Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (c) 2017 ARM Limited. |
| 3 | * |
| 4 | * SPDX-License-Identifier: MIT |
| 5 | * |
| 6 | * Permission is hereby granted, free of charge, to any person obtaining a copy |
| 7 | * of this software and associated documentation files (the "Software"), to |
| 8 | * deal in the Software without restriction, including without limitation the |
| 9 | * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or |
| 10 | * sell copies of the Software, and to permit persons to whom the Software is |
| 11 | * furnished to do so, subject to the following conditions: |
| 12 | * |
| 13 | * The above copyright notice and this permission notice shall be included in all |
| 14 | * copies or substantial portions of the Software. |
| 15 | * |
| 16 | * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR |
| 17 | * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, |
| 18 | * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE |
| 19 | * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER |
| 20 | * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, |
| 21 | * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE |
| 22 | * SOFTWARE. |
| 23 | */ |
| 24 | |
| 25 | #include "utils/GraphUtils.h" |
| 26 | #include "utils/Utils.h" |
| 27 | |
| 28 | #ifdef ARM_COMPUTE_CL |
| 29 | #include "arm_compute/core/CL/OpenCL.h" |
| 30 | #include "arm_compute/runtime/CL/CLTensor.h" |
| 31 | #endif /* ARM_COMPUTE_CL */ |
| 32 | |
| 33 | #include "arm_compute/core/Error.h" |
Kaizen | bf8b01d | 2017-10-12 14:26:51 +0100 | [diff] [blame] | 34 | #include "arm_compute/core/PixelValue.h" |
Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame] | 35 | #include "libnpy/npy.hpp" |
| 36 | |
Anthony Barbier | 8a3da6f | 2017-10-23 18:55:17 +0100 | [diff] [blame^] | 37 | #include <algorithm> |
| 38 | #include <iomanip> |
| 39 | #include <ostream> |
Kaizen | bf8b01d | 2017-10-12 14:26:51 +0100 | [diff] [blame] | 40 | #include <random> |
Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame] | 41 | |
| 42 | using namespace arm_compute::graph_utils; |
| 43 | |
| 44 | PPMWriter::PPMWriter(std::string name, unsigned int maximum) |
| 45 | : _name(std::move(name)), _iterator(0), _maximum(maximum) |
| 46 | { |
| 47 | } |
| 48 | |
| 49 | bool PPMWriter::access_tensor(ITensor &tensor) |
| 50 | { |
| 51 | std::stringstream ss; |
| 52 | ss << _name << _iterator << ".ppm"; |
Anthony Barbier | 8a3da6f | 2017-10-23 18:55:17 +0100 | [diff] [blame^] | 53 | |
| 54 | arm_compute::utils::save_to_ppm(tensor, ss.str()); |
Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame] | 55 | |
| 56 | _iterator++; |
| 57 | if(_maximum == 0) |
| 58 | { |
| 59 | return true; |
| 60 | } |
| 61 | return _iterator < _maximum; |
| 62 | } |
| 63 | |
| 64 | DummyAccessor::DummyAccessor(unsigned int maximum) |
| 65 | : _iterator(0), _maximum(maximum) |
| 66 | { |
| 67 | } |
| 68 | |
| 69 | bool DummyAccessor::access_tensor(ITensor &tensor) |
| 70 | { |
| 71 | ARM_COMPUTE_UNUSED(tensor); |
| 72 | bool ret = _maximum == 0 || _iterator < _maximum; |
| 73 | if(_iterator == _maximum) |
| 74 | { |
| 75 | _iterator = 0; |
| 76 | } |
| 77 | else |
| 78 | { |
| 79 | _iterator++; |
| 80 | } |
| 81 | return ret; |
| 82 | } |
| 83 | |
Anthony Barbier | 8a3da6f | 2017-10-23 18:55:17 +0100 | [diff] [blame^] | 84 | PPMAccessor::PPMAccessor(const std::string &ppm_path, bool bgr, float mean_r, float mean_g, float mean_b) |
| 85 | : _ppm_path(ppm_path), _bgr(bgr), _mean_r(mean_r), _mean_g(mean_g), _mean_b(mean_b) |
| 86 | { |
| 87 | } |
| 88 | |
| 89 | bool PPMAccessor::access_tensor(ITensor &tensor) |
| 90 | { |
| 91 | utils::PPMLoader ppm; |
| 92 | const float mean[3] = |
| 93 | { |
| 94 | _bgr ? _mean_b : _mean_r, |
| 95 | _mean_g, |
| 96 | _bgr ? _mean_r : _mean_b |
| 97 | }; |
| 98 | |
| 99 | // Open PPM file |
| 100 | ppm.open(_ppm_path); |
| 101 | |
| 102 | // Fill the tensor with the PPM content (BGR) |
| 103 | ppm.fill_planar_tensor(tensor, _bgr); |
| 104 | |
| 105 | // Subtract the mean value from each channel |
| 106 | Window window; |
| 107 | window.use_tensor_dimensions(tensor.info()->tensor_shape()); |
| 108 | |
| 109 | execute_window_loop(window, [&](const Coordinates & id) |
| 110 | { |
| 111 | const float value = *reinterpret_cast<float *>(tensor.ptr_to_element(id)) - mean[id.z()]; |
| 112 | *reinterpret_cast<float *>(tensor.ptr_to_element(id)) = value; |
| 113 | }); |
| 114 | |
| 115 | return true; |
| 116 | } |
| 117 | |
| 118 | TopNPredictionsAccessor::TopNPredictionsAccessor(const std::string &labels_path, size_t top_n, std::ostream &output_stream) |
| 119 | : _labels(), _output_stream(output_stream), _top_n(top_n) |
| 120 | { |
| 121 | _labels.clear(); |
| 122 | |
| 123 | std::ifstream ifs; |
| 124 | |
| 125 | try |
| 126 | { |
| 127 | ifs.exceptions(std::ifstream::badbit); |
| 128 | ifs.open(labels_path, std::ios::in | std::ios::binary); |
| 129 | |
| 130 | for(std::string line; !std::getline(ifs, line).fail();) |
| 131 | { |
| 132 | _labels.emplace_back(line); |
| 133 | } |
| 134 | } |
| 135 | catch(const std::ifstream::failure &e) |
| 136 | { |
| 137 | ARM_COMPUTE_ERROR("Accessing %s: %s", labels_path.c_str(), e.what()); |
| 138 | } |
| 139 | } |
| 140 | |
| 141 | bool TopNPredictionsAccessor::access_tensor(ITensor &tensor) |
| 142 | { |
| 143 | ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(&tensor, 1, DataType::F32); |
| 144 | ARM_COMPUTE_ERROR_ON(_labels.size() != tensor.info()->dimension(0)); |
| 145 | |
| 146 | // Get the predicted class |
| 147 | std::vector<float> classes_prob; |
| 148 | std::vector<size_t> index; |
| 149 | |
| 150 | const auto output_net = reinterpret_cast<float *>(tensor.buffer() + tensor.info()->offset_first_element_in_bytes()); |
| 151 | const size_t num_classes = tensor.info()->dimension(0); |
| 152 | |
| 153 | classes_prob.resize(num_classes); |
| 154 | index.resize(num_classes); |
| 155 | |
| 156 | std::copy(output_net, output_net + num_classes, classes_prob.begin()); |
| 157 | |
| 158 | // Sort results |
| 159 | std::iota(std::begin(index), std::end(index), static_cast<size_t>(0)); |
| 160 | std::sort(std::begin(index), std::end(index), |
| 161 | [&](size_t a, size_t b) |
| 162 | { |
| 163 | return classes_prob[a] > classes_prob[b]; |
| 164 | }); |
| 165 | |
| 166 | _output_stream << "---------- Top " << _top_n << " predictions ----------" << std::endl |
| 167 | << std::endl; |
| 168 | for(size_t i = 0; i < _top_n; ++i) |
| 169 | { |
| 170 | _output_stream << std::fixed << std::setprecision(4) |
| 171 | << classes_prob[index.at(i)] |
| 172 | << " - [id = " << index.at(i) << "]" |
| 173 | << ", " << _labels[index.at(i)] << std::endl; |
| 174 | } |
| 175 | |
| 176 | return false; |
| 177 | } |
| 178 | |
Kaizen | bf8b01d | 2017-10-12 14:26:51 +0100 | [diff] [blame] | 179 | RandomAccessor::RandomAccessor(PixelValue lower, PixelValue upper, std::random_device::result_type seed) |
| 180 | : _lower(lower), _upper(upper), _seed(seed) |
| 181 | { |
| 182 | } |
| 183 | |
| 184 | template <typename T, typename D> |
| 185 | void RandomAccessor::fill(ITensor &tensor, D &&distribution) |
| 186 | { |
| 187 | std::mt19937 gen(_seed); |
| 188 | |
| 189 | if(tensor.info()->padding().empty()) |
| 190 | { |
| 191 | for(size_t offset = 0; offset < tensor.info()->total_size(); offset += tensor.info()->element_size()) |
| 192 | { |
| 193 | const T value = distribution(gen); |
| 194 | *reinterpret_cast<T *>(tensor.buffer() + offset) = value; |
| 195 | } |
| 196 | } |
| 197 | else |
| 198 | { |
| 199 | // If tensor has padding accessing tensor elements through execution window. |
| 200 | Window window; |
| 201 | window.use_tensor_dimensions(tensor.info()->tensor_shape()); |
| 202 | |
| 203 | execute_window_loop(window, [&](const Coordinates & id) |
| 204 | { |
| 205 | const T value = distribution(gen); |
| 206 | *reinterpret_cast<T *>(tensor.ptr_to_element(id)) = value; |
| 207 | }); |
| 208 | } |
| 209 | } |
| 210 | |
| 211 | bool RandomAccessor::access_tensor(ITensor &tensor) |
| 212 | { |
| 213 | switch(tensor.info()->data_type()) |
| 214 | { |
| 215 | case DataType::U8: |
| 216 | { |
| 217 | std::uniform_int_distribution<uint8_t> distribution_u8(_lower.get<uint8_t>(), _upper.get<uint8_t>()); |
| 218 | fill<uint8_t>(tensor, distribution_u8); |
| 219 | break; |
| 220 | } |
| 221 | case DataType::S8: |
| 222 | case DataType::QS8: |
| 223 | { |
| 224 | std::uniform_int_distribution<int8_t> distribution_s8(_lower.get<int8_t>(), _upper.get<int8_t>()); |
| 225 | fill<int8_t>(tensor, distribution_s8); |
| 226 | break; |
| 227 | } |
| 228 | case DataType::U16: |
| 229 | { |
| 230 | std::uniform_int_distribution<uint16_t> distribution_u16(_lower.get<uint16_t>(), _upper.get<uint16_t>()); |
| 231 | fill<uint16_t>(tensor, distribution_u16); |
| 232 | break; |
| 233 | } |
| 234 | case DataType::S16: |
| 235 | case DataType::QS16: |
| 236 | { |
| 237 | std::uniform_int_distribution<int16_t> distribution_s16(_lower.get<int16_t>(), _upper.get<int16_t>()); |
| 238 | fill<int16_t>(tensor, distribution_s16); |
| 239 | break; |
| 240 | } |
| 241 | case DataType::U32: |
| 242 | { |
| 243 | std::uniform_int_distribution<uint32_t> distribution_u32(_lower.get<uint32_t>(), _upper.get<uint32_t>()); |
| 244 | fill<uint32_t>(tensor, distribution_u32); |
| 245 | break; |
| 246 | } |
| 247 | case DataType::S32: |
| 248 | { |
| 249 | std::uniform_int_distribution<int32_t> distribution_s32(_lower.get<int32_t>(), _upper.get<int32_t>()); |
| 250 | fill<int32_t>(tensor, distribution_s32); |
| 251 | break; |
| 252 | } |
| 253 | case DataType::U64: |
| 254 | { |
| 255 | std::uniform_int_distribution<uint64_t> distribution_u64(_lower.get<uint64_t>(), _upper.get<uint64_t>()); |
| 256 | fill<uint64_t>(tensor, distribution_u64); |
| 257 | break; |
| 258 | } |
| 259 | case DataType::S64: |
| 260 | { |
| 261 | std::uniform_int_distribution<int64_t> distribution_s64(_lower.get<int64_t>(), _upper.get<int64_t>()); |
| 262 | fill<int64_t>(tensor, distribution_s64); |
| 263 | break; |
| 264 | } |
| 265 | case DataType::F16: |
| 266 | { |
| 267 | std::uniform_real_distribution<float> distribution_f16(_lower.get<float>(), _upper.get<float>()); |
| 268 | fill<float>(tensor, distribution_f16); |
| 269 | break; |
| 270 | } |
| 271 | case DataType::F32: |
| 272 | { |
| 273 | std::uniform_real_distribution<float> distribution_f32(_lower.get<float>(), _upper.get<float>()); |
| 274 | fill<float>(tensor, distribution_f32); |
| 275 | break; |
| 276 | } |
| 277 | case DataType::F64: |
| 278 | { |
| 279 | std::uniform_real_distribution<double> distribution_f64(_lower.get<double>(), _upper.get<double>()); |
| 280 | fill<double>(tensor, distribution_f64); |
| 281 | break; |
| 282 | } |
| 283 | default: |
| 284 | ARM_COMPUTE_ERROR("NOT SUPPORTED!"); |
| 285 | } |
| 286 | return true; |
| 287 | } |
| 288 | |
Kaizen | 8938bd3 | 2017-09-28 14:38:23 +0100 | [diff] [blame] | 289 | NumPyBinLoader::NumPyBinLoader(std::string filename) |
| 290 | : _filename(std::move(filename)) |
| 291 | { |
| 292 | } |
| 293 | |
| 294 | bool NumPyBinLoader::access_tensor(ITensor &tensor) |
| 295 | { |
| 296 | const TensorShape tensor_shape = tensor.info()->tensor_shape(); |
| 297 | std::vector<unsigned long> shape; |
| 298 | |
| 299 | // Open file |
| 300 | std::ifstream stream(_filename, std::ios::in | std::ios::binary); |
| 301 | ARM_COMPUTE_ERROR_ON_MSG(!stream.good(), "Failed to load binary data"); |
| 302 | // Check magic bytes and version number |
| 303 | unsigned char v_major = 0; |
| 304 | unsigned char v_minor = 0; |
| 305 | npy::read_magic(stream, &v_major, &v_minor); |
| 306 | |
| 307 | // Read header |
| 308 | std::string header; |
| 309 | if(v_major == 1 && v_minor == 0) |
| 310 | { |
| 311 | header = npy::read_header_1_0(stream); |
| 312 | } |
| 313 | else if(v_major == 2 && v_minor == 0) |
| 314 | { |
| 315 | header = npy::read_header_2_0(stream); |
| 316 | } |
| 317 | else |
| 318 | { |
| 319 | ARM_COMPUTE_ERROR("Unsupported file format version"); |
| 320 | } |
| 321 | |
| 322 | // Parse header |
| 323 | bool fortran_order = false; |
| 324 | std::string typestr; |
| 325 | npy::ParseHeader(header, typestr, &fortran_order, shape); |
| 326 | |
| 327 | // Check if the typestring matches the given one |
| 328 | std::string expect_typestr = arm_compute::utils::get_typestring(tensor.info()->data_type()); |
| 329 | ARM_COMPUTE_ERROR_ON_MSG(typestr != expect_typestr, "Typestrings mismatch"); |
| 330 | |
| 331 | // Validate tensor shape |
| 332 | ARM_COMPUTE_ERROR_ON_MSG(shape.size() != tensor_shape.num_dimensions(), "Tensor ranks mismatch"); |
| 333 | if(fortran_order) |
| 334 | { |
| 335 | for(size_t i = 0; i < shape.size(); ++i) |
| 336 | { |
| 337 | ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[i], "Tensor dimensions mismatch"); |
| 338 | } |
| 339 | } |
| 340 | else |
| 341 | { |
| 342 | for(size_t i = 0; i < shape.size(); ++i) |
| 343 | { |
| 344 | ARM_COMPUTE_ERROR_ON_MSG(tensor_shape[i] != shape[shape.size() - i - 1], "Tensor dimensions mismatch"); |
| 345 | } |
| 346 | } |
| 347 | |
| 348 | // Read data |
| 349 | if(tensor.info()->padding().empty()) |
| 350 | { |
| 351 | // If tensor has no padding read directly from stream. |
| 352 | stream.read(reinterpret_cast<char *>(tensor.buffer()), tensor.info()->total_size()); |
| 353 | } |
| 354 | else |
| 355 | { |
| 356 | // If tensor has padding accessing tensor elements through execution window. |
| 357 | Window window; |
| 358 | window.use_tensor_dimensions(tensor_shape); |
| 359 | |
| 360 | execute_window_loop(window, [&](const Coordinates & id) |
| 361 | { |
| 362 | stream.read(reinterpret_cast<char *>(tensor.ptr_to_element(id)), tensor.info()->element_size()); |
| 363 | }); |
| 364 | } |
| 365 | return true; |
Kaizen | bf8b01d | 2017-10-12 14:26:51 +0100 | [diff] [blame] | 366 | } |