blob: 608093d38135e0dd6e8ad8eb98fa688917d1efa0 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Jenkins4ba87db2019-05-23 17:11:51 +01002 * Copyright (c) 2017-2019 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "DepthwiseConvolutionLayer.h"
25
26#include "ConvolutionLayer.h"
27#include "Utils.h"
28
Anthony Barbier8140e1e2017-12-14 23:48:46 +000029#include "tests/validation/Helpers.h"
30#include "tests/validation/reference/Utils.h"
31#include "tests/validation/reference/UtilsQuantizedAsymm.h"
32
33#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
34
35namespace arm_compute
36{
37namespace test
38{
39namespace validation
40{
41namespace reference
42{
Jenkins0e205f72019-11-28 16:53:35 +000043namespace
44{
45/** Perform a depthwise convolution for floating-point types
Anthony Barbier8140e1e2017-12-14 23:48:46 +000046 *
47 * - Three dimensions tensors
48 * - Third dimention is number of channels
49 * - Depths of input tensor and filter are equals
50 * - Padding, stride and output shape "match"
51 *
52 */
Jenkins0e205f72019-11-28 16:53:35 +000053template <typename T>
54SimpleTensor<T> depthwise_convolution_fp(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<T> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info,
55 unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000056{
Jenkins4ba87db2019-05-23 17:11:51 +010057 ARM_COMPUTE_UNUSED(out_quant_info);
58
Jenkins52ba29e2018-08-29 15:32:11 +000059 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1 };
Anthony Barbier8140e1e2017-12-14 23:48:46 +000060
61 // Compute reference
62 const int filter_width = weights.shape().x();
63 const int filter_height = weights.shape().y();
64 const int filter_plane = filter_width * filter_height;
65 const int input_width = src.shape().x();
66 const int input_height = src.shape().y();
67 const int input_depth = src.shape().z();
68 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
69
Anthony Barbier06ea0482018-02-22 15:45:35 +000070 const int pad_left = conv_info.pad_left();
71 const int pad_top = conv_info.pad_top();
72 const int pad_right = conv_info.pad_right();
73 const int pad_bottom = conv_info.pad_bottom();
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
Jenkins4ba87db2019-05-23 17:11:51 +010075 const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
76 const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
77
78 const int patch_half_width_floor = patch_width / 2;
79 const int patch_half_height_floor = patch_height / 2;
80
81 const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
82 const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
83
84 const int minimum_x = -pad_left + patch_half_width_floor;
85 const int minimum_y = -pad_top + patch_half_height_floor;
86 const int maximum_x = input_width + pad_left + pad_right - static_cast<int>(patch_width);
87 const int maximum_y = input_height + pad_top + pad_bottom - static_cast<int>(patch_height);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000088
Jenkinsb3a371b2018-05-23 11:36:53 +010089 const T border_value(0);
90
Anthony Barbier8140e1e2017-12-14 23:48:46 +000091 int out_pos = 0;
92 for(int r = 0; r < num_batches; ++r)
93 {
94 for(int z = 0; z < input_depth; ++z)
95 {
Jenkinsb3a371b2018-05-23 11:36:53 +010096 for(unsigned int m = 0; m < depth_multiplier; ++m)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000097 {
Jenkinsb3a371b2018-05-23 11:36:53 +010098 const int out_z = z * depth_multiplier + m;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000099
Jenkins4ba87db2019-05-23 17:11:51 +0100100 for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
Jenkinsb3a371b2018-05-23 11:36:53 +0100101 {
Jenkins4ba87db2019-05-23 17:11:51 +0100102 for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000103 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100104 Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
105 size_t filter_offset = filter_plane * out_z;
106
107 T val(0);
Jenkins4ba87db2019-05-23 17:11:51 +0100108 for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000109 {
Jenkins4ba87db2019-05-23 17:11:51 +0100110 for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
Jenkinsb3a371b2018-05-23 11:36:53 +0100111 {
112 coords.set(0, i);
113 coords.set(1, j);
Jenkinsb3a371b2018-05-23 11:36:53 +0100114 val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
115 ++filter_offset;
116 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000117 }
Jenkinsb3a371b2018-05-23 11:36:53 +0100118
Jenkins0e205f72019-11-28 16:53:35 +0000119 dst[out_pos++] = saturate_cast<T>(val + *static_cast<const T *>(biases(Coordinates(out_z))));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000120 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000121 }
122 }
123 }
124 }
125
126 return dst;
127}
128
Jenkins0e205f72019-11-28 16:53:35 +0000129/** Perform a quantized depthwise convolution
130 *
131 * - Three dimensions tensors
132 * - Third dimention is number of channels
133 * - Depths of input tensor and filter are equals
134 * - Padding, stride and output shape "match"
135 * - QASYMM8 input, output
136 * - QASYMM8 or QSYMM8_PER_CHANNEL filter
137 *
138 */
139template <typename T, typename TW, typename TB>
140SimpleTensor<T> depthwise_convolution_quantized(const SimpleTensor<T> &src, const SimpleTensor<TW> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
141 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000142{
Jenkins4ba87db2019-05-23 17:11:51 +0100143 // if no explicit quantization has been set you the same as src
Jenkins975dfe12019-09-02 11:47:54 +0100144 const QuantizationInfo &dst_qinfo = out_quant_info.uniform().empty() ? src.quantization_info() : out_quant_info;
Jenkins0e205f72019-11-28 16:53:35 +0000145 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1, dst_qinfo };
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000146
Jenkinsb3a371b2018-05-23 11:36:53 +0100147 // Create reference
Jenkins975dfe12019-09-02 11:47:54 +0100148 const int input_offset = -src.quantization_info().uniform().offset;
149 const float input_scale = src.quantization_info().uniform().scale;
150 const int weights_offset = -weights.quantization_info().uniform().offset;
Jenkins975dfe12019-09-02 11:47:54 +0100151 const int output_offset = dst_qinfo.uniform().offset;
152 const float output_scale = dst_qinfo.uniform().scale;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000153
Jenkins0e205f72019-11-28 16:53:35 +0000154 const std::vector<float> weights_scale_vec = weights.quantization_info().scale();
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000155
156 // Compute reference
157 const int filter_width = weights.shape().x();
158 const int filter_height = weights.shape().y();
159 const int filter_plane = filter_width * filter_height;
160 const int input_width = src.shape().x();
161 const int input_height = src.shape().y();
162 const int input_depth = src.shape().z();
163 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
164
Anthony Barbier06ea0482018-02-22 15:45:35 +0000165 const int pad_left = conv_info.pad_left();
166 const int pad_top = conv_info.pad_top();
167 const int pad_right = conv_info.pad_right();
168 const int pad_bottom = conv_info.pad_bottom();
169
Jenkins4ba87db2019-05-23 17:11:51 +0100170 const float patch_width = (filter_width + (dilation.x() - 1) * (filter_width - 1));
171 const float patch_height = (filter_height + (dilation.y() - 1) * (filter_height - 1));
172
173 const int patch_half_width_floor = patch_width / 2;
174 const int patch_half_height_floor = patch_height / 2;
175
176 const auto patch_half_width_ceil = static_cast<int>(std::ceil(patch_width / 2));
177 const auto patch_half_height_ceil = static_cast<int>(std::ceil(patch_height / 2));
178
179 const int minimum_x = -pad_left + patch_half_width_floor;
180 const int minimum_y = -pad_top + patch_half_height_floor;
181 const int maximum_x = input_width + pad_left + pad_right - static_cast<int>(patch_width);
182 const int maximum_y = input_height + pad_top + pad_bottom - static_cast<int>(patch_height);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000183
Jenkins0e205f72019-11-28 16:53:35 +0000184 const bool is_quantized_per_channel = is_data_type_quantized_per_channel(weights.data_type());
185
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000186 int out_pos = 0;
187 for(int r = 0; r < num_batches; ++r)
188 {
189 for(int z = 0; z < input_depth; ++z)
190 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100191 for(unsigned int m = 0; m < depth_multiplier; ++m)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000192 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100193 const int out_z = z * depth_multiplier + m;
194 const int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(out_z)));
195
Jenkins0e205f72019-11-28 16:53:35 +0000196 int output_multiplier = 0;
197 int output_shift = 0;
198 const float weights_scale = (is_quantized_per_channel) ? weights_scale_vec[out_z] : weights_scale_vec[0];
199 const float multiplier = input_scale * weights_scale / output_scale;
200 arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
201
Jenkins4ba87db2019-05-23 17:11:51 +0100202 for(int y = minimum_y; y <= minimum_y + maximum_y; y += conv_info.stride().second)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000203 {
Jenkins4ba87db2019-05-23 17:11:51 +0100204 for(int x = minimum_x; x <= minimum_x + maximum_x; x += conv_info.stride().first)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000205 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100206 Coordinates coords(x, y, z, r);
207 int filter_offset = filter_plane * out_z;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000208
Jenkinsb3a371b2018-05-23 11:36:53 +0100209 int32_t val = 0;
Jenkins4ba87db2019-05-23 17:11:51 +0100210 for(int j = y - patch_half_height_floor; j < y + patch_half_height_ceil; j += dilation.y())
Jenkinsb3a371b2018-05-23 11:36:53 +0100211 {
Jenkins4ba87db2019-05-23 17:11:51 +0100212 for(int i = x - patch_half_width_floor; i < x + patch_half_width_ceil; i += dilation.x())
Jenkinsb3a371b2018-05-23 11:36:53 +0100213 {
214 coords.set(0, i);
215 coords.set(1, j);
Jenkins0e205f72019-11-28 16:53:35 +0000216 const auto in_val = tensor_elem_at<T>(src, coords, BorderMode::CONSTANT, -input_offset);
217 const TW w_val = *(weights.data() + filter_offset);
Jenkinsb3a371b2018-05-23 11:36:53 +0100218 val += (in_val + input_offset) * (w_val + weights_offset);
219 ++filter_offset;
220 }
221 }
222 val += bias_val;
223 val = asymm_rounding_divide_by_pow2(asymm_int_mult(val, output_multiplier), output_shift);
224 val += output_offset;
Jenkins0e205f72019-11-28 16:53:35 +0000225 val = utility::clamp<int32_t>(val, 0, 255);
Jenkinsb3a371b2018-05-23 11:36:53 +0100226
227 // Store the result
228 dst[out_pos++] = val;
229 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000230 }
231 }
232 }
233 }
234
235 return dst;
236}
Jenkins0e205f72019-11-28 16:53:35 +0000237} // namespace
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000238
Jenkins0e205f72019-11-28 16:53:35 +0000239template <>
240SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
241 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
242{
243 return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
244}
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000245
Jenkins0e205f72019-11-28 16:53:35 +0000246template <>
247SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
248 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
249{
250 return depthwise_convolution_fp(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
251}
252
253template <>
254SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
255 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
256{
257 return depthwise_convolution_quantized<uint8_t, uint8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
258}
259
260template <>
261SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<int8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
262 const PadStrideInfo &conv_info, unsigned int depth_multiplier, const Size2D &dilation, const QuantizationInfo &out_quant_info)
263{
264 return depthwise_convolution_quantized<uint8_t, int8_t, int32_t>(src, weights, biases, dst_shape, conv_info, depth_multiplier, dilation, out_quant_info);
265}
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000266} // namespace reference
267} // namespace validation
268} // namespace test
269} // namespace arm_compute