blob: e617c939b05a953b3c584e1bf7e367922b6800f7 [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "PoolingLayer.h"
25
26#include "arm_compute/core/Types.h"
Jenkinsb3a371b2018-05-23 11:36:53 +010027#include "arm_compute/core/utils/misc/ShapeCalculator.h"
Anthony Barbier8140e1e2017-12-14 23:48:46 +000028#include "tests/validation/Helpers.h"
29
30namespace arm_compute
31{
32namespace test
33{
34namespace validation
35{
36namespace reference
37{
Jenkinsb3a371b2018-05-23 11:36:53 +010038using namespace arm_compute::misc::shape_calculator;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000039
Jenkinsb9abeae2018-11-22 11:58:08 +000040template <typename T>
Anthony Barbier06ea0482018-02-22 15:45:35 +000041SimpleTensor<T> pooling_layer(const SimpleTensor<T> &src, const PoolingLayerInfo &info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000042{
43 ARM_COMPUTE_ERROR_ON(info.is_global_pooling() && (src.shape().x() != src.shape().y()));
44
Jenkinsb3a371b2018-05-23 11:36:53 +010045 // Create reference
Jenkins52ba29e2018-08-29 15:32:11 +000046 SimpleTensor<T> dst{ compute_pool_shape(TensorInfo(src.shape(), 1, src.data_type()), info), src.data_type(), 1 };
Jenkinsb3a371b2018-05-23 11:36:53 +010047
Anthony Barbier06ea0482018-02-22 15:45:35 +000048 const int pool_size_x = info.is_global_pooling() ? src.shape().x() : info.pool_size().width;
49 const int pool_size_y = info.is_global_pooling() ? src.shape().y() : info.pool_size().height;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000050 PoolingType type = info.pool_type();
51 int pool_stride_x = info.pad_stride_info().stride().first;
52 int pool_stride_y = info.pad_stride_info().stride().second;
Anthony Barbier06ea0482018-02-22 15:45:35 +000053 int pad_left = info.pad_stride_info().pad_left();
54 int pad_top = info.pad_stride_info().pad_top();
55 int pad_right = info.pad_stride_info().pad_right();
56 int pad_bottom = info.pad_stride_info().pad_bottom();
Anthony Barbier8140e1e2017-12-14 23:48:46 +000057 bool exclude_padding = info.exclude_padding();
58
59 const auto w_src = static_cast<int>(src.shape()[0]);
60 const auto h_src = static_cast<int>(src.shape()[1]);
61 const int upper_dims = src.shape().total_size() / (w_src * h_src);
62
Anthony Barbier8140e1e2017-12-14 23:48:46 +000063 const auto w_dst = static_cast<int>(dst.shape()[0]);
64 const auto h_dst = static_cast<int>(dst.shape()[1]);
65
66 if(type == PoolingType::MAX)
67 {
68 for(int r = 0; r < upper_dims; ++r)
69 {
70 for(int h = 0; h < h_dst; ++h)
71 {
72 for(int w = 0; w < w_dst; ++w)
73 {
Anthony Barbier06ea0482018-02-22 15:45:35 +000074 int wstart = w * pool_stride_x - pad_left;
75 int hstart = h * pool_stride_y - pad_top;
76 int wend = std::min(wstart + pool_size_x, w_src);
77 int hend = std::min(hstart + pool_size_y, h_src);
Anthony Barbier8140e1e2017-12-14 23:48:46 +000078 wstart = std::max(wstart, 0);
79 hstart = std::max(hstart, 0);
80
81 T max_val = std::numeric_limits<T>::lowest();
82 for(int y = hstart; y < hend; ++y)
83 {
84 for(int x = wstart; x < wend; ++x)
85 {
86 const T val = src[r * h_src * w_src + y * w_src + x];
87 if(val > max_val)
88 {
89 max_val = val;
90 }
91 }
92 }
93
94 dst[r * h_dst * w_dst + h * w_dst + w] = max_val;
95 }
96 }
97 }
98 }
99 else // Average or l2 pooling
100 {
101 for(int r = 0; r < upper_dims; ++r)
102 {
103 for(int h = 0; h < h_dst; ++h)
104 {
105 for(int w = 0; w < w_dst; ++w)
106 {
107 T avg_val(0);
Anthony Barbier06ea0482018-02-22 15:45:35 +0000108 int wstart = w * pool_stride_x - pad_left;
109 int hstart = h * pool_stride_y - pad_top;
110 int wend = std::min(wstart + pool_size_x, w_src + pad_right);
111 int hend = std::min(hstart + pool_size_y, h_src + pad_bottom);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000112 int pool = (hend - hstart) * (wend - wstart);
113 wstart = std::max(wstart, 0);
114 hstart = std::max(hstart, 0);
115 wend = std::min(wend, w_src);
116 hend = std::min(hend, h_src);
117 // Exclude padding pixels from the average
118 if(exclude_padding)
119 {
120 pool = (hend - hstart) * (wend - wstart);
121 }
122
123 if(type == PoolingType::AVG)
124 {
125 for(int y = hstart; y < hend; ++y)
126 {
127 for(int x = wstart; x < wend; ++x)
128 {
129 avg_val += src[r * h_src * w_src + y * w_src + x];
130 }
131 }
132 dst[r * h_dst * w_dst + h * w_dst + w] = avg_val / pool;
133 }
134 else
135 {
136 for(int y = hstart; y < hend; ++y)
137 {
138 for(int x = wstart; x < wend; ++x)
139 {
140 const T val = src[r * h_src * w_src + y * w_src + x];
141 avg_val += val * val;
142 }
143 }
144 dst[r * h_dst * w_dst + h * w_dst + w] = std::sqrt(avg_val / pool);
145 }
146 }
147 }
148 }
149 }
150
151 return dst;
152}
153
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000154template <>
Anthony Barbier06ea0482018-02-22 15:45:35 +0000155SimpleTensor<uint8_t> pooling_layer<uint8_t>(const SimpleTensor<uint8_t> &src, const PoolingLayerInfo &info)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000156{
157 SimpleTensor<float> src_tmp = convert_from_asymmetric(src);
158 SimpleTensor<float> dst_tmp = pooling_layer<float>(src_tmp, info);
159 SimpleTensor<uint8_t> dst = convert_to_asymmetric(dst_tmp, src.quantization_info());
160 return dst;
161}
162
Anthony Barbier06ea0482018-02-22 15:45:35 +0000163template SimpleTensor<float> pooling_layer(const SimpleTensor<float> &src, const PoolingLayerInfo &info);
164template SimpleTensor<half> pooling_layer(const SimpleTensor<half> &src, const PoolingLayerInfo &info);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000165} // namespace reference
166} // namespace validation
167} // namespace test
168} // namespace arm_compute