arm_compute v18.01

Change-Id: I9bfa178c2e38bfd5fc812e62aab6760d87748e05
diff --git a/examples/gc_dc.cpp b/examples/gc_dc.cpp
new file mode 100644
index 0000000..8b6f441
--- /dev/null
+++ b/examples/gc_dc.cpp
@@ -0,0 +1,130 @@
+/*
+ * Copyright (c) 2017, 2018 ARM Limited.
+ *
+ * SPDX-License-Identifier: MIT
+ *
+ * Permission is hereby granted, free of charge, to any person obtaining a copy
+ * of this software and associated documentation files (the "Software"), to
+ * deal in the Software without restriction, including without limitation the
+ * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
+ * sell copies of the Software, and to permit persons to whom the Software is
+ * furnished to do so, subject to the following conditions:
+ *
+ * The above copyright notice and this permission notice shall be included in all
+ * copies or substantial portions of the Software.
+ *
+ * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
+ * SOFTWARE.
+ */
+#ifndef ARM_COMPUTE_GC
+#error "This example needs to be built with -DARM_COMPUTE_GC"
+#endif /* ARM_COMPUTE_GC */
+
+#include "arm_compute/runtime/GLES_COMPUTE/GCFunctions.h"
+#include "arm_compute/runtime/GLES_COMPUTE/GCScheduler.h"
+#include "half/half.hpp"
+#include "utils/Utils.h"
+
+using namespace arm_compute;
+using namespace utils;
+
+class GCDCExample : public Example
+{
+public:
+    void do_setup(int argc, char **argv) override
+    {
+        ARM_COMPUTE_UNUSED(argc);
+        ARM_COMPUTE_UNUSED(argv);
+
+        // init instance
+        GCScheduler::get().default_init();
+
+        const TensorShape  src_shape   = TensorShape{ 11U /* W */, 13U /* H */, 4U /* C */, 3U /* N */ };
+        const unsigned int kernel_size = 3;
+        const int          stride_x    = 1;
+        const int          stride_y    = 1;
+        const int          pad_x       = 0;
+        const int          pad_y       = 0;
+        const unsigned int num_kernels = 256;
+        const DataType     data_type   = DataType::F16;
+
+        // generate shape
+        const TensorShape   weights_shape(kernel_size, kernel_size, src_shape.z(), num_kernels);
+        const TensorShape   bias_shape(num_kernels);
+        const PadStrideInfo pad_info(stride_x, stride_y, pad_x, pad_y, DimensionRoundingType::FLOOR);
+
+        // output shape should be 9*11*256*3 (W*H*C*N)
+        const TensorShape dst_shape = get_output_shape(src_shape, weights_shape, pad_info);
+
+        // create tensors
+        src.allocator()->init(TensorInfo(src_shape, 1, data_type));
+        weights.allocator()->init(TensorInfo(weights_shape, 1, data_type));
+        bias.allocator()->init(TensorInfo(bias_shape, 1, data_type));
+        dst.allocator()->init(TensorInfo(dst_shape, 1, data_type));
+
+        // configure layer
+        conv.configure(&src, &weights, &bias, &dst, pad_info);
+
+        // allocate tensors
+        src.allocator()->allocate();
+        weights.allocator()->allocate();
+        bias.allocator()->allocate();
+        dst.allocator()->allocate();
+
+        // To demonstrate how to fill tensor with some values...
+        src.map();
+        Window window;
+        window.use_tensor_dimensions(src_shape);
+        Iterator it(&src, window);
+        execute_window_loop(window, [&](const Coordinates & id)
+        {
+            *reinterpret_cast<half_float::half *>(it.ptr()) = half_float::half(1.f);
+        });
+        src.unmap();
+    }
+    void do_run() override
+    {
+        // run the layer
+        conv.run();
+    }
+    void do_teardown() override
+    {
+        // check result
+        dst.map();
+        // do something
+        dst.unmap();
+    }
+
+private:
+    GCTensor                 src{}, weights{}, bias{}, dst{};
+    GCDirectConvolutionLayer conv{};
+
+    TensorShape get_output_shape(TensorShape in_shape, TensorShape kernel_shape, const PadStrideInfo &info)
+    {
+        TensorShape out_shape(in_shape);
+        const std::pair<unsigned int, unsigned int> scaled_dims = scaled_dimensions(in_shape.x(),
+                                                                                    in_shape.y(),
+                                                                                    kernel_shape.x(),
+                                                                                    kernel_shape.y(),
+                                                                                    info);
+        out_shape.set(0, scaled_dims.first);
+        out_shape.set(1, scaled_dims.second);
+        out_shape.set(2, kernel_shape[3]);
+        return out_shape;
+    }
+};
+
+/** Main program for directconvolution test
+ *
+ * @param[in] argc Number of arguments
+ * @param[in] argv Arguments
+ */
+int main(int argc, char **argv)
+{
+    return utils::run_example<GCDCExample>(argc, argv);
+}