blob: 22c037fc2ac08ac1a114f1776373b1c9c7942bb4 [file] [log] [blame]
Kaizen8938bd32017-09-28 14:38:23 +01001/*
2 * Copyright (c) 2017 ARM Limited.
3 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLDepthwiseConvolution.h"
25
26#include "arm_compute/core/CL/ICLTensor.h"
27#include "arm_compute/core/PixelValue.h"
28#include "arm_compute/runtime/CL/CLScheduler.h"
29#include "support/ToolchainSupport.h"
30
31using namespace arm_compute;
32
33CLDepthwiseConvolution3x3::CLDepthwiseConvolution3x3()
34 : _kernel(), _border_handler()
35{
36}
37
38void CLDepthwiseConvolution3x3::configure(ICLTensor *input, ICLTensor *output, const ICLTensor *weights, const PadStrideInfo &conv_info)
39{
40 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
41 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
42 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
43
44 _kernel.configure(input, output, weights, conv_info);
45 _border_handler.configure(input, _kernel.border_size(), BorderMode::CONSTANT, PixelValue(0));
46}
47
48void CLDepthwiseConvolution3x3::run()
49{
50 CLScheduler::get().enqueue(_border_handler);
51 CLScheduler::get().enqueue(_kernel);
52}
53
54CLDepthwiseConvolution::CLDepthwiseConvolution()
55 : _im2col_kernel(), _weights_reshape_kernel(), _v2mm_kernel(), _vector_to_tensor_kernel(), _v2mm_input_fill_border(), _v2mm_weights_fill_border(), _input_reshaped(), _weights_reshaped(),
56 _v2mm_output()
57{
58}
59
60void CLDepthwiseConvolution::configure(ICLTensor *input, ICLTensor *output, const ICLTensor *weights, const PadStrideInfo &conv_info)
61{
62 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(input, 1, DataType::F32);
63 ARM_COMPUTE_ERROR_ON_DATA_TYPE_CHANNEL_NOT_IN(output, 1, DataType::F32);
64 ARM_COMPUTE_ERROR_ON_MISMATCHING_DATA_TYPES(input, weights);
65 ARM_COMPUTE_ERROR_ON(input->info()->dimension(2) != weights->info()->dimension(2));
66
67 const size_t weights_w = weights->info()->dimension(0);
68 const size_t weights_h = weights->info()->dimension(1);
69 const size_t weights_z = weights->info()->dimension(2);
70
71 unsigned int conv_w = 0;
72 unsigned int conv_h = 0;
73 std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), weights_w, weights_h, conv_info);
74
75 // Set up intermediate tensors
76 const size_t patch_size = weights_w * weights_h;
77 const size_t conv_size = conv_w * conv_h;
78
79 TensorShape shape_im2col = input->info()->tensor_shape();
80 shape_im2col.set(0, patch_size);
81 shape_im2col.set(1, conv_size);
82 shape_im2col.set(2, weights_z);
83
84 const TensorShape shape_weights_reshape(patch_size, weights_z);
85 TensorShape shape_v2mm_out = output->info()->tensor_shape();
86 shape_v2mm_out.set(0, conv_size * weights_z);
87 shape_v2mm_out.set(1, 1);
88 shape_v2mm_out.set(2, 1);
89
90 const TensorInfo info_im2col(shape_im2col, 1, input->info()->data_type(), input->info()->fixed_point_position());
91 const TensorInfo info_weights_reshape(shape_weights_reshape, 1, weights->info()->data_type(), weights->info()->fixed_point_position());
92 const TensorInfo info_v2mm_out(shape_v2mm_out, 1, input->info()->data_type(), input->info()->fixed_point_position());
93
94 _input_reshaped.allocator()->init(info_im2col);
95 _weights_reshaped.allocator()->init(info_weights_reshape);
96 _v2mm_output.allocator()->init(info_v2mm_out);
97
98 // Configure kernels
99 _im2col_kernel.configure(input, &_input_reshaped, Size2D(weights_w, weights_h), conv_info);
100 _weights_reshape_kernel.configure(weights, &_weights_reshaped);
101 _v2mm_kernel.configure(&_input_reshaped, &_weights_reshaped, &_v2mm_output);
102 _vector_to_tensor_kernel.configure(&_v2mm_output, output, conv_w, conv_h);
103
104 BorderSize border_size = _v2mm_kernel.border_size();
105 _v2mm_input_fill_border.configure(&_input_reshaped, border_size, BorderMode::CONSTANT, PixelValue(0));
106
107 border_size.bottom = 0;
108 _v2mm_weights_fill_border.configure(&_weights_reshaped, border_size, BorderMode::CONSTANT, PixelValue(0));
109
110 // Allocate intermediate tensors
111 _input_reshaped.allocator()->allocate();
112 _weights_reshaped.allocator()->allocate();
113 _v2mm_output.allocator()->allocate();
114}
115
116void CLDepthwiseConvolution::run()
117{
118 CLScheduler::get().enqueue(_im2col_kernel);
119
120 CLScheduler::get().enqueue(_weights_reshape_kernel);
121
122 CLScheduler::get().enqueue(_v2mm_input_fill_border);
123 CLScheduler::get().enqueue(_v2mm_weights_fill_border);
124 CLScheduler::get().enqueue(_v2mm_kernel);
125
126 CLScheduler::get().enqueue(_vector_to_tensor_kernel);
127}