml b/documentation/graph__vgg19_8cpp.xhtml
index 7f418f0..d4d3f96 100644
--- a/documentation/graph__vgg19_8cpp.xhtml
+++ b/documentation/graph__vgg19_8cpp.xhtml
@@ -40,7 +40,7 @@
  <tr style="height: 56px;">
   <td style="padding-left: 0.5em;">
    <div id="projectname">Compute Library
-   &#160;<span id="projectnumber">17.12</span>
+   &#160;<span id="projectnumber">18.01</span>
    </div>
   </td>
  </tr>
@@ -130,15 +130,12 @@
 <table class="memberdecls">
 <tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="func-members"></a>
 Functions</h2></td></tr>
-<tr class="memitem:ac84f647fbdaaf283cbbf10a56d84b476"><td class="memItemLeft" align="right" valign="top">void&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="graph__vgg19_8cpp.xhtml#ac84f647fbdaaf283cbbf10a56d84b476">main_graph_vgg19</a> (int argc, const char **argv)</td></tr>
-<tr class="memdesc:ac84f647fbdaaf283cbbf10a56d84b476"><td class="mdescLeft">&#160;</td><td class="mdescRight">Example demonstrating how to implement VGG19's network using the Compute Library's graph API.  <a href="#ac84f647fbdaaf283cbbf10a56d84b476">More...</a><br /></td></tr>
-<tr class="separator:ac84f647fbdaaf283cbbf10a56d84b476"><td class="memSeparator" colspan="2">&#160;</td></tr>
-<tr class="memitem:a217dbf8b442f20279ea00b898af96f52"><td class="memItemLeft" align="right" valign="top">int&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="graph__vgg19_8cpp.xhtml#a217dbf8b442f20279ea00b898af96f52">main</a> (int argc, const char **argv)</td></tr>
-<tr class="memdesc:a217dbf8b442f20279ea00b898af96f52"><td class="mdescLeft">&#160;</td><td class="mdescRight">Main program for VGG19.  <a href="#a217dbf8b442f20279ea00b898af96f52">More...</a><br /></td></tr>
-<tr class="separator:a217dbf8b442f20279ea00b898af96f52"><td class="memSeparator" colspan="2">&#160;</td></tr>
+<tr class="memitem:a3c04138a5bfe5d72780bb7e82a18e627"><td class="memItemLeft" align="right" valign="top">int&#160;</td><td class="memItemRight" valign="bottom"><a class="el" href="graph__vgg19_8cpp.xhtml#a3c04138a5bfe5d72780bb7e82a18e627">main</a> (int argc, char **argv)</td></tr>
+<tr class="memdesc:a3c04138a5bfe5d72780bb7e82a18e627"><td class="mdescLeft">&#160;</td><td class="mdescRight">Main program for VGG19.  <a href="#a3c04138a5bfe5d72780bb7e82a18e627">More...</a><br /></td></tr>
+<tr class="separator:a3c04138a5bfe5d72780bb7e82a18e627"><td class="memSeparator" colspan="2">&#160;</td></tr>
 </table>
 <h2 class="groupheader">Function Documentation</h2>
-<a class="anchor" id="a217dbf8b442f20279ea00b898af96f52"></a>
+<a class="anchor" id="a3c04138a5bfe5d72780bb7e82a18e627"></a>
 <div class="memitem">
 <div class="memproto">
       <table class="memname">
@@ -151,7 +148,7 @@
         <tr>
           <td class="paramkey"></td>
           <td></td>
-          <td class="paramtype">const char **&#160;</td>
+          <td class="paramtype">char **&#160;</td>
           <td class="paramname"><em>argv</em>&#160;</td>
         </tr>
         <tr>
@@ -171,72 +168,8 @@
   </dd>
 </dl>
 
-<p>Definition at line <a class="el" href="graph__vgg19_8cpp_source.xhtml#l00228">228</a> of file <a class="el" href="graph__vgg19_8cpp_source.xhtml">graph_vgg19.cpp</a>.</p>
-
-<p>References <a class="el" href="graph__vgg19_8cpp_source.xhtml#l00040">main_graph_vgg19()</a>, and <a class="el" href="utils_2_utils_8cpp_source.xhtml#l00069">arm_compute::utils::run_example()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00229"></a><span class="lineno">  229</span>&#160;{</div><div class="line"><a name="l00230"></a><span class="lineno">  230</span>&#160;    <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a>(argc, argv, <a class="code" href="graph__vgg19_8cpp.xhtml#ac84f647fbdaaf283cbbf10a56d84b476">main_graph_vgg19</a>);</div><div class="line"><a name="l00231"></a><span class="lineno">  231</span>&#160;}</div><div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a4c9395db2c8b8d0c336656a7b58fca3e"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a></div><div class="ttdeci">int run_example(int argc, const char **argv, example &amp;func)</div><div class="ttdoc">Run an example and handle the potential exceptions it throws. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8cpp_source.xhtml#l00069">Utils.cpp:69</a></div></div>
-<div class="ttc" id="graph__vgg19_8cpp_xhtml_ac84f647fbdaaf283cbbf10a56d84b476"><div class="ttname"><a href="graph__vgg19_8cpp.xhtml#ac84f647fbdaaf283cbbf10a56d84b476">main_graph_vgg19</a></div><div class="ttdeci">void main_graph_vgg19(int argc, const char **argv)</div><div class="ttdoc">Example demonstrating how to implement VGG19&amp;#39;s network using the Compute Library&amp;#39;s graph API...</div><div class="ttdef"><b>Definition:</b> <a href="graph__vgg19_8cpp_source.xhtml#l00040">graph_vgg19.cpp:40</a></div></div>
-</div><!-- fragment -->
-</div>
-</div>
-<a class="anchor" id="ac84f647fbdaaf283cbbf10a56d84b476"></a>
-<div class="memitem">
-<div class="memproto">
-      <table class="memname">
-        <tr>
-          <td class="memname">void main_graph_vgg19 </td>
-          <td>(</td>
-          <td class="paramtype">int&#160;</td>
-          <td class="paramname"><em>argc</em>, </td>
-        </tr>
-        <tr>
-          <td class="paramkey"></td>
-          <td></td>
-          <td class="paramtype">const char **&#160;</td>
-          <td class="paramname"><em>argv</em>&#160;</td>
-        </tr>
-        <tr>
-          <td></td>
-          <td>)</td>
-          <td></td><td></td>
-        </tr>
-      </table>
-</div><div class="memdoc">
-
-<p>Example demonstrating how to implement VGG19's network using the Compute Library's graph API. </p>
-<dl class="params"><dt>Parameters</dt><dd>
-  <table class="params">
-    <tr><td class="paramdir">[in]</td><td class="paramname">argc</td><td>Number of arguments </td></tr>
-    <tr><td class="paramdir">[in]</td><td class="paramname">argv</td><td>Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels ) </td></tr>
-  </table>
-  </dd>
-</dl>
-
-<p>Definition at line <a class="el" href="graph__vgg19_8cpp_source.xhtml#l00040">40</a> of file <a class="el" href="graph__vgg19_8cpp_source.xhtml">graph_vgg19.cpp</a>.</p>
-
-<p>References <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a041485a3394541feee82a34d40249d70">arm_compute::graph::ActivationLayer</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047aa252659b59a03bc61e5ec827ab4448b7">arm_compute::graph::ConvolutionLayer</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2a4c5d06b02c97731aaa976179c62dcf76">arm_compute::graph::DIRECT</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a658061ff1dac70c02116fae6c044da1a">arm_compute::graph::FullyConnectedLayer</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00212">arm_compute::graph_utils::get_input_accessor()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00254">arm_compute::graph_utils::get_output_accessor()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00189">arm_compute::graph_utils::get_weights_accessor()</a>, <a class="el" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">arm_compute::MAX</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047aea068ae5aae640d018c4300bc7619575">arm_compute::graph::PoolingLayer</a>, <a class="el" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::RELU</a>, <a class="el" href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">Graph::run()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00230">arm_compute::graph_utils::set_target_hint()</a>, and <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a4a9567bc4a6c28a527c973010eaf9a25">arm_compute::graph::SoftmaxLayer</a>.</p>
-
-<p>Referenced by <a class="el" href="graph__vgg19_8cpp_source.xhtml#l00228">main()</a>.</p>
-<div class="fragment"><div class="line"><a name="l00041"></a><span class="lineno">   41</span>&#160;{</div><div class="line"><a name="l00042"></a><span class="lineno">   42</span>&#160;    std::string data_path; <span class="comment">/* Path to the trainable data */</span></div><div class="line"><a name="l00043"></a><span class="lineno">   43</span>&#160;    std::string image;     <span class="comment">/* Image data */</span></div><div class="line"><a name="l00044"></a><span class="lineno">   44</span>&#160;    std::string label;     <span class="comment">/* Label data */</span></div><div class="line"><a name="l00045"></a><span class="lineno">   45</span>&#160;</div><div class="line"><a name="l00046"></a><span class="lineno">   46</span>&#160;    constexpr <span class="keywordtype">float</span> mean_r = 123.68f;  <span class="comment">/* Mean value to subtract from red channel */</span></div><div class="line"><a name="l00047"></a><span class="lineno">   47</span>&#160;    constexpr <span class="keywordtype">float</span> mean_g = 116.779f; <span class="comment">/* Mean value to subtract from green channel */</span></div><div class="line"><a name="l00048"></a><span class="lineno">   48</span>&#160;    constexpr <span class="keywordtype">float</span> mean_b = 103.939f; <span class="comment">/* Mean value to subtract from blue channel */</span></div><div class="line"><a name="l00049"></a><span class="lineno">   49</span>&#160;</div><div class="line"><a name="l00050"></a><span class="lineno">   50</span>&#160;    <span class="comment">// Set target. 0 (NEON), 1 (OpenCL). By default it is NEON</span></div><div class="line"><a name="l00051"></a><span class="lineno">   51</span>&#160;    <a class="code" href="namespacearm__compute_1_1graph.xhtml#a8d5e69e9a697c2007e241eb413c9833b">TargetHint</a>            target_hint      = <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a9216738b309b6b230b7ba8bca5ba7477">set_target_hint</a>(argc &gt; 1 ? std::strtol(argv[1], <span class="keyword">nullptr</span>, 10) : 0);</div><div class="line"><a name="l00052"></a><span class="lineno">   52</span>&#160;    <a class="code" href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2">ConvolutionMethodHint</a> convolution_hint = ConvolutionMethodHint::DIRECT;</div><div class="line"><a name="l00053"></a><span class="lineno">   53</span>&#160;</div><div class="line"><a name="l00054"></a><span class="lineno">   54</span>&#160;    <span class="comment">// Parse arguments</span></div><div class="line"><a name="l00055"></a><span class="lineno">   55</span>&#160;    <span class="keywordflow">if</span>(argc &lt; 2)</div><div class="line"><a name="l00056"></a><span class="lineno">   56</span>&#160;    {</div><div class="line"><a name="l00057"></a><span class="lineno">   57</span>&#160;        <span class="comment">// Print help</span></div><div class="line"><a name="l00058"></a><span class="lineno">   58</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; [target] [path_to_data] [image] [labels]\n\n&quot;</span>;</div><div class="line"><a name="l00059"></a><span class="lineno">   59</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;No data folder provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00060"></a><span class="lineno">   60</span>&#160;    }</div><div class="line"><a name="l00061"></a><span class="lineno">   61</span>&#160;    <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 2)</div><div class="line"><a name="l00062"></a><span class="lineno">   62</span>&#160;    {</div><div class="line"><a name="l00063"></a><span class="lineno">   63</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; [path_to_data] [image] [labels]\n\n&quot;</span>;</div><div class="line"><a name="l00064"></a><span class="lineno">   64</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;No data folder provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00065"></a><span class="lineno">   65</span>&#160;    }</div><div class="line"><a name="l00066"></a><span class="lineno">   66</span>&#160;    <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 3)</div><div class="line"><a name="l00067"></a><span class="lineno">   67</span>&#160;    {</div><div class="line"><a name="l00068"></a><span class="lineno">   68</span>&#160;        data_path = argv[2];</div><div class="line"><a name="l00069"></a><span class="lineno">   69</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[2] &lt;&lt; <span class="stringliteral">&quot; [image] [labels]\n\n&quot;</span>;</div><div class="line"><a name="l00070"></a><span class="lineno">   70</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;No image provided: using random values\n\n&quot;</span>;</div><div class="line"><a name="l00071"></a><span class="lineno">   71</span>&#160;    }</div><div class="line"><a name="l00072"></a><span class="lineno">   72</span>&#160;    <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 4)</div><div class="line"><a name="l00073"></a><span class="lineno">   73</span>&#160;    {</div><div class="line"><a name="l00074"></a><span class="lineno">   74</span>&#160;        data_path = argv[2];</div><div class="line"><a name="l00075"></a><span class="lineno">   75</span>&#160;        image     = argv[3];</div><div class="line"><a name="l00076"></a><span class="lineno">   76</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;Usage: &quot;</span> &lt;&lt; argv[0] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[1] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[2] &lt;&lt; <span class="stringliteral">&quot; &quot;</span> &lt;&lt; argv[3] &lt;&lt; <span class="stringliteral">&quot; [labels]\n\n&quot;</span>;</div><div class="line"><a name="l00077"></a><span class="lineno">   77</span>&#160;        std::cout &lt;&lt; <span class="stringliteral">&quot;No text file with labels provided: skipping output accessor\n\n&quot;</span>;</div><div class="line"><a name="l00078"></a><span class="lineno">   78</span>&#160;    }</div><div class="line"><a name="l00079"></a><span class="lineno">   79</span>&#160;    <span class="keywordflow">else</span></div><div class="line"><a name="l00080"></a><span class="lineno">   80</span>&#160;    {</div><div class="line"><a name="l00081"></a><span class="lineno">   81</span>&#160;        data_path = argv[2];</div><div class="line"><a name="l00082"></a><span class="lineno">   82</span>&#160;        image     = argv[3];</div><div class="line"><a name="l00083"></a><span class="lineno">   83</span>&#160;        label     = argv[4];</div><div class="line"><a name="l00084"></a><span class="lineno">   84</span>&#160;    }</div><div class="line"><a name="l00085"></a><span class="lineno">   85</span>&#160;</div><div class="line"><a name="l00086"></a><span class="lineno">   86</span>&#160;    <a class="code" href="classarm__compute_1_1graph_1_1_graph.xhtml">Graph</a> graph;</div><div class="line"><a name="l00087"></a><span class="lineno">   87</span>&#160;</div><div class="line"><a name="l00088"></a><span class="lineno">   88</span>&#160;    graph &lt;&lt; target_hint</div><div class="line"><a name="l00089"></a><span class="lineno">   89</span>&#160;          &lt;&lt; convolution_hint</div><div class="line"><a name="l00090"></a><span class="lineno">   90</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_tensor.xhtml">Tensor</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(224U, 224U, 3U, 1U), 1, DataType::F32),</div><div class="line"><a name="l00091"></a><span class="lineno">   91</span>&#160;                    <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#aedce0421da328fb2aaae190aede068e1">get_input_accessor</a>(image, mean_r, mean_g, mean_b))</div><div class="line"><a name="l00092"></a><span class="lineno">   92</span>&#160;          <span class="comment">// Layer 1</span></div><div class="line"><a name="l00093"></a><span class="lineno">   93</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00094"></a><span class="lineno">   94</span>&#160;              3U, 3U, 64U,</div><div class="line"><a name="l00095"></a><span class="lineno">   95</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv1_1_w.npy&quot;</span>),</div><div class="line"><a name="l00096"></a><span class="lineno">   96</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv1_1_b.npy&quot;</span>),</div><div class="line"><a name="l00097"></a><span class="lineno">   97</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00098"></a><span class="lineno">   98</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00099"></a><span class="lineno">   99</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00100"></a><span class="lineno">  100</span>&#160;              3U, 3U, 64U,</div><div class="line"><a name="l00101"></a><span class="lineno">  101</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv1_2_w.npy&quot;</span>),</div><div class="line"><a name="l00102"></a><span class="lineno">  102</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv1_2_b.npy&quot;</span>),</div><div class="line"><a name="l00103"></a><span class="lineno">  103</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00104"></a><span class="lineno">  104</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00105"></a><span class="lineno">  105</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0)))</div><div class="line"><a name="l00106"></a><span class="lineno">  106</span>&#160;          <span class="comment">// Layer 2</span></div><div class="line"><a name="l00107"></a><span class="lineno">  107</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00108"></a><span class="lineno">  108</span>&#160;              3U, 3U, 128U,</div><div class="line"><a name="l00109"></a><span class="lineno">  109</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv2_1_w.npy&quot;</span>),</div><div class="line"><a name="l00110"></a><span class="lineno">  110</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv2_1_b.npy&quot;</span>),</div><div class="line"><a name="l00111"></a><span class="lineno">  111</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00112"></a><span class="lineno">  112</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00113"></a><span class="lineno">  113</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00114"></a><span class="lineno">  114</span>&#160;              3U, 3U, 128U,</div><div class="line"><a name="l00115"></a><span class="lineno">  115</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv2_2_w.npy&quot;</span>),</div><div class="line"><a name="l00116"></a><span class="lineno">  116</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv2_2_b.npy&quot;</span>),</div><div class="line"><a name="l00117"></a><span class="lineno">  117</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00118"></a><span class="lineno">  118</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00119"></a><span class="lineno">  119</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0)))</div><div class="line"><a name="l00120"></a><span class="lineno">  120</span>&#160;          <span class="comment">// Layer 3</span></div><div class="line"><a name="l00121"></a><span class="lineno">  121</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00122"></a><span class="lineno">  122</span>&#160;              3U, 3U, 256U,</div><div class="line"><a name="l00123"></a><span class="lineno">  123</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_1_w.npy&quot;</span>),</div><div class="line"><a name="l00124"></a><span class="lineno">  124</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_1_b.npy&quot;</span>),</div><div class="line"><a name="l00125"></a><span class="lineno">  125</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00126"></a><span class="lineno">  126</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00127"></a><span class="lineno">  127</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00128"></a><span class="lineno">  128</span>&#160;              3U, 3U, 256U,</div><div class="line"><a name="l00129"></a><span class="lineno">  129</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_2_w.npy&quot;</span>),</div><div class="line"><a name="l00130"></a><span class="lineno">  130</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_2_b.npy&quot;</span>),</div><div class="line"><a name="l00131"></a><span class="lineno">  131</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00132"></a><span class="lineno">  132</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00133"></a><span class="lineno">  133</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00134"></a><span class="lineno">  134</span>&#160;              3U, 3U, 256U,</div><div class="line"><a name="l00135"></a><span class="lineno">  135</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_3_w.npy&quot;</span>),</div><div class="line"><a name="l00136"></a><span class="lineno">  136</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_3_b.npy&quot;</span>),</div><div class="line"><a name="l00137"></a><span class="lineno">  137</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00138"></a><span class="lineno">  138</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00139"></a><span class="lineno">  139</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00140"></a><span class="lineno">  140</span>&#160;              3U, 3U, 256U,</div><div class="line"><a name="l00141"></a><span class="lineno">  141</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_4_w.npy&quot;</span>),</div><div class="line"><a name="l00142"></a><span class="lineno">  142</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv3_4_b.npy&quot;</span>),</div><div class="line"><a name="l00143"></a><span class="lineno">  143</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00144"></a><span class="lineno">  144</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00145"></a><span class="lineno">  145</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0)))</div><div class="line"><a name="l00146"></a><span class="lineno">  146</span>&#160;          <span class="comment">// Layer 4</span></div><div class="line"><a name="l00147"></a><span class="lineno">  147</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00148"></a><span class="lineno">  148</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00149"></a><span class="lineno">  149</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_1_w.npy&quot;</span>),</div><div class="line"><a name="l00150"></a><span class="lineno">  150</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_1_b.npy&quot;</span>),</div><div class="line"><a name="l00151"></a><span class="lineno">  151</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00152"></a><span class="lineno">  152</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00153"></a><span class="lineno">  153</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00154"></a><span class="lineno">  154</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00155"></a><span class="lineno">  155</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_2_w.npy&quot;</span>),</div><div class="line"><a name="l00156"></a><span class="lineno">  156</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_2_b.npy&quot;</span>),</div><div class="line"><a name="l00157"></a><span class="lineno">  157</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00158"></a><span class="lineno">  158</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00159"></a><span class="lineno">  159</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00160"></a><span class="lineno">  160</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00161"></a><span class="lineno">  161</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_3_w.npy&quot;</span>),</div><div class="line"><a name="l00162"></a><span class="lineno">  162</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_3_b.npy&quot;</span>),</div><div class="line"><a name="l00163"></a><span class="lineno">  163</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00164"></a><span class="lineno">  164</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00165"></a><span class="lineno">  165</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00166"></a><span class="lineno">  166</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00167"></a><span class="lineno">  167</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_4_w.npy&quot;</span>),</div><div class="line"><a name="l00168"></a><span class="lineno">  168</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv4_4_b.npy&quot;</span>),</div><div class="line"><a name="l00169"></a><span class="lineno">  169</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00170"></a><span class="lineno">  170</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00171"></a><span class="lineno">  171</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0)))</div><div class="line"><a name="l00172"></a><span class="lineno">  172</span>&#160;          <span class="comment">// Layer 5</span></div><div class="line"><a name="l00173"></a><span class="lineno">  173</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00174"></a><span class="lineno">  174</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00175"></a><span class="lineno">  175</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_1_w.npy&quot;</span>),</div><div class="line"><a name="l00176"></a><span class="lineno">  176</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_1_b.npy&quot;</span>),</div><div class="line"><a name="l00177"></a><span class="lineno">  177</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00178"></a><span class="lineno">  178</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00179"></a><span class="lineno">  179</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00180"></a><span class="lineno">  180</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00181"></a><span class="lineno">  181</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_2_w.npy&quot;</span>),</div><div class="line"><a name="l00182"></a><span class="lineno">  182</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_2_b.npy&quot;</span>),</div><div class="line"><a name="l00183"></a><span class="lineno">  183</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00184"></a><span class="lineno">  184</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00185"></a><span class="lineno">  185</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00186"></a><span class="lineno">  186</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00187"></a><span class="lineno">  187</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_3_w.npy&quot;</span>),</div><div class="line"><a name="l00188"></a><span class="lineno">  188</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_3_b.npy&quot;</span>),</div><div class="line"><a name="l00189"></a><span class="lineno">  189</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00190"></a><span class="lineno">  190</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00191"></a><span class="lineno">  191</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00192"></a><span class="lineno">  192</span>&#160;              3U, 3U, 512U,</div><div class="line"><a name="l00193"></a><span class="lineno">  193</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_4_w.npy&quot;</span>),</div><div class="line"><a name="l00194"></a><span class="lineno">  194</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/conv5_4_b.npy&quot;</span>),</div><div class="line"><a name="l00195"></a><span class="lineno">  195</span>&#160;              <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00196"></a><span class="lineno">  196</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00197"></a><span class="lineno">  197</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 2, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0)))</div><div class="line"><a name="l00198"></a><span class="lineno">  198</span>&#160;          <span class="comment">// Layer 6</span></div><div class="line"><a name="l00199"></a><span class="lineno">  199</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00200"></a><span class="lineno">  200</span>&#160;              4096U,</div><div class="line"><a name="l00201"></a><span class="lineno">  201</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc6_w.npy&quot;</span>),</div><div class="line"><a name="l00202"></a><span class="lineno">  202</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc6_b.npy&quot;</span>))</div><div class="line"><a name="l00203"></a><span class="lineno">  203</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00204"></a><span class="lineno">  204</span>&#160;          <span class="comment">// Layer 7</span></div><div class="line"><a name="l00205"></a><span class="lineno">  205</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00206"></a><span class="lineno">  206</span>&#160;              4096U,</div><div class="line"><a name="l00207"></a><span class="lineno">  207</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc7_w.npy&quot;</span>),</div><div class="line"><a name="l00208"></a><span class="lineno">  208</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc7_b.npy&quot;</span>))</div><div class="line"><a name="l00209"></a><span class="lineno">  209</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00210"></a><span class="lineno">  210</span>&#160;          <span class="comment">// Layer 8</span></div><div class="line"><a name="l00211"></a><span class="lineno">  211</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00212"></a><span class="lineno">  212</span>&#160;              1000U,</div><div class="line"><a name="l00213"></a><span class="lineno">  213</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc8_w.npy&quot;</span>),</div><div class="line"><a name="l00214"></a><span class="lineno">  214</span>&#160;              <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">&quot;/cnn_data/vgg19_model/fc8_b.npy&quot;</span>))</div><div class="line"><a name="l00215"></a><span class="lineno">  215</span>&#160;          <span class="comment">// Softmax</span></div><div class="line"><a name="l00216"></a><span class="lineno">  216</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_softmax_layer.xhtml">SoftmaxLayer</a>()</div><div class="line"><a name="l00217"></a><span class="lineno">  217</span>&#160;          &lt;&lt; <a class="code" href="classarm__compute_1_1graph_1_1_tensor.xhtml">Tensor</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">get_output_accessor</a>(label, 5));</div><div class="line"><a name="l00218"></a><span class="lineno">  218</span>&#160;</div><div class="line"><a name="l00219"></a><span class="lineno">  219</span>&#160;    <span class="comment">// Run graph</span></div><div class="line"><a name="l00220"></a><span class="lineno">  220</span>&#160;    graph.<a class="code" href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">run</a>();</div><div class="line"><a name="l00221"></a><span class="lineno">  221</span>&#160;}</div><div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00038">TensorShape.h:38</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_fully_connected_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">arm_compute::graph::FullyConnectedLayer</a></div><div class="ttdoc">Fully connected layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_fully_connected_layer_8h_source.xhtml#l00038">FullyConnectedLayer.h:38</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_graph_xhtml_a13a43e6d814de94978c515cb084873b1"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">arm_compute::graph::Graph::run</a></div><div class="ttdeci">void run()</div><div class="ttdoc">Executes the graph. </div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_aaf0c8eff756108c8bb23aecf51d44f79"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">arm_compute::graph_utils::get_output_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_output_accessor(const std::string &amp;labels_path, size_t top_n=5, std::ostream &amp;output_stream=std::cout)</div><div class="ttdoc">Generates appropriate output accessor according to the specified labels_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00254">GraphUtils.h:254</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml">arm_compute::ActivationLayerInfo</a></div><div class="ttdoc">Activation Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00650">Types.h:650</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_aedce0421da328fb2aaae190aede068e1"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#aedce0421da328fb2aaae190aede068e1">arm_compute::graph_utils::get_input_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_input_accessor(const std::string &amp;ppm_path, float mean_r, float mean_g, float mean_b)</div><div class="ttdoc">Generates appropriate input accessor according to the specified ppm_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00212">GraphUtils.h:212</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a9216738b309b6b230b7ba8bca5ba7477"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a9216738b309b6b230b7ba8bca5ba7477">arm_compute::graph_utils::set_target_hint</a></div><div class="ttdeci">graph::TargetHint set_target_hint(int target)</div><div class="ttdoc">Utility function to return the TargetHint. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00230">GraphUtils.h:230</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a73a37a4970294106ed22e8f916ef3810"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">arm_compute::graph_utils::get_weights_accessor</a></div><div class="ttdeci">std::unique_ptr&lt; graph::ITensorAccessor &gt; get_weights_accessor(const std::string &amp;path, const std::string &amp;data_file)</div><div class="ttdoc">Generates appropriate weights accessor according to the specified path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00189">GraphUtils.h:189</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph_xhtml_a9a92cf6a83b4d54786334cc37a7391a2"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2">arm_compute::graph::ConvolutionMethodHint</a></div><div class="ttdeci">ConvolutionMethodHint</div><div class="ttdoc">Convolution method hint to the graph executor. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00084">Types.h:84</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_pad_stride_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pad_stride_info.xhtml">arm_compute::PadStrideInfo</a></div><div class="ttdoc">Padding and stride information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00460">Types.h:460</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_softmax_layer.xhtml">arm_compute::graph::SoftmaxLayer</a></div><div class="ttdoc">Softmax layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_softmax_layer_8h_source.xhtml#l00036">SoftmaxLayer.h:36</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_graph_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_graph.xhtml">arm_compute::graph::Graph</a></div><div class="ttdoc">Graph class. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_8h_source.xhtml#l00043">Graph.h:43</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_pooling_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">arm_compute::graph::PoolingLayer</a></div><div class="ttdoc">Pooling layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_pooling_layer_8h_source.xhtml#l00037">PoolingLayer.h:37</a></div></div>
-<div class="ttc" id="namespacearm__compute_1_1graph_xhtml_a8d5e69e9a697c2007e241eb413c9833b"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#a8d5e69e9a697c2007e241eb413c9833b">arm_compute::graph::TargetHint</a></div><div class="ttdeci">TargetHint</div><div class="ttdoc">&lt; Execution hint to the graph executor </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00076">Types.h:76</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&amp;#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00044">TensorInfo.h:44</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">arm_compute::graph::ActivationLayer</a></div><div class="ttdoc">Activation Layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_activation_layer_8h_source.xhtml#l00037">ActivationLayer.h:37</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">arm_compute::graph::ConvolutionLayer</a></div><div class="ttdoc">Convolution layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_convolution_layer_8h_source.xhtml#l00042">ConvolutionLayer.h:42</a></div></div>
-<div class="ttc" id="classarm__compute_1_1_pooling_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pooling_layer_info.xhtml">arm_compute::PoolingLayerInfo</a></div><div class="ttdoc">Pooling Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00553">Types.h:553</a></div></div>
-<div class="ttc" id="classarm__compute_1_1graph_1_1_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_tensor.xhtml">arm_compute::graph::Tensor</a></div><div class="ttdoc">Tensor class. </div><div class="ttdef"><b>Definition:</b> <a href="graph_2_tensor_8h_source.xhtml#l00039">Tensor.h:39</a></div></div>
-</div><!-- fragment -->
+<p>Definition at line <a class="el" href="graph__vgg19_8cpp_source.xhtml#l00236">236</a> of file <a class="el" href="graph__vgg19_8cpp_source.xhtml">graph_vgg19.cpp</a>.</p>
+<div class="fragment"><div class="line"><a name="l00237"></a><span class="lineno">  237</span>&#160;{</div><div class="line"><a name="l00238"></a><span class="lineno">  238</span>&#160;    <span class="keywordflow">return</span> arm_compute::utils::run_example&lt;GraphVGG19Example&gt;(argc, argv);</div><div class="line"><a name="l00239"></a><span class="lineno">  239</span>&#160;}</div></div><!-- fragment -->
 </div>
 </div>
 </div><!-- contents -->
@@ -245,7 +178,7 @@
 <div id="nav-path" class="navpath"><!-- id is needed for treeview function! -->
   <ul>
     <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="graph__vgg19_8cpp.xhtml">graph_vgg19.cpp</a></li>
-    <li class="footer">Generated on Thu Dec 14 2017 23:48:33 for Compute Library by
+    <li class="footer">Generated on Wed Jan 24 2018 14:30:42 for Compute Library by
     <a href="http://www.doxygen.org/index.html">
     <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li>
   </ul>