blob: 02273fe08b3c3004efabafaf80ca57726e05ed83 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolutionLayer.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/PixelValue.h"
28#include "arm_compute/runtime/CL/CLScheduler.h"
29#include "support/ToolchainSupport.h"
30
31using namespace arm_compute;
32
33CLDepthwiseConvolutionLayer3x3::CLDepthwiseConvolutionLayer3x3()
34 : _kernel(), _border_handler()
35{
36}
37
38void CLDepthwiseConvolutionLayer3x3::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info)
39{
40 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F32);
41 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
42
43 _kernel.set_target(CLScheduler::get().target());
44 _kernel.configure(input, weights, biases, output, conv_info);
45
46 // Configure border handler
47 PixelValue &&zero_value(0.f);
48 if(is_data_type_quantized_asymmetric(input->info()->data_type()))
49 {
50 zero_value = PixelValue(static_cast<uint8_t>(input->info()->quantization_info().offset));
51 }
52 _border_handler.configure(input, _kernel.border_size(), BorderMode::CONSTANT, zero_value);
53}
54
55void CLDepthwiseConvolutionLayer3x3::run()
56{
57 CLScheduler::get().enqueue(_border_handler);
58 CLScheduler::get().enqueue(_kernel);
59}
60
61CLDepthwiseConvolutionLayer::CLDepthwiseConvolutionLayer()
62 : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(),
63 _v2mm_output()
64{
65}
66
67void CLDepthwiseConvolutionLayer::configure(ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info)
68{
69 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
70 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
71 ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != weights->info()->dimension(2));
72
73 const size_t weights_w = weights->info()->dimension(0);
74 const size_t weights_h = weights->info()->dimension(1);
75 const size_t weights_z = weights->info()->dimension(2);
76
77 const bool has_bias = (biases != nullptr);
78 const GPUTarget gpu_target = CLScheduler::get().target();
79
80 unsigned int conv_w = 0;
81 unsigned int conv_h = 0;
82 std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights_w, weights_h, conv_info);
83
84 // Set up intermediate tensors
85 const size_t patch_size = weights_w * weights_h + ((has_bias) ? 1 : 0);
86 const size_t conv_size = conv_w * conv_h;
87
88 // Im2Col configuration
89 TensorShape shape_im2col = input->info()->tensor_shape();
90 shape_im2col.set(0, patch_size);
91 shape_im2col.set(1, conv_size);
92 shape_im2col.set(2, weights_z);
93 const TensorInfo info_im2col(shape_im2col, 1, input->info()->data_type(), input->info()->fixed_point_position());
94 _input_reshaped.allocator()->init(info_im2col);
95 _im2col_kernel.set_target(gpu_target);
96 _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info, has_bias);
97
98 // Weights reshape configuration
99 const TensorShape shape_weights_reshape(patch_size, weights_z);
100 const TensorInfo info_weights_reshape(shape_weights_reshape, 1, weights->info()->data_type(), weights->info()->fixed_point_position());
101 _weights_reshaped.allocator()->init(info_weights_reshape);
102 _weights_reshape_kernel.configure(weights, &_weights_reshaped, biases);
103
104 // GEMV configuration
105 TensorShape shape_v2mm_out = input->info()->tensor_shape();
106 shape_v2mm_out.set(0, conv_size * weights_z);
107 shape_v2mm_out.set(1, 1);
108 shape_v2mm_out.set(2, 1);
109 const TensorInfo info_v2mm_out(shape_v2mm_out, 1, input->info()->data_type(), input->info()->fixed_point_position());
110 _v2mm_output.allocator()->init(info_v2mm_out);
111 _v2mm_kernel.set_target(gpu_target);
112 _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
113 _vector_to_tensor_kernel.configure(&_v2mm_output, output, conv_w, conv_h);
114
115 BorderSize border_size = _v2mm_kernel.border_size();
116 _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, PixelValue(0));
117
118 border_size.bottom = 0;
119 _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, PixelValue(0));
120
121 // Allocate intermediate tensors
122 _input_reshaped.allocator()->allocate();
123 _weights_reshaped.allocator()->allocate();
124 _v2mm_output.allocator()->allocate();
125}
126
127void CLDepthwiseConvolutionLayer::run()
128{
129 CLScheduler::get().enqueue(_im2col_kernel);
130
131 CLScheduler::get().enqueue(_weights_reshape_kernel);
132
133 CLScheduler::get().enqueue(_v2mm_input_fill_border);
134 CLScheduler::get().enqueue(_v2mm_weights_fill_border);
135 CLScheduler::get().enqueue(_v2mm_kernel);
136
137 CLScheduler::get().enqueue(_vector_to_tensor_kernel);
138}