blob: 6ca347f1d462cef3fe88cd735629cc751e21b97c [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbierf45d5a92018-01-24 16:23:15 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "DepthwiseConvolutionLayer.h"
25
26#include "ConvolutionLayer.h"
27#include "Utils.h"
28
29#include "tests/validation/FixedPoint.h"
30#include "tests/validation/Helpers.h"
31#include "tests/validation/reference/Utils.h"
32#include "tests/validation/reference/UtilsQuantizedAsymm.h"
33
34#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
35
36namespace arm_compute
37{
38namespace test
39{
40namespace validation
41{
42namespace reference
43{
44/** Perform a depthwise convolution
45 *
46 * - Three dimensions tensors
47 * - Third dimention is number of channels
48 * - Depths of input tensor and filter are equals
49 * - Padding, stride and output shape "match"
50 *
51 */
52template <typename T, typename TB>
53SimpleTensor<T> depthwise_convolution(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info)
54{
55 // Create reference
56 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1, src.fixed_point_position() };
57
58 // Compute reference
59 const int filter_width = weights.shape().x();
60 const int filter_height = weights.shape().y();
61 const int filter_plane = filter_width * filter_height;
62 const int input_width = src.shape().x();
63 const int input_height = src.shape().y();
64 const int input_depth = src.shape().z();
65 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
66
67 const int filter_half_width = filter_width / 2;
68 const int filter_half_height = filter_height / 2;
69
70 const int pad_left = std::min(static_cast<int>(conv_info.pad_left()), filter_half_width);
71 const int pad_top = std::min(static_cast<int>(conv_info.pad_top()), filter_half_height);
72 const int pad_right = std::min(static_cast<int>(conv_info.pad_right()), filter_half_width);
73 const int pad_bottom = std::min(static_cast<int>(conv_info.pad_bottom()), filter_half_height);
74
75 const int minimum_x = -pad_left + filter_half_width;
76 const int minimum_y = -pad_top + filter_half_height;
77 const int maximum_x = input_width + pad_left - filter_half_width + pad_right - filter_half_width;
78 const int maximum_y = input_height + pad_top - filter_half_height + pad_bottom - filter_half_height;
79
80 int out_pos = 0;
81 for(int r = 0; r < num_batches; ++r)
82 {
83 for(int z = 0; z < input_depth; ++z)
84 {
85 for(int y = minimum_y; y < minimum_y + maximum_y; y += conv_info.stride().second)
86 {
87 for(int x = minimum_x; x < minimum_x + maximum_x; x += conv_info.stride().first)
88 {
89 Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
90 size_t filter_offset = filter_plane * z;
91
Anthony Barbierf45d5a92018-01-24 16:23:15 +000092 T val(0);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000093 for(int j = y - filter_half_height; j <= static_cast<int>(y + filter_half_height); ++j)
94 {
95 for(int i = x - filter_half_width; i <= static_cast<int>(x + filter_half_width); ++i)
96 {
97 coords.set(0, i);
98 coords.set(1, j);
Anthony Barbierf45d5a92018-01-24 16:23:15 +000099 T border_value(0);
100 val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000101 ++filter_offset;
102 }
103 }
104 coords.set(0, x);
105 coords.set(1, y);
106 dst[out_pos++] = saturate_cast<T>(val + *static_cast<const TB *>(biases(Coordinates(z))));
107 }
108 }
109 }
110 }
111
112 return dst;
113}
114
115template <>
116SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
117 const PadStrideInfo &conv_info)
118{
119 // Create reference
120 SimpleTensor<uint8_t> dst{ dst_shape, src.data_type(), 1, src.fixed_point_position(), src.quantization_info() };
121
122 const int input_offset = -src.quantization_info().offset;
123 const float input_scale = src.quantization_info().scale;
124 const int weights_offset = -weights.quantization_info().offset;
125 const float weights_scale = weights.quantization_info().scale;
126 const int output_offset = dst.quantization_info().offset;
127 const float output_scale = dst.quantization_info().scale;
128
129 int output_multiplier;
130 int output_shift;
131 const float multiplier = input_scale * weights_scale / output_scale;
132 arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
133
134 // Compute reference
135 const int filter_width = weights.shape().x();
136 const int filter_height = weights.shape().y();
137 const int filter_plane = filter_width * filter_height;
138 const int input_width = src.shape().x();
139 const int input_height = src.shape().y();
140 const int input_depth = src.shape().z();
141 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
142
143 const int filter_half_size = filter_width / 2;
144 const int pad_x = std::min(filter_half_size, static_cast<int>(conv_info.pad().first));
145 const int pad_y = std::min(filter_half_size, static_cast<int>(conv_info.pad().second));
146 const int minimum_x = -pad_x + filter_half_size;
147 const int minimum_y = -pad_y + filter_half_size;
148
149 int out_pos = 0;
150 for(int r = 0; r < num_batches; ++r)
151 {
152 for(int z = 0; z < input_depth; ++z)
153 {
154 int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(z)));
155 for(int y = minimum_y; y < input_height + pad_y - filter_half_size; y += conv_info.stride().second)
156 {
157 for(int x = minimum_x; x < input_width + pad_x - filter_half_size; x += conv_info.stride().first)
158 {
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000159 Coordinates coords(x, y, z, r);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000160 int filter_offset = filter_plane * z;
161
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000162 int32_t val = 0;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000163 for(int j = y - filter_half_size; j <= (y + filter_half_size); ++j)
164 {
165 for(int i = x - filter_half_size; i <= (x + filter_half_size); ++i)
166 {
167 coords.set(0, i);
168 coords.set(1, j);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000169 auto in_val = tensor_elem_at<uint8_t>(src, coords, BorderMode::CONSTANT, -input_offset);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000170 uint8_t w_val = *(weights.data() + filter_offset);
171 val += (in_val + input_offset) * (w_val + weights_offset);
172 ++filter_offset;
173 }
174 }
175 val += bias_val;
176 val = asymm_rounding_divide_by_pow2(asymm_int_mult(val, output_multiplier), output_shift);
177 val += output_offset;
178 val = std::max<int32_t>(val, 0);
179 val = std::min<int32_t>(val, 255);
180
181 // Store the result
182 dst[out_pos++] = val;
183 }
184 }
185 }
186 }
187
188 return dst;
189}
190
191template SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
192 const PadStrideInfo &conv_info);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000193
194template SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
195 const PadStrideInfo &conv_info);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000196} // namespace reference
197} // namespace validation
198} // namespace test
199} // namespace arm_compute