Anthony Barbier | 8140e1e | 2017-12-14 23:48:46 +0000 | [diff] [blame^] | 1 | <!-- HTML header for doxygen 1.8.9.1--> |
| 2 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd"> |
| 3 | <html xmlns="http://www.w3.org/1999/xhtml"> |
| 4 | <head> |
| 5 | <meta http-equiv="Content-Type" content="text/xhtml;charset=UTF-8"/> |
| 6 | <meta http-equiv="X-UA-Compatible" content="IE=9"/> |
| 7 | <meta name="generator" content="Doxygen 1.8.11"/> |
| 8 | <meta name="robots" content="NOINDEX, NOFOLLOW" /> <!-- Prevent indexing by search engines --> |
| 9 | <title>Compute Library: examples/graph_googlenet.cpp File Reference</title> |
| 10 | <link href="tabs.css" rel="stylesheet" type="text/css"/> |
| 11 | <script type="text/javascript" src="jquery.js"></script> |
| 12 | <script type="text/javascript" src="dynsections.js"></script> |
| 13 | <link href="navtree.css" rel="stylesheet" type="text/css"/> |
| 14 | <script type="text/javascript" src="resize.js"></script> |
| 15 | <script type="text/javascript" src="navtreedata.js"></script> |
| 16 | <script type="text/javascript" src="navtree.js"></script> |
| 17 | <script type="text/javascript"> |
| 18 | $(document).ready(initResizable); |
| 19 | $(window).load(resizeHeight); |
| 20 | </script> |
| 21 | <link href="search/search.css" rel="stylesheet" type="text/css"/> |
| 22 | <script type="text/javascript" src="search/searchdata.js"></script> |
| 23 | <script type="text/javascript" src="search/search.js"></script> |
| 24 | <script type="text/javascript"> |
| 25 | $(document).ready(function() { init_search(); }); |
| 26 | </script> |
| 27 | <script type="text/x-mathjax-config"> |
| 28 | MathJax.Hub.Config({ |
| 29 | extensions: ["tex2jax.js"], |
| 30 | jax: ["input/TeX","output/HTML-CSS"], |
| 31 | }); |
| 32 | </script><script type="text/javascript" src="http://cdn.mathjax.org/mathjax/latest/MathJax.js"></script> |
| 33 | <link href="doxygen.css" rel="stylesheet" type="text/css" /> |
| 34 | </head> |
| 35 | <body> |
| 36 | <div id="top"><!-- do not remove this div, it is closed by doxygen! --> |
| 37 | <div id="titlearea"> |
| 38 | <table cellspacing="0" cellpadding="0"> |
| 39 | <tbody> |
| 40 | <tr style="height: 56px;"> |
| 41 | <td style="padding-left: 0.5em;"> |
| 42 | <div id="projectname">Compute Library |
| 43 |  <span id="projectnumber">17.12</span> |
| 44 | </div> |
| 45 | </td> |
| 46 | </tr> |
| 47 | </tbody> |
| 48 | </table> |
| 49 | </div> |
| 50 | <!-- end header part --> |
| 51 | <!-- Generated by Doxygen 1.8.11 --> |
| 52 | <script type="text/javascript"> |
| 53 | var searchBox = new SearchBox("searchBox", "search",false,'Search'); |
| 54 | </script> |
| 55 | <div id="navrow1" class="tabs"> |
| 56 | <ul class="tablist"> |
| 57 | <li><a href="index.xhtml"><span>Main Page</span></a></li> |
| 58 | <li><a href="pages.xhtml"><span>Related Pages</span></a></li> |
| 59 | <li><a href="namespaces.xhtml"><span>Namespaces</span></a></li> |
| 60 | <li><a href="annotated.xhtml"><span>Data Structures</span></a></li> |
| 61 | <li class="current"><a href="files.xhtml"><span>Files</span></a></li> |
| 62 | <li> |
| 63 | <div id="MSearchBox" class="MSearchBoxInactive"> |
| 64 | <span class="left"> |
| 65 | <img id="MSearchSelect" src="search/mag_sel.png" |
| 66 | onmouseover="return searchBox.OnSearchSelectShow()" |
| 67 | onmouseout="return searchBox.OnSearchSelectHide()" |
| 68 | alt=""/> |
| 69 | <input type="text" id="MSearchField" value="Search" accesskey="S" |
| 70 | onfocus="searchBox.OnSearchFieldFocus(true)" |
| 71 | onblur="searchBox.OnSearchFieldFocus(false)" |
| 72 | onkeyup="searchBox.OnSearchFieldChange(event)"/> |
| 73 | </span><span class="right"> |
| 74 | <a id="MSearchClose" href="javascript:searchBox.CloseResultsWindow()"><img id="MSearchCloseImg" border="0" src="search/close.png" alt=""/></a> |
| 75 | </span> |
| 76 | </div> |
| 77 | </li> |
| 78 | </ul> |
| 79 | </div> |
| 80 | <div id="navrow2" class="tabs2"> |
| 81 | <ul class="tablist"> |
| 82 | <li><a href="files.xhtml"><span>File List</span></a></li> |
| 83 | <li><a href="globals.xhtml"><span>Globals</span></a></li> |
| 84 | </ul> |
| 85 | </div> |
| 86 | </div><!-- top --> |
| 87 | <div id="side-nav" class="ui-resizable side-nav-resizable"> |
| 88 | <div id="nav-tree"> |
| 89 | <div id="nav-tree-contents"> |
| 90 | <div id="nav-sync" class="sync"></div> |
| 91 | </div> |
| 92 | </div> |
| 93 | <div id="splitbar" style="-moz-user-select:none;" |
| 94 | class="ui-resizable-handle"> |
| 95 | </div> |
| 96 | </div> |
| 97 | <script type="text/javascript"> |
| 98 | $(document).ready(function(){initNavTree('graph__googlenet_8cpp.xhtml','');}); |
| 99 | </script> |
| 100 | <div id="doc-content"> |
| 101 | <!-- window showing the filter options --> |
| 102 | <div id="MSearchSelectWindow" |
| 103 | onmouseover="return searchBox.OnSearchSelectShow()" |
| 104 | onmouseout="return searchBox.OnSearchSelectHide()" |
| 105 | onkeydown="return searchBox.OnSearchSelectKey(event)"> |
| 106 | </div> |
| 107 | |
| 108 | <!-- iframe showing the search results (closed by default) --> |
| 109 | <div id="MSearchResultsWindow"> |
| 110 | <iframe src="javascript:void(0)" frameborder="0" |
| 111 | name="MSearchResults" id="MSearchResults"> |
| 112 | </iframe> |
| 113 | </div> |
| 114 | |
| 115 | <div class="header"> |
| 116 | <div class="summary"> |
| 117 | <a href="#func-members">Functions</a> </div> |
| 118 | <div class="headertitle"> |
| 119 | <div class="title">graph_googlenet.cpp File Reference</div> </div> |
| 120 | </div><!--header--> |
| 121 | <div class="contents"> |
| 122 | <div class="textblock"><code>#include "<a class="el" href="_graph_8h_source.xhtml">arm_compute/graph/Graph.h</a>"</code><br /> |
| 123 | <code>#include "<a class="el" href="_nodes_8h_source.xhtml">arm_compute/graph/Nodes.h</a>"</code><br /> |
| 124 | <code>#include "<a class="el" href="_sub_graph_8h_source.xhtml">arm_compute/graph/SubGraph.h</a>"</code><br /> |
| 125 | <code>#include "<a class="el" href="_toolchain_support_8h_source.xhtml">support/ToolchainSupport.h</a>"</code><br /> |
| 126 | <code>#include "<a class="el" href="_graph_utils_8h_source.xhtml">utils/GraphUtils.h</a>"</code><br /> |
| 127 | <code>#include "<a class="el" href="utils_2_utils_8h_source.xhtml">utils/Utils.h</a>"</code><br /> |
| 128 | <code>#include <cstdlib></code><br /> |
| 129 | <code>#include <tuple></code><br /> |
| 130 | </div> |
| 131 | <p><a href="graph__googlenet_8cpp_source.xhtml">Go to the source code of this file.</a></p> |
| 132 | <table class="memberdecls"> |
| 133 | <tr class="heading"><td colspan="2"><h2 class="groupheader"><a name="func-members"></a> |
| 134 | Functions</h2></td></tr> |
| 135 | <tr class="memitem:af705498cb98cd0e38e84b36e0b0fdd4e"><td class="memItemLeft" align="right" valign="top">void </td><td class="memItemRight" valign="bottom"><a class="el" href="graph__googlenet_8cpp.xhtml#af705498cb98cd0e38e84b36e0b0fdd4e">main_graph_googlenet</a> (int argc, const char **argv)</td></tr> |
| 136 | <tr class="memdesc:af705498cb98cd0e38e84b36e0b0fdd4e"><td class="mdescLeft"> </td><td class="mdescRight">Example demonstrating how to implement Googlenet's network using the Compute Library's graph API. <a href="#af705498cb98cd0e38e84b36e0b0fdd4e">More...</a><br /></td></tr> |
| 137 | <tr class="separator:af705498cb98cd0e38e84b36e0b0fdd4e"><td class="memSeparator" colspan="2"> </td></tr> |
| 138 | <tr class="memitem:a217dbf8b442f20279ea00b898af96f52"><td class="memItemLeft" align="right" valign="top">int </td><td class="memItemRight" valign="bottom"><a class="el" href="graph__googlenet_8cpp.xhtml#a217dbf8b442f20279ea00b898af96f52">main</a> (int argc, const char **argv)</td></tr> |
| 139 | <tr class="memdesc:a217dbf8b442f20279ea00b898af96f52"><td class="mdescLeft"> </td><td class="mdescRight">Main program for Googlenet. <a href="#a217dbf8b442f20279ea00b898af96f52">More...</a><br /></td></tr> |
| 140 | <tr class="separator:a217dbf8b442f20279ea00b898af96f52"><td class="memSeparator" colspan="2"> </td></tr> |
| 141 | </table> |
| 142 | <h2 class="groupheader">Function Documentation</h2> |
| 143 | <a class="anchor" id="a217dbf8b442f20279ea00b898af96f52"></a> |
| 144 | <div class="memitem"> |
| 145 | <div class="memproto"> |
| 146 | <table class="memname"> |
| 147 | <tr> |
| 148 | <td class="memname">int main </td> |
| 149 | <td>(</td> |
| 150 | <td class="paramtype">int </td> |
| 151 | <td class="paramname"><em>argc</em>, </td> |
| 152 | </tr> |
| 153 | <tr> |
| 154 | <td class="paramkey"></td> |
| 155 | <td></td> |
| 156 | <td class="paramtype">const char ** </td> |
| 157 | <td class="paramname"><em>argv</em> </td> |
| 158 | </tr> |
| 159 | <tr> |
| 160 | <td></td> |
| 161 | <td>)</td> |
| 162 | <td></td><td></td> |
| 163 | </tr> |
| 164 | </table> |
| 165 | </div><div class="memdoc"> |
| 166 | |
| 167 | <p>Main program for Googlenet. </p> |
| 168 | <dl class="params"><dt>Parameters</dt><dd> |
| 169 | <table class="params"> |
| 170 | <tr><td class="paramdir">[in]</td><td class="paramname">argc</td><td>Number of arguments </td></tr> |
| 171 | <tr><td class="paramdir">[in]</td><td class="paramname">argv</td><td>Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels ) </td></tr> |
| 172 | </table> |
| 173 | </dd> |
| 174 | </dl> |
| 175 | |
| 176 | <p>Definition at line <a class="el" href="graph__googlenet_8cpp_source.xhtml#l00201">201</a> of file <a class="el" href="graph__googlenet_8cpp_source.xhtml">graph_googlenet.cpp</a>.</p> |
| 177 | |
| 178 | <p>References <a class="el" href="graph__googlenet_8cpp_source.xhtml#l00100">main_graph_googlenet()</a>, and <a class="el" href="utils_2_utils_8cpp_source.xhtml#l00069">arm_compute::utils::run_example()</a>.</p> |
| 179 | <div class="fragment"><div class="line"><a name="l00202"></a><span class="lineno"> 202</span> {</div><div class="line"><a name="l00203"></a><span class="lineno"> 203</span>  <span class="keywordflow">return</span> <a class="code" href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a>(argc, argv, <a class="code" href="graph__googlenet_8cpp.xhtml#af705498cb98cd0e38e84b36e0b0fdd4e">main_graph_googlenet</a>);</div><div class="line"><a name="l00204"></a><span class="lineno"> 204</span> }</div><div class="ttc" id="namespacearm__compute_1_1utils_xhtml_a4c9395db2c8b8d0c336656a7b58fca3e"><div class="ttname"><a href="namespacearm__compute_1_1utils.xhtml#a4c9395db2c8b8d0c336656a7b58fca3e">arm_compute::utils::run_example</a></div><div class="ttdeci">int run_example(int argc, const char **argv, example &func)</div><div class="ttdoc">Run an example and handle the potential exceptions it throws. </div><div class="ttdef"><b>Definition:</b> <a href="utils_2_utils_8cpp_source.xhtml#l00069">Utils.cpp:69</a></div></div> |
| 180 | <div class="ttc" id="graph__googlenet_8cpp_xhtml_af705498cb98cd0e38e84b36e0b0fdd4e"><div class="ttname"><a href="graph__googlenet_8cpp.xhtml#af705498cb98cd0e38e84b36e0b0fdd4e">main_graph_googlenet</a></div><div class="ttdeci">void main_graph_googlenet(int argc, const char **argv)</div><div class="ttdoc">Example demonstrating how to implement Googlenet&#39;s network using the Compute Library&#39;s graph API...</div><div class="ttdef"><b>Definition:</b> <a href="graph__googlenet_8cpp_source.xhtml#l00100">graph_googlenet.cpp:100</a></div></div> |
| 181 | </div><!-- fragment --> |
| 182 | </div> |
| 183 | </div> |
| 184 | <a class="anchor" id="af705498cb98cd0e38e84b36e0b0fdd4e"></a> |
| 185 | <div class="memitem"> |
| 186 | <div class="memproto"> |
| 187 | <table class="memname"> |
| 188 | <tr> |
| 189 | <td class="memname">void main_graph_googlenet </td> |
| 190 | <td>(</td> |
| 191 | <td class="paramtype">int </td> |
| 192 | <td class="paramname"><em>argc</em>, </td> |
| 193 | </tr> |
| 194 | <tr> |
| 195 | <td class="paramkey"></td> |
| 196 | <td></td> |
| 197 | <td class="paramtype">const char ** </td> |
| 198 | <td class="paramname"><em>argv</em> </td> |
| 199 | </tr> |
| 200 | <tr> |
| 201 | <td></td> |
| 202 | <td>)</td> |
| 203 | <td></td><td></td> |
| 204 | </tr> |
| 205 | </table> |
| 206 | </div><div class="memdoc"> |
| 207 | |
| 208 | <p>Example demonstrating how to implement Googlenet's network using the Compute Library's graph API. </p> |
| 209 | <dl class="params"><dt>Parameters</dt><dd> |
| 210 | <table class="params"> |
| 211 | <tr><td class="paramdir">[in]</td><td class="paramname">argc</td><td>Number of arguments </td></tr> |
| 212 | <tr><td class="paramdir">[in]</td><td class="paramname">argv</td><td>Arguments ( [optional] Target (0 = NEON, 1 = OpenCL), [optional] Path to the weights folder, [optional] image, [optional] labels ) </td></tr> |
| 213 | </table> |
| 214 | </dd> |
| 215 | </dl> |
| 216 | |
| 217 | <p>Definition at line <a class="el" href="graph__googlenet_8cpp_source.xhtml#l00100">100</a> of file <a class="el" href="graph__googlenet_8cpp_source.xhtml">graph_googlenet.cpp</a>.</p> |
| 218 | |
| 219 | <p>References <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a041485a3394541feee82a34d40249d70">arm_compute::graph::ActivationLayer</a>, <a class="el" href="namespacearm__compute.xhtml#a9172da722f0a434e5cc07c0a3c115d93afcefd647d6a866603c627b11347c707a">arm_compute::AVG</a>, <a class="el" href="namespacearm__compute.xhtml#a1fece1bd804e64f39f602d1c3969849aa5bdce8e6d9dc3efbbd31e90a8a181dff">arm_compute::CEIL</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047aa252659b59a03bc61e5ec827ab4448b7">arm_compute::graph::ConvolutionLayer</a>, <a class="el" href="namespacearm__compute.xhtml#ad4bb8dabdbf8ad75e34220cc666b59caa980fef040549733973683b1a868f96e5">arm_compute::CROSS_MAP</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2a4c5d06b02c97731aaa976179c62dcf76">arm_compute::graph::DIRECT</a>, <a class="el" href="namespacearm__compute.xhtml#ab4e88c89b3b7ea1735996cc4def22d58a44ad4ef5a76e6aa6fb3e3fa079a54fda">arm_compute::F32</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a658061ff1dac70c02116fae6c044da1a">arm_compute::graph::FullyConnectedLayer</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2a5174aac3927faa9ee34befb7fc87a9e3">arm_compute::graph::GEMM</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00212">arm_compute::graph_utils::get_input_accessor()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00254">arm_compute::graph_utils::get_output_accessor()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00189">arm_compute::graph_utils::get_weights_accessor()</a>, <a class="el" href="namespacearm__compute.xhtml#adf2ced65e536375a1c96425d9fced858a26a4b44a837bf97b972628509912b4a5">arm_compute::MAX</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a8d5e69e9a697c2007e241eb413c9833bacaf162e9233294cadf62d2a71a14ca09">arm_compute::graph::NEON</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a227ecc6e858c8d1f61664f1967173bea">arm_compute::graph::NormalizationLayer</a>, <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047aea068ae5aae640d018c4300bc7619575">arm_compute::graph::PoolingLayer</a>, <a class="el" href="classarm__compute_1_1_activation_layer_info.xhtml#a56297e0f7b215eea46c818cb7528d9eaad346bb4679d29be241279f15d7795c1c">ActivationLayerInfo::RELU</a>, <a class="el" href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">Graph::run()</a>, <a class="el" href="_graph_utils_8h_source.xhtml#l00230">arm_compute::graph_utils::set_target_hint()</a>, and <a class="el" href="namespacearm__compute_1_1graph.xhtml#a9a2c9c31d675b34f6ec35cc1ca89e047a4a9567bc4a6c28a527c973010eaf9a25">arm_compute::graph::SoftmaxLayer</a>.</p> |
| 220 | |
| 221 | <p>Referenced by <a class="el" href="graph__googlenet_8cpp_source.xhtml#l00201">main()</a>.</p> |
| 222 | <div class="fragment"><div class="line"><a name="l00101"></a><span class="lineno"> 101</span> {</div><div class="line"><a name="l00102"></a><span class="lineno"> 102</span>  std::string data_path; <span class="comment">/* Path to the trainable data */</span></div><div class="line"><a name="l00103"></a><span class="lineno"> 103</span>  std::string image; <span class="comment">/* Image data */</span></div><div class="line"><a name="l00104"></a><span class="lineno"> 104</span>  std::string label; <span class="comment">/* Label data */</span></div><div class="line"><a name="l00105"></a><span class="lineno"> 105</span> </div><div class="line"><a name="l00106"></a><span class="lineno"> 106</span>  constexpr <span class="keywordtype">float</span> mean_r = 122.68f; <span class="comment">/* Mean value to subtract from red channel */</span></div><div class="line"><a name="l00107"></a><span class="lineno"> 107</span>  constexpr <span class="keywordtype">float</span> mean_g = 116.67f; <span class="comment">/* Mean value to subtract from green channel */</span></div><div class="line"><a name="l00108"></a><span class="lineno"> 108</span>  constexpr <span class="keywordtype">float</span> mean_b = 104.01f; <span class="comment">/* Mean value to subtract from blue channel */</span></div><div class="line"><a name="l00109"></a><span class="lineno"> 109</span> </div><div class="line"><a name="l00110"></a><span class="lineno"> 110</span>  <span class="comment">// Set target. 0 (NEON), 1 (OpenCL). By default it is NEON</span></div><div class="line"><a name="l00111"></a><span class="lineno"> 111</span>  <a class="code" href="namespacearm__compute_1_1graph.xhtml#a8d5e69e9a697c2007e241eb413c9833b">TargetHint</a> target_hint = <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a9216738b309b6b230b7ba8bca5ba7477">set_target_hint</a>(argc > 1 ? std::strtol(argv[1], <span class="keyword">nullptr</span>, 10) : 0);</div><div class="line"><a name="l00112"></a><span class="lineno"> 112</span>  <a class="code" href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2">ConvolutionMethodHint</a> convolution_hint = target_hint == TargetHint::NEON ? ConvolutionMethodHint::GEMM : ConvolutionMethodHint::DIRECT;</div><div class="line"><a name="l00113"></a><span class="lineno"> 113</span> </div><div class="line"><a name="l00114"></a><span class="lineno"> 114</span>  <span class="comment">// Parse arguments</span></div><div class="line"><a name="l00115"></a><span class="lineno"> 115</span>  <span class="keywordflow">if</span>(argc < 2)</div><div class="line"><a name="l00116"></a><span class="lineno"> 116</span>  {</div><div class="line"><a name="l00117"></a><span class="lineno"> 117</span>  <span class="comment">// Print help</span></div><div class="line"><a name="l00118"></a><span class="lineno"> 118</span>  std::cout << <span class="stringliteral">"Usage: "</span> << argv[0] << <span class="stringliteral">" [target] [path_to_data] [image] [labels]\n\n"</span>;</div><div class="line"><a name="l00119"></a><span class="lineno"> 119</span>  std::cout << <span class="stringliteral">"No data folder provided: using random values\n\n"</span>;</div><div class="line"><a name="l00120"></a><span class="lineno"> 120</span>  }</div><div class="line"><a name="l00121"></a><span class="lineno"> 121</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 2)</div><div class="line"><a name="l00122"></a><span class="lineno"> 122</span>  {</div><div class="line"><a name="l00123"></a><span class="lineno"> 123</span>  std::cout << <span class="stringliteral">"Usage: "</span> << argv[0] << <span class="stringliteral">" "</span> << argv[1] << <span class="stringliteral">" [path_to_data] [image] [labels]\n\n"</span>;</div><div class="line"><a name="l00124"></a><span class="lineno"> 124</span>  std::cout << <span class="stringliteral">"No data folder provided: using random values\n\n"</span>;</div><div class="line"><a name="l00125"></a><span class="lineno"> 125</span>  }</div><div class="line"><a name="l00126"></a><span class="lineno"> 126</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 3)</div><div class="line"><a name="l00127"></a><span class="lineno"> 127</span>  {</div><div class="line"><a name="l00128"></a><span class="lineno"> 128</span>  data_path = argv[2];</div><div class="line"><a name="l00129"></a><span class="lineno"> 129</span>  std::cout << <span class="stringliteral">"Usage: "</span> << argv[0] << <span class="stringliteral">" "</span> << argv[1] << <span class="stringliteral">" "</span> << argv[2] << <span class="stringliteral">" [image] [labels]\n\n"</span>;</div><div class="line"><a name="l00130"></a><span class="lineno"> 130</span>  std::cout << <span class="stringliteral">"No image provided: using random values\n\n"</span>;</div><div class="line"><a name="l00131"></a><span class="lineno"> 131</span>  }</div><div class="line"><a name="l00132"></a><span class="lineno"> 132</span>  <span class="keywordflow">else</span> <span class="keywordflow">if</span>(argc == 4)</div><div class="line"><a name="l00133"></a><span class="lineno"> 133</span>  {</div><div class="line"><a name="l00134"></a><span class="lineno"> 134</span>  data_path = argv[2];</div><div class="line"><a name="l00135"></a><span class="lineno"> 135</span>  image = argv[3];</div><div class="line"><a name="l00136"></a><span class="lineno"> 136</span>  std::cout << <span class="stringliteral">"Usage: "</span> << argv[0] << <span class="stringliteral">" "</span> << argv[1] << <span class="stringliteral">" "</span> << argv[2] << <span class="stringliteral">" "</span> << argv[3] << <span class="stringliteral">" [labels]\n\n"</span>;</div><div class="line"><a name="l00137"></a><span class="lineno"> 137</span>  std::cout << <span class="stringliteral">"No text file with labels provided: skipping output accessor\n\n"</span>;</div><div class="line"><a name="l00138"></a><span class="lineno"> 138</span>  }</div><div class="line"><a name="l00139"></a><span class="lineno"> 139</span>  <span class="keywordflow">else</span></div><div class="line"><a name="l00140"></a><span class="lineno"> 140</span>  {</div><div class="line"><a name="l00141"></a><span class="lineno"> 141</span>  data_path = argv[2];</div><div class="line"><a name="l00142"></a><span class="lineno"> 142</span>  image = argv[3];</div><div class="line"><a name="l00143"></a><span class="lineno"> 143</span>  label = argv[4];</div><div class="line"><a name="l00144"></a><span class="lineno"> 144</span>  }</div><div class="line"><a name="l00145"></a><span class="lineno"> 145</span> </div><div class="line"><a name="l00146"></a><span class="lineno"> 146</span>  <a class="code" href="classarm__compute_1_1graph_1_1_graph.xhtml">Graph</a> graph;</div><div class="line"><a name="l00147"></a><span class="lineno"> 147</span> </div><div class="line"><a name="l00148"></a><span class="lineno"> 148</span>  graph << target_hint</div><div class="line"><a name="l00149"></a><span class="lineno"> 149</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_tensor.xhtml">Tensor</a>(<a class="code" href="classarm__compute_1_1_tensor_info.xhtml">TensorInfo</a>(<a class="code" href="classarm__compute_1_1_tensor_shape.xhtml">TensorShape</a>(224U, 224U, 3U, 1U), 1, DataType::F32),</div><div class="line"><a name="l00150"></a><span class="lineno"> 150</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#aedce0421da328fb2aaae190aede068e1">get_input_accessor</a>(image, mean_r, mean_g, mean_b))</div><div class="line"><a name="l00151"></a><span class="lineno"> 151</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00152"></a><span class="lineno"> 152</span>  7U, 7U, 64U,</div><div class="line"><a name="l00153"></a><span class="lineno"> 153</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv1/conv1_7x7_s2_w.npy"</span>),</div><div class="line"><a name="l00154"></a><span class="lineno"> 154</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv1/conv1_7x7_s2_b.npy"</span>),</div><div class="line"><a name="l00155"></a><span class="lineno"> 155</span>  <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 3, 3))</div><div class="line"><a name="l00156"></a><span class="lineno"> 156</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00157"></a><span class="lineno"> 157</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 3, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0, DimensionRoundingType::CEIL)))</div><div class="line"><a name="l00158"></a><span class="lineno"> 158</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_normalization_layer.xhtml">NormalizationLayer</a>(<a class="code" href="classarm__compute_1_1_normalization_layer_info.xhtml">NormalizationLayerInfo</a>(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))</div><div class="line"><a name="l00159"></a><span class="lineno"> 159</span>  << convolution_hint</div><div class="line"><a name="l00160"></a><span class="lineno"> 160</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00161"></a><span class="lineno"> 161</span>  1U, 1U, 64U,</div><div class="line"><a name="l00162"></a><span class="lineno"> 162</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_w.npy"</span>),</div><div class="line"><a name="l00163"></a><span class="lineno"> 163</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv2/conv2_3x3_reduce_b.npy"</span>),</div><div class="line"><a name="l00164"></a><span class="lineno"> 164</span>  <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 0, 0))</div><div class="line"><a name="l00165"></a><span class="lineno"> 165</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00166"></a><span class="lineno"> 166</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">ConvolutionLayer</a>(</div><div class="line"><a name="l00167"></a><span class="lineno"> 167</span>  3U, 3U, 192U,</div><div class="line"><a name="l00168"></a><span class="lineno"> 168</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv2/conv2_3x3_w.npy"</span>),</div><div class="line"><a name="l00169"></a><span class="lineno"> 169</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/conv2/conv2_3x3_b.npy"</span>),</div><div class="line"><a name="l00170"></a><span class="lineno"> 170</span>  <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 1, 1))</div><div class="line"><a name="l00171"></a><span class="lineno"> 171</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">ActivationLayer</a>(<a class="code" href="classarm__compute_1_1_activation_layer_info.xhtml">ActivationLayerInfo</a>(ActivationLayerInfo::ActivationFunction::RELU))</div><div class="line"><a name="l00172"></a><span class="lineno"> 172</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_normalization_layer.xhtml">NormalizationLayer</a>(<a class="code" href="classarm__compute_1_1_normalization_layer_info.xhtml">NormalizationLayerInfo</a>(NormType::CROSS_MAP, 5, 0.0001f, 0.75f))</div><div class="line"><a name="l00173"></a><span class="lineno"> 173</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 3, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0, DimensionRoundingType::CEIL)))</div><div class="line"><a name="l00174"></a><span class="lineno"> 174</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_3a"</span>, 64, std::make_tuple(96U, 128U), std::make_tuple(16U, 32U), 32U)</div><div class="line"><a name="l00175"></a><span class="lineno"> 175</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_3b"</span>, 128, std::make_tuple(128U, 192U), std::make_tuple(32U, 96U), 64U)</div><div class="line"><a name="l00176"></a><span class="lineno"> 176</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 3, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0, DimensionRoundingType::CEIL)))</div><div class="line"><a name="l00177"></a><span class="lineno"> 177</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_4a"</span>, 192, std::make_tuple(96U, 208U), std::make_tuple(16U, 48U), 64U)</div><div class="line"><a name="l00178"></a><span class="lineno"> 178</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_4b"</span>, 160, std::make_tuple(112U, 224U), std::make_tuple(24U, 64U), 64U)</div><div class="line"><a name="l00179"></a><span class="lineno"> 179</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_4c"</span>, 128, std::make_tuple(128U, 256U), std::make_tuple(24U, 64U), 64U)</div><div class="line"><a name="l00180"></a><span class="lineno"> 180</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_4d"</span>, 112, std::make_tuple(144U, 288U), std::make_tuple(32U, 64U), 64U)</div><div class="line"><a name="l00181"></a><span class="lineno"> 181</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_4e"</span>, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U)</div><div class="line"><a name="l00182"></a><span class="lineno"> 182</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::MAX, 3, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(2, 2, 0, 0, DimensionRoundingType::CEIL)))</div><div class="line"><a name="l00183"></a><span class="lineno"> 183</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_5a"</span>, 256, std::make_tuple(160U, 320U), std::make_tuple(32U, 128U), 128U)</div><div class="line"><a name="l00184"></a><span class="lineno"> 184</span>  << get_inception_node(data_path, <span class="stringliteral">"inception_5b"</span>, 384, std::make_tuple(192U, 384U), std::make_tuple(48U, 128U), 128U)</div><div class="line"><a name="l00185"></a><span class="lineno"> 185</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">PoolingLayer</a>(<a class="code" href="classarm__compute_1_1_pooling_layer_info.xhtml">PoolingLayerInfo</a>(PoolingType::AVG, 7, <a class="code" href="classarm__compute_1_1_pad_stride_info.xhtml">PadStrideInfo</a>(1, 1, 0, 0, DimensionRoundingType::CEIL)))</div><div class="line"><a name="l00186"></a><span class="lineno"> 186</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">FullyConnectedLayer</a>(</div><div class="line"><a name="l00187"></a><span class="lineno"> 187</span>  1000U,</div><div class="line"><a name="l00188"></a><span class="lineno"> 188</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/loss3/loss3_classifier_w.npy"</span>),</div><div class="line"><a name="l00189"></a><span class="lineno"> 189</span>  <a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">get_weights_accessor</a>(data_path, <span class="stringliteral">"/cnn_data/googlenet_model/loss3/loss3_classifier_b.npy"</span>))</div><div class="line"><a name="l00190"></a><span class="lineno"> 190</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_softmax_layer.xhtml">SoftmaxLayer</a>()</div><div class="line"><a name="l00191"></a><span class="lineno"> 191</span>  << <a class="code" href="classarm__compute_1_1graph_1_1_tensor.xhtml">Tensor</a>(<a class="code" href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">get_output_accessor</a>(label, 5));</div><div class="line"><a name="l00192"></a><span class="lineno"> 192</span> </div><div class="line"><a name="l00193"></a><span class="lineno"> 193</span>  graph.<a class="code" href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">run</a>();</div><div class="line"><a name="l00194"></a><span class="lineno"> 194</span> }</div><div class="ttc" id="classarm__compute_1_1_tensor_shape_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_shape.xhtml">arm_compute::TensorShape</a></div><div class="ttdoc">Shape of a tensor. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_shape_8h_source.xhtml#l00038">TensorShape.h:38</a></div></div> |
| 223 | <div class="ttc" id="classarm__compute_1_1graph_1_1_fully_connected_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_fully_connected_layer.xhtml">arm_compute::graph::FullyConnectedLayer</a></div><div class="ttdoc">Fully connected layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_fully_connected_layer_8h_source.xhtml#l00038">FullyConnectedLayer.h:38</a></div></div> |
| 224 | <div class="ttc" id="classarm__compute_1_1graph_1_1_graph_xhtml_a13a43e6d814de94978c515cb084873b1"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_graph.xhtml#a13a43e6d814de94978c515cb084873b1">arm_compute::graph::Graph::run</a></div><div class="ttdeci">void run()</div><div class="ttdoc">Executes the graph. </div></div> |
| 225 | <div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_aaf0c8eff756108c8bb23aecf51d44f79"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#aaf0c8eff756108c8bb23aecf51d44f79">arm_compute::graph_utils::get_output_accessor</a></div><div class="ttdeci">std::unique_ptr< graph::ITensorAccessor > get_output_accessor(const std::string &labels_path, size_t top_n=5, std::ostream &output_stream=std::cout)</div><div class="ttdoc">Generates appropriate output accessor according to the specified labels_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00254">GraphUtils.h:254</a></div></div> |
| 226 | <div class="ttc" id="classarm__compute_1_1_normalization_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_normalization_layer_info.xhtml">arm_compute::NormalizationLayerInfo</a></div><div class="ttdoc">Normalization Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00700">Types.h:700</a></div></div> |
| 227 | <div class="ttc" id="classarm__compute_1_1_activation_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_activation_layer_info.xhtml">arm_compute::ActivationLayerInfo</a></div><div class="ttdoc">Activation Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00650">Types.h:650</a></div></div> |
| 228 | <div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_aedce0421da328fb2aaae190aede068e1"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#aedce0421da328fb2aaae190aede068e1">arm_compute::graph_utils::get_input_accessor</a></div><div class="ttdeci">std::unique_ptr< graph::ITensorAccessor > get_input_accessor(const std::string &ppm_path, float mean_r, float mean_g, float mean_b)</div><div class="ttdoc">Generates appropriate input accessor according to the specified ppm_path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00212">GraphUtils.h:212</a></div></div> |
| 229 | <div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a9216738b309b6b230b7ba8bca5ba7477"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a9216738b309b6b230b7ba8bca5ba7477">arm_compute::graph_utils::set_target_hint</a></div><div class="ttdeci">graph::TargetHint set_target_hint(int target)</div><div class="ttdoc">Utility function to return the TargetHint. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00230">GraphUtils.h:230</a></div></div> |
| 230 | <div class="ttc" id="namespacearm__compute_1_1graph__utils_xhtml_a73a37a4970294106ed22e8f916ef3810"><div class="ttname"><a href="namespacearm__compute_1_1graph__utils.xhtml#a73a37a4970294106ed22e8f916ef3810">arm_compute::graph_utils::get_weights_accessor</a></div><div class="ttdeci">std::unique_ptr< graph::ITensorAccessor > get_weights_accessor(const std::string &path, const std::string &data_file)</div><div class="ttdoc">Generates appropriate weights accessor according to the specified path. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_utils_8h_source.xhtml#l00189">GraphUtils.h:189</a></div></div> |
| 231 | <div class="ttc" id="classarm__compute_1_1graph_1_1_normalization_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_normalization_layer.xhtml">arm_compute::graph::NormalizationLayer</a></div><div class="ttdoc">Normalization layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_normalization_layer_8h_source.xhtml#l00037">NormalizationLayer.h:37</a></div></div> |
| 232 | <div class="ttc" id="namespacearm__compute_1_1graph_xhtml_a9a92cf6a83b4d54786334cc37a7391a2"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#a9a92cf6a83b4d54786334cc37a7391a2">arm_compute::graph::ConvolutionMethodHint</a></div><div class="ttdeci">ConvolutionMethodHint</div><div class="ttdoc">Convolution method hint to the graph executor. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00084">Types.h:84</a></div></div> |
| 233 | <div class="ttc" id="classarm__compute_1_1_pad_stride_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pad_stride_info.xhtml">arm_compute::PadStrideInfo</a></div><div class="ttdoc">Padding and stride information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00460">Types.h:460</a></div></div> |
| 234 | <div class="ttc" id="classarm__compute_1_1graph_1_1_softmax_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_softmax_layer.xhtml">arm_compute::graph::SoftmaxLayer</a></div><div class="ttdoc">Softmax layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_softmax_layer_8h_source.xhtml#l00036">SoftmaxLayer.h:36</a></div></div> |
| 235 | <div class="ttc" id="classarm__compute_1_1graph_1_1_graph_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_graph.xhtml">arm_compute::graph::Graph</a></div><div class="ttdoc">Graph class. </div><div class="ttdef"><b>Definition:</b> <a href="_graph_8h_source.xhtml#l00043">Graph.h:43</a></div></div> |
| 236 | <div class="ttc" id="classarm__compute_1_1graph_1_1_pooling_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_pooling_layer.xhtml">arm_compute::graph::PoolingLayer</a></div><div class="ttdoc">Pooling layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_pooling_layer_8h_source.xhtml#l00037">PoolingLayer.h:37</a></div></div> |
| 237 | <div class="ttc" id="namespacearm__compute_1_1graph_xhtml_a8d5e69e9a697c2007e241eb413c9833b"><div class="ttname"><a href="namespacearm__compute_1_1graph.xhtml#a8d5e69e9a697c2007e241eb413c9833b">arm_compute::graph::TargetHint</a></div><div class="ttdeci">TargetHint</div><div class="ttdoc">< Execution hint to the graph executor </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2_types_8h_source.xhtml#l00076">Types.h:76</a></div></div> |
| 238 | <div class="ttc" id="classarm__compute_1_1_tensor_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_tensor_info.xhtml">arm_compute::TensorInfo</a></div><div class="ttdoc">Store the tensor&#39;s metadata. </div><div class="ttdef"><b>Definition:</b> <a href="_tensor_info_8h_source.xhtml#l00044">TensorInfo.h:44</a></div></div> |
| 239 | <div class="ttc" id="classarm__compute_1_1graph_1_1_activation_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_activation_layer.xhtml">arm_compute::graph::ActivationLayer</a></div><div class="ttdoc">Activation Layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_activation_layer_8h_source.xhtml#l00037">ActivationLayer.h:37</a></div></div> |
| 240 | <div class="ttc" id="classarm__compute_1_1graph_1_1_convolution_layer_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_convolution_layer.xhtml">arm_compute::graph::ConvolutionLayer</a></div><div class="ttdoc">Convolution layer node. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2graph_2nodes_2_convolution_layer_8h_source.xhtml#l00042">ConvolutionLayer.h:42</a></div></div> |
| 241 | <div class="ttc" id="classarm__compute_1_1_pooling_layer_info_xhtml"><div class="ttname"><a href="classarm__compute_1_1_pooling_layer_info.xhtml">arm_compute::PoolingLayerInfo</a></div><div class="ttdoc">Pooling Layer Information class. </div><div class="ttdef"><b>Definition:</b> <a href="arm__compute_2core_2_types_8h_source.xhtml#l00553">Types.h:553</a></div></div> |
| 242 | <div class="ttc" id="classarm__compute_1_1graph_1_1_tensor_xhtml"><div class="ttname"><a href="classarm__compute_1_1graph_1_1_tensor.xhtml">arm_compute::graph::Tensor</a></div><div class="ttdoc">Tensor class. </div><div class="ttdef"><b>Definition:</b> <a href="graph_2_tensor_8h_source.xhtml#l00039">Tensor.h:39</a></div></div> |
| 243 | </div><!-- fragment --> |
| 244 | </div> |
| 245 | </div> |
| 246 | </div><!-- contents --> |
| 247 | </div><!-- doc-content --> |
| 248 | <!-- start footer part --> |
| 249 | <div id="nav-path" class="navpath"><!-- id is needed for treeview function! --> |
| 250 | <ul> |
| 251 | <li class="navelem"><a class="el" href="dir_d28a4824dc47e487b107a5db32ef43c4.xhtml">examples</a></li><li class="navelem"><a class="el" href="graph__googlenet_8cpp.xhtml">graph_googlenet.cpp</a></li> |
| 252 | <li class="footer">Generated on Thu Dec 14 2017 23:48:33 for Compute Library by |
| 253 | <a href="http://www.doxygen.org/index.html"> |
| 254 | <img class="footer" src="doxygen.png" alt="doxygen"/></a> 1.8.11 </li> |
| 255 | </ul> |
| 256 | </div> |
| 257 | </body> |
| 258 | </html> |