blob: 0edb6f2a564c6cf95fdf003ca9fefd8fce06dd5c [file] [log] [blame]
Kaizen8938bd32017-09-28 14:38:23 +01001/*
Anthony Barbierf45d5a92018-01-24 16:23:15 +00002 * Copyright (c) 2017-2018 ARM Limited.
Kaizen8938bd32017-09-28 14:38:23 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24
25#include "utils/GraphUtils.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000026
Jenkinsb3a371b2018-05-23 11:36:53 +010027#include "arm_compute/core/Helpers.h"
28#include "arm_compute/core/Types.h"
hakanardo29222792018-02-16 10:06:34 +010029#include "arm_compute/runtime/SubTensor.h"
Anthony Barbier06ea0482018-02-22 15:45:35 +000030#include "utils/Utils.h"
Kaizen8938bd32017-09-28 14:38:23 +010031
Anthony Barbier8a3da6f2017-10-23 18:55:17 +010032#include <iomanip>
Kaizen8938bd32017-09-28 14:38:23 +010033
34using namespace arm_compute::graph_utils;
35
Jenkinsb3a371b2018-05-23 11:36:53 +010036namespace
37{
38std::pair<arm_compute::TensorShape, arm_compute::PermutationVector> compute_permutation_paramaters(const arm_compute::TensorShape &shape,
39 arm_compute::DataLayout data_layout)
40{
41 // Set permutation parameters if needed
42 arm_compute::TensorShape permuted_shape = shape;
43 arm_compute::PermutationVector perm;
44 // Permute only if num_dimensions greater than 2
45 if(shape.num_dimensions() > 2)
46 {
47 perm = (data_layout == arm_compute::DataLayout::NHWC) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
48
49 arm_compute::PermutationVector perm_shape = (data_layout == arm_compute::DataLayout::NCHW) ? arm_compute::PermutationVector(2U, 0U, 1U) : arm_compute::PermutationVector(1U, 2U, 0U);
50 arm_compute::permute(permuted_shape, perm_shape);
51 }
52
53 return std::make_pair(permuted_shape, perm);
54}
55} // namespace
56
Anthony Barbier06ea0482018-02-22 15:45:35 +000057void TFPreproccessor::preprocess(ITensor &tensor)
58{
59 Window window;
60 window.use_tensor_dimensions(tensor.info()->tensor_shape());
61
62 execute_window_loop(window, [&](const Coordinates & id)
63 {
64 const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id));
65 float res = value / 255.f; // Normalize to [0, 1]
66 res = (res - 0.5f) * 2.f; // Map to [-1, 1]
67 *reinterpret_cast<float *>(tensor.ptr_to_element(id)) = res;
68 });
69}
70
71CaffePreproccessor::CaffePreproccessor(std::array<float, 3> mean, bool bgr)
72 : _mean(mean), _bgr(bgr)
73{
74 if(_bgr)
75 {
76 std::swap(_mean[0], _mean[2]);
77 }
78}
79
80void CaffePreproccessor::preprocess(ITensor &tensor)
81{
82 Window window;
83 window.use_tensor_dimensions(tensor.info()->tensor_shape());
84
85 execute_window_loop(window, [&](const Coordinates & id)
86 {
87 const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id)) - _mean[id.z()];
88 *reinterpret_cast<float *>(tensor.ptr_to_element(id)) = value;
89 });
90}
91
Kaizen8938bd32017-09-28 14:38:23 +010092PPMWriter::PPMWriter(std::string name, unsigned int maximum)
93 : _name(std::move(name)), _iterator(0), _maximum(maximum)
94{
95}
96
97bool PPMWriter::access_tensor(ITensor &tensor)
98{
99 std::stringstream ss;
100 ss << _name << _iterator << ".ppm";
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100101
102 arm_compute::utils::save_to_ppm(tensor, ss.str());
Kaizen8938bd32017-09-28 14:38:23 +0100103
104 _iterator++;
105 if(_maximum == 0)
106 {
107 return true;
108 }
109 return _iterator < _maximum;
110}
111
112DummyAccessor::DummyAccessor(unsigned int maximum)
113 : _iterator(0), _maximum(maximum)
114{
115}
116
117bool DummyAccessor::access_tensor(ITensor &tensor)
118{
119 ARM_COMPUTE_UNUSED(tensor);
120 bool ret = _maximum == 0 || _iterator < _maximum;
121 if(_iterator == _maximum)
122 {
123 _iterator = 0;
124 }
125 else
126 {
127 _iterator++;
128 }
129 return ret;
130}
131
Jenkinsb3a371b2018-05-23 11:36:53 +0100132NumPyAccessor::NumPyAccessor(std::string npy_path, TensorShape shape, DataType data_type, std::ostream &output_stream)
133 : _npy_tensor(), _filename(std::move(npy_path)), _output_stream(output_stream)
134{
135 NumPyBinLoader loader(_filename);
136
137 TensorInfo info(shape, 1, data_type);
138 _npy_tensor.allocator()->init(info);
139 _npy_tensor.allocator()->allocate();
140
141 loader.access_tensor(_npy_tensor);
142}
143
144template <typename T>
145void NumPyAccessor::access_numpy_tensor(ITensor &tensor)
146{
147 const int num_elements = tensor.info()->total_size();
148 int num_mismatches = utils::compare_tensor<T>(tensor, _npy_tensor);
149 float percentage_mismatches = static_cast<float>(num_mismatches) / num_elements;
150
151 _output_stream << "Results: " << 100.f - (percentage_mismatches * 100) << " % matches with the provided output[" << _filename << "]." << std::endl;
152}
153
154bool NumPyAccessor::access_tensor(ITensor &tensor)
155{
156 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32);
157 ARM_COMPUTE_ERROR_ON(_npy_tensor.info()->dimension(0) != tensor.info()->dimension(0));
158
159 switch(tensor.info()->data_type())
160 {
161 case DataType::F32:
162 access_numpy_tensor<float>(tensor);
163 break;
164 default:
165 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
166 }
167
168 return false;
169}
170
Anthony Barbier06ea0482018-02-22 15:45:35 +0000171PPMAccessor::PPMAccessor(std::string ppm_path, bool bgr, std::unique_ptr<IPreprocessor> preprocessor)
172 : _ppm_path(std::move(ppm_path)), _bgr(bgr), _preprocessor(std::move(preprocessor))
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100173{
174}
175
176bool PPMAccessor::access_tensor(ITensor &tensor)
177{
178 utils::PPMLoader ppm;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100179
180 // Open PPM file
181 ppm.open(_ppm_path);
182
Jenkinsb3a371b2018-05-23 11:36:53 +0100183 // Get permutated shape and permutation parameters
184 TensorShape permuted_shape = tensor.info()->tensor_shape();
185 arm_compute::PermutationVector perm;
186 if(tensor.info()->data_layout() != DataLayout::NCHW)
187 {
188 std::tie(permuted_shape, perm) = compute_permutation_paramaters(tensor.info()->tensor_shape(), tensor.info()->data_layout());
189 }
190 ARM_COMPUTE_ERROR_ON_MSG(ppm.width() != permuted_shape.x() || ppm.height() != permuted_shape.y(),
191 "Failed to load image file: dimensions [%d,%d] not correct, expected [%d,%d].", ppm.width(), ppm.height(), permuted_shape.x(), permuted_shape.y());
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000192
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100193 // Fill the tensor with the PPM content (BGR)
194 ppm.fill_planar_tensor(tensor, _bgr);
195
Anthony Barbier06ea0482018-02-22 15:45:35 +0000196 // Preprocess tensor
197 if(_preprocessor)
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100198 {
Anthony Barbier06ea0482018-02-22 15:45:35 +0000199 _preprocessor->preprocess(tensor);
200 }
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100201
202 return true;
203}
204
205TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream)
206 : _labels(), _output_stream(output_stream), _top_n(top_n)
207{
208 _labels.clear();
209
210 std::ifstream ifs;
211
212 try
213 {
214 ifs.exceptions(std::ifstream::badbit);
215 ifs.open(labels_path, std::ios::in | std::ios::binary);
216
217 for(std::string line; !std::getline(ifs, line).fail();)
218 {
219 _labels.emplace_back(line);
220 }
221 }
222 catch(const std::ifstream::failure &e)
223 {
224 ARM_COMPUTE_ERROR("Accessing %s: %s", labels_path.c_str(), e.what());
225 }
226}
227
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000228template <typename T>
229void TopNPredictionsAccessor::access_predictions_tensor(ITensor &tensor)
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100230{
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100231 // Get the predicted class
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000232 std::vector<T> classes_prob;
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100233 std::vector<size_t> index;
234
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000235 const auto output_net = reinterpret_cast<T *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes());
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100236 const size_t num_classes = tensor.info()->dimension(0);
237
238 classes_prob.resize(num_classes);
239 index.resize(num_classes);
240
241 std::copy(output_net, output_net + num_classes, classes_prob.begin());
242
243 // Sort results
244 std::iota(std::begin(index), std::end(index), static_cast<size_t>(0));
245 std::sort(std::begin(index), std::end(index),
246 [&](size_t a, size_t b)
247 {
248 return classes_prob[a] > classes_prob[b];
249 });
250
251 _output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl
252 << std::endl;
253 for(size_t i = 0; i < _top_n; ++i)
254 {
255 _output_stream << std::fixed << std::setprecision(4)
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000256 << +classes_prob[index.at(i)]
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100257 << " - [id = " << index.at(i) << "]"
258 << ", " << _labels[index.at(i)] << std::endl;
259 }
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000260}
261
262bool TopNPredictionsAccessor::access_tensor(ITensor &tensor)
263{
264 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32, DataType::QASYMM8);
265 ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0));
266
267 switch(tensor.info()->data_type())
268 {
269 case DataType::QASYMM8:
270 access_predictions_tensor<uint8_t>(tensor);
271 break;
272 case DataType::F32:
273 access_predictions_tensor<float>(tensor);
274 break;
275 default:
276 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
277 }
Anthony Barbier8a3da6f2017-10-23 18:55:17 +0100278
279 return false;
280}
281
Kaizenbf8b01d2017-10-12 14:26:51 +0100282RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed)
283 : _lower(lower), _upper(upper), _seed(seed)
284{
285}
286
287template <typename T, typename D>
288void RandomAccessor::fill(ITensor &tensor, D &&distribution)
289{
290 std::mt19937 gen(_seed);
291
Anthony Barbier06ea0482018-02-22 15:45:35 +0000292 if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
Kaizenbf8b01d2017-10-12 14:26:51 +0100293 {
294 for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size())
295 {
296 const T value = distribution(gen);
297 *reinterpret_cast<T *>(tensor.buffer() + offset) = value;
298 }
299 }
300 else
301 {
302 // If tensor has padding accessing tensor elements through execution window.
303 Window window;
304 window.use_tensor_dimensions(tensor.info()->tensor_shape());
305
306 execute_window_loop(window, [&](const Coordinates & id)
307 {
308 const T value = distribution(gen);
309 *reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value;
310 });
311 }
312}
313
314bool RandomAccessor::access_tensor(ITensor &tensor)
315{
316 switch(tensor.info()->data_type())
317 {
318 case DataType::U8:
319 {
320 std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>());
321 fill<uint8_t>(tensor, distribution_u8);
322 break;
323 }
324 case DataType::S8:
325 case DataType::QS8:
326 {
327 std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>());
328 fill<int8_t>(tensor, distribution_s8);
329 break;
330 }
331 case DataType::U16:
332 {
333 std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>());
334 fill<uint16_t>(tensor, distribution_u16);
335 break;
336 }
337 case DataType::S16:
338 case DataType::QS16:
339 {
340 std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>());
341 fill<int16_t>(tensor, distribution_s16);
342 break;
343 }
344 case DataType::U32:
345 {
346 std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>());
347 fill<uint32_t>(tensor, distribution_u32);
348 break;
349 }
350 case DataType::S32:
351 {
352 std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>());
353 fill<int32_t>(tensor, distribution_s32);
354 break;
355 }
356 case DataType::U64:
357 {
358 std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>());
359 fill<uint64_t>(tensor, distribution_u64);
360 break;
361 }
362 case DataType::S64:
363 {
364 std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>());
365 fill<int64_t>(tensor, distribution_s64);
366 break;
367 }
368 case DataType::F16:
369 {
370 std::uniform_real_distribution<float> distribution_f16(_lower.get<float>(), _upper.get<float>());
371 fill<float>(tensor, distribution_f16);
372 break;
373 }
374 case DataType::F32:
375 {
376 std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>());
377 fill<float>(tensor, distribution_f32);
378 break;
379 }
380 case DataType::F64:
381 {
382 std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>());
383 fill<double>(tensor, distribution_f64);
384 break;
385 }
386 default:
387 ARM_COMPUTE_ERROR("NOT SUPPORTED!");
388 }
389 return true;
390}
391
Jenkinsb3a371b2018-05-23 11:36:53 +0100392NumPyBinLoader::NumPyBinLoader(std::string filename, DataLayout file_layout)
393 : _filename(std::move(filename)), _file_layout(file_layout)
Kaizen8938bd32017-09-28 14:38:23 +0100394{
395}
396
397bool NumPyBinLoader::access_tensor(ITensor &tensor)
398{
399 const TensorShape tensor_shape = tensor.info()->tensor_shape();
400 std::vector<unsigned long> shape;
401
402 // Open file
403 std::ifstream stream(_filename, std::ios::in | std::ios::binary);
404 ARM_COMPUTE_ERROR_ON_MSG(!stream.good(), "Failed to load binary data");
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000405 std::string header = npy::read_header(stream);
Kaizen8938bd32017-09-28 14:38:23 +0100406
407 // Parse header
408 bool fortran_order = false;
409 std::string typestr;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000410 npy::parse_header(header, typestr, fortran_order, shape);
Kaizen8938bd32017-09-28 14:38:23 +0100411
412 // Check if the typestring matches the given one
413 std::string expect_typestr = arm_compute::utils::get_typestring(tensor.info()->data_type());
414 ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch");
415
Anthony Barbier06ea0482018-02-22 15:45:35 +0000416 // Reverse vector in case of non fortran order
417 if(!fortran_order)
Kaizen8938bd32017-09-28 14:38:23 +0100418 {
Anthony Barbier06ea0482018-02-22 15:45:35 +0000419 std::reverse(shape.begin(), shape.end());
420 }
421
422 // Correct dimensions (Needs to match TensorShape dimension corrections)
423 if(shape.size() != tensor_shape.num_dimensions())
424 {
425 for(int i = static_cast<int>(shape.size()) - 1; i > 0; --i)
Kaizen8938bd32017-09-28 14:38:23 +0100426 {
Anthony Barbier06ea0482018-02-22 15:45:35 +0000427 if(shape[i] == 1)
428 {
429 shape.pop_back();
430 }
431 else
432 {
433 break;
434 }
Kaizen8938bd32017-09-28 14:38:23 +0100435 }
436 }
Anthony Barbier06ea0482018-02-22 15:45:35 +0000437
Jenkinsb3a371b2018-05-23 11:36:53 +0100438 bool are_layouts_different = (_file_layout != tensor.info()->data_layout());
439
Anthony Barbier06ea0482018-02-22 15:45:35 +0000440 // Validate tensor ranks
441 ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor_shape.num_dimensions(), "Tensor ranks mismatch");
442
Jenkinsb3a371b2018-05-23 11:36:53 +0100443 // Set permutation parameters if needed
444 TensorShape permuted_shape = tensor_shape;
445 arm_compute::PermutationVector perm;
446 if(are_layouts_different)
447 {
448 std::tie(permuted_shape, perm) = compute_permutation_paramaters(tensor_shape, tensor.info()->data_layout());
449 }
450
Anthony Barbier06ea0482018-02-22 15:45:35 +0000451 // Validate shapes
452 for(size_t i = 0; i < shape.size(); ++i)
Kaizen8938bd32017-09-28 14:38:23 +0100453 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100454 ARM_COMPUTE_ERROR_ON_MSG(permuted_shape[i] != shape[i], "Tensor dimensions mismatch");
Kaizen8938bd32017-09-28 14:38:23 +0100455 }
456
Jenkinsb3a371b2018-05-23 11:36:53 +0100457 // Validate shapes and copy tensor
458 if(!are_layouts_different || perm.num_dimensions() <= 2)
Kaizen8938bd32017-09-28 14:38:23 +0100459 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100460 // Read data
461 if(tensor.info()->padding().empty() && (dynamic_cast<SubTensor *>(&tensor) == nullptr))
462 {
463 // If tensor has no padding read directly from stream.
464 stream.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size());
465 }
466 else
467 {
468 // If tensor has padding accessing tensor elements through execution window.
469 Window window;
470 window.use_tensor_dimensions(tensor_shape);
471
472 execute_window_loop(window, [&](const Coordinates & id)
473 {
474 stream.read(reinterpret_cast<char *>(tensor.ptr_to_element(id)), tensor.info()->element_size());
475 });
476 }
Kaizen8938bd32017-09-28 14:38:23 +0100477 }
478 else
479 {
480 // If tensor has padding accessing tensor elements through execution window.
481 Window window;
Jenkinsb3a371b2018-05-23 11:36:53 +0100482 window.use_tensor_dimensions(permuted_shape);
Kaizen8938bd32017-09-28 14:38:23 +0100483
484 execute_window_loop(window, [&](const Coordinates & id)
485 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100486 Coordinates coords(id);
487 arm_compute::permute(coords, perm);
488 stream.read(reinterpret_cast<char *>(tensor.ptr_to_element(coords)), tensor.info()->element_size());
Kaizen8938bd32017-09-28 14:38:23 +0100489 });
490 }
491 return true;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000492}