blob: 0bb65fc9c1b125673c5a4518319674f7db0ec09d [file] [log] [blame]
Jenkinsb3a371b2018-05-23 11:36:53 +01001/*
Jenkins18b685f2020-08-21 10:26:22 +01002 * Copyright (c) 2018-2020 Arm Limited.
Jenkinsb3a371b2018-05-23 11:36:53 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "ConvertFullyConnectedWeights.h"
25
26namespace arm_compute
27{
28namespace test
29{
30namespace validation
31{
32namespace reference
33{
34template <typename T>
35SimpleTensor<T> convert_fully_connected_weights(const SimpleTensor<T> &src, const TensorShape &original_input_shape, const DataLayout training_data_layout)
36{
37 SimpleTensor<T> dst(src.shape(), src.data_type());
38
Jenkins52ba29e2018-08-29 15:32:11 +000039 const DataLayout original_input_data_layout = (training_data_layout == DataLayout::NCHW) ? DataLayout::NHWC : DataLayout::NCHW;
40
41 const int width_idx = get_data_layout_dimension_index(original_input_data_layout, DataLayoutDimension::WIDTH);
42 const int height_idx = get_data_layout_dimension_index(original_input_data_layout, DataLayoutDimension::HEIGHT);
43 const int channel_idx = get_data_layout_dimension_index(original_input_data_layout, DataLayoutDimension::CHANNEL);
44
Jenkinsb3a371b2018-05-23 11:36:53 +010045 const bool is_nchw_to_nhwc = training_data_layout == DataLayout::NCHW;
Jenkins52ba29e2018-08-29 15:32:11 +000046 const unsigned int num_elems_per_input_plane = original_input_shape[width_idx] * original_input_shape[height_idx];
47 const unsigned int num_channels = original_input_shape[channel_idx];
Jenkinsb3a371b2018-05-23 11:36:53 +010048 const unsigned int factor_1 = is_nchw_to_nhwc ? num_elems_per_input_plane : num_channels;
49 const unsigned int factor_2 = is_nchw_to_nhwc ? num_channels : num_elems_per_input_plane;
50
Jenkins0e205f72019-11-28 16:53:35 +000051 const uint32_t num_elements = src.num_elements();
Jenkins6a7771e2020-05-28 11:28:36 +010052#if defined(_OPENMP)
53 #pragma omp parallel for
54#endif /* _OPENMP */
Jenkins0e205f72019-11-28 16:53:35 +000055 for(uint32_t i = 0; i < num_elements; ++i)
Jenkinsb3a371b2018-05-23 11:36:53 +010056 {
57 const Coordinates coords_in = index2coords(src.shape(), i);
58 const Coordinates coords_out(coords_in.x(), coords_in.y() % factor_1 * factor_2 + coords_in.y() / factor_1);
59
60 dst[coords2index(dst.shape(), coords_out)] = src[i];
61 }
62
63 return dst;
64}
65
66template SimpleTensor<uint8_t> convert_fully_connected_weights(const SimpleTensor<uint8_t> &src, const TensorShape &original_input_shape,
67 const DataLayout training_data_layout);
68template SimpleTensor<half> convert_fully_connected_weights(const SimpleTensor<half> &src, const TensorShape &original_input_shape,
69 const DataLayout training_data_layout);
70template SimpleTensor<float> convert_fully_connected_weights(const SimpleTensor<float> &src, const TensorShape &original_input_shape,
71 const DataLayout training_data_layout);
72} // namespace reference
73} // namespace validation
74} // namespace test
75} // namespace arm_compute