blob: b8089d822929bd271b08d8f1058675f604a13cee [file] [log] [blame]
Jenkins4ba87db2019-05-23 17:11:51 +01001/*
2 * Copyright (c) 2019 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLDirectDeconvolutionLayer.h"
25
26#include "arm_compute/core/Helpers.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
29#include "arm_compute/core/utils/misc/ShapeCalculator.h"
30#include "arm_compute/runtime/CL/CLScheduler.h"
31
32#include <memory>
33#include <tuple>
34
35namespace arm_compute
36{
37using namespace arm_compute::misc::shape_calculator;
38
39CLDirectDeconvolutionLayer::CLDirectDeconvolutionLayer(std::shared_ptr<IMemoryManager> memory_manager) // NOLINT
40 : _memory_group(std::move(memory_manager)),
41 _scale_f(),
42 _conv_f(),
43 _flip_weights(),
44 _scaled_output(),
45 _original_weights(nullptr),
46 _weights_flipped(),
47 _flip_axis(),
48 _is_prepared(false)
49{
50}
51
52Status CLDirectDeconvolutionLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *bias, ITensorInfo *output, const PadStrideInfo &info,
53 const WeightsInfo &weights_info)
54{
55 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
56 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::QASYMM8, DataType::F16, DataType::F32);
57 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, weights);
Jenkins4ba87db2019-05-23 17:11:51 +010058 const DataLayout data_layout = input->data_layout();
59
60 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
61 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
62 const size_t idx_c = get_data_layout_dimension_index(data_layout, DataLayoutDimension::CHANNEL);
63
64 ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) != weights->dimension(idx_h));
65 ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(idx_w) < 1);
Jenkins4ba87db2019-05-23 17:11:51 +010066
Jenkins0e205f72019-11-28 16:53:35 +000067 auto out_dims = deconvolution_output_dimensions(input->dimension(idx_w), input->dimension(idx_h), weights->dimension(idx_w), weights->dimension(idx_h), info);
Jenkins4ba87db2019-05-23 17:11:51 +010068
69 const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input, *weights);
70
71 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, output, weights);
72
73 if(bias != nullptr)
74 {
75 if(is_data_type_quantized_asymmetric(input->data_type()))
76 {
77 ARM_COMPUTE_RETURN_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(bias, 1, DataType::S32);
78 }
79 else
80 {
81 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_TYPES(input, bias);
82 }
83 ARM_COMPUTE_RETURN_ERROR_ON_MISMATCHING_DATA_LAYOUT(input, bias);
84 }
85
86 ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_w) != output_shape[idx_w], "Output's width is invalid.");
87 ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_h) != output_shape[idx_h], "Output's height is invalid.");
88 ARM_COMPUTE_RETURN_ERROR_ON_MSG(output->dimension(idx_c) != output_shape[idx_c], "Output's depth is invalid.");
89
Jenkins0e205f72019-11-28 16:53:35 +000090 unsigned int deconv_pad_x = 0;
91 unsigned int deconv_pad_y = 0;
92 const unsigned int stride_x = info.stride().first;
93 const unsigned int stride_y = info.stride().second;
94 const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input, *weights, stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
Jenkins4ba87db2019-05-23 17:11:51 +010095 TensorInfo scale_out_info(input->clone()->set_is_resizable(true).reset_padding().set_tensor_shape(scale_out_shape).set_data_layout(data_layout));
96 const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
97
Jenkins975dfe12019-09-02 11:47:54 +010098 ARM_COMPUTE_RETURN_ON_ERROR(CLDeconvolutionLayerUpsample::validate(input, &scale_out_info, info));
Jenkins4ba87db2019-05-23 17:11:51 +010099 ARM_COMPUTE_RETURN_ON_ERROR(CLConvolutionLayer::validate(&scale_out_info, weights, bias, output, conv_info, weights_info));
100
101 return Status{};
102}
103
104void CLDirectDeconvolutionLayer::configure(ICLTensor *input, ICLTensor *weights, const ICLTensor *bias, ICLTensor *output, const PadStrideInfo &info,
105 const WeightsInfo &weights_info)
106{
107 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
108
Jenkins0e205f72019-11-28 16:53:35 +0000109 const unsigned int pad_left = info.pad_left();
110 const unsigned int pad_right = info.pad_right();
111 const unsigned int pad_top = info.pad_top();
112 const unsigned int pad_bottom = info.pad_bottom();
Jenkins4ba87db2019-05-23 17:11:51 +0100113 const unsigned int stride_x = info.stride().first;
114 const unsigned int stride_y = info.stride().second;
115
116 const DataLayout data_layout = input->info()->data_layout();
117
118 const size_t idx_w = get_data_layout_dimension_index(data_layout, DataLayoutDimension::WIDTH);
119 const size_t idx_h = get_data_layout_dimension_index(data_layout, DataLayoutDimension::HEIGHT);
120
121 _original_weights = weights;
122 _flip_axis.allocator()->init(TensorInfo(TensorShape(2U), 1, DataType::U32));
123 _weights_flipped.allocator()->init(weights->info()->clone()->set_data_layout(data_layout));
124 _flip_weights.configure(weights, &_weights_flipped, &_flip_axis);
125
Jenkins0e205f72019-11-28 16:53:35 +0000126 auto out_dims = deconvolution_output_dimensions(input->info()->dimension(idx_w), input->info()->dimension(idx_h), weights->info()->dimension(idx_w), weights->info()->dimension(idx_h), info);
Jenkins4ba87db2019-05-23 17:11:51 +0100127
128 const TensorShape output_shape = compute_deconvolution_output_shape(out_dims, *input->info(), *weights->info());
129
130 // Output auto initialization if not yet initialized
131 auto_init_if_empty(*output->info(), input->info()->clone()->set_tensor_shape(output_shape).set_data_layout(data_layout));
132
133 // Perform validation step
134 ARM_COMPUTE_ERROR_THROW_ON(CLDirectDeconvolutionLayer::validate(input->info(), weights->info(), bias == nullptr ? nullptr : bias->info(), output->info(), info));
135
136 _is_prepared = weights_info.retain_internal_weights();
137
138 _memory_group.manage(&_scaled_output);
139
140 // Find the upsampled dimensions and the padding needed for the convolution with stride 1 in order to match output shape
Jenkins0e205f72019-11-28 16:53:35 +0000141 unsigned int deconv_pad_x = 0;
142 unsigned int deconv_pad_y = 0;
143 const TensorShape scale_out_shape = compute_deconvolution_upsampled_shape(*input->info(), *weights->info(), stride_x, stride_y, out_dims, deconv_pad_x, deconv_pad_y);
144
145 unsigned int deconv_pad_left = pad_right > pad_left ? pad_right - pad_left : 0;
146 unsigned int deconv_pad_right = pad_left > pad_right ? pad_left - pad_right : 0;
147 deconv_pad_x -= deconv_pad_left + deconv_pad_right;
148 ARM_COMPUTE_ERROR_ON((deconv_pad_x % 2) != 0);
149 deconv_pad_left += deconv_pad_x / 2;
150 deconv_pad_right += deconv_pad_x / 2;
151
152 unsigned int deconv_pad_top = pad_bottom > pad_top ? pad_bottom - pad_top : 0;
153 unsigned int deconv_pad_bottom = pad_top > pad_bottom ? pad_top - pad_bottom : 0;
154 deconv_pad_y -= deconv_pad_top + deconv_pad_bottom;
155 ARM_COMPUTE_ERROR_ON((deconv_pad_y % 2) != 0);
156 deconv_pad_top += deconv_pad_y / 2;
157 deconv_pad_bottom += deconv_pad_y / 2;
Jenkins4ba87db2019-05-23 17:11:51 +0100158
159 TensorInfo scale_out_info(scale_out_shape, 1, input->info()->data_type(), input->info()->quantization_info());
160 scale_out_info.set_data_layout(data_layout);
161 _scaled_output.allocator()->init(scale_out_info);
162
163 // configure scale function
Jenkins0e205f72019-11-28 16:53:35 +0000164 const PadStrideInfo upsample_info(stride_x, stride_y, deconv_pad_left, deconv_pad_right, deconv_pad_top, deconv_pad_bottom, DimensionRoundingType::FLOOR);
Jenkins975dfe12019-09-02 11:47:54 +0100165 _scale_f.configure(input, &_scaled_output, upsample_info);
Jenkins4ba87db2019-05-23 17:11:51 +0100166
167 // Setup the function to convolve the upscaled output
168 const PadStrideInfo conv_info(1, 1, 0, 0, 0, 0, DimensionRoundingType::CEIL);
169 _conv_f.configure(&_scaled_output, &_weights_flipped, bias, output, conv_info, weights_info);
170 _scaled_output.allocator()->allocate();
171
172 // Setup flip axis data
173 _flip_axis.allocator()->allocate();
174 _flip_axis.map(true);
175 auto axis_data = reinterpret_cast<uint32_t *>(_flip_axis.buffer());
176 if(weights->info()->data_layout() == DataLayout::NHWC)
177 {
178 axis_data[0] = 1;
179 axis_data[1] = 2;
180 }
181 else
182 {
183 axis_data[0] = 0;
184 axis_data[1] = 1;
185 }
186 _flip_axis.unmap();
187}
188
189void CLDirectDeconvolutionLayer::run()
190{
191 prepare();
192
193 MemoryGroupResourceScope scope_mg(_memory_group);
194
195 _scale_f.run();
196 _conv_f.run();
197}
198
199void CLDirectDeconvolutionLayer::prepare()
200{
201 if(!_is_prepared)
202 {
203 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
204
205 // Run weights flipping and mark original weights tensor as unused
206 _weights_flipped.allocator()->allocate();
207 _flip_weights.run();
208 _original_weights->mark_as_unused();
209
210 // Prepare convolution
211 _conv_f.prepare();
212
213 // Free flipped weights
214 if(!_weights_flipped.is_used())
215 {
216 _weights_flipped.allocator()->free();
217 }
218
219 _is_prepared = true;
220 }
221}
222} // namespace arm_compute