blob: 986fe00973189122a2bdfc9d63479168b7fea6b4 [file] [log] [blame]
Anthony Barbierdbdab852017-06-23 15:42:00 +01001/*
Anthony Barbier06ea0482018-02-22 15:45:35 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbierdbdab852017-06-23 15:42:00 +01003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "arm_compute/runtime/CL/functions/CLLocallyConnectedLayer.h"
25
26#include "arm_compute/core/PixelValue.h"
27#include "arm_compute/core/Utils.h"
28#include "arm_compute/core/Validate.h"
29#include "arm_compute/runtime/CL/CLScheduler.h"
30
31#include <cmath>
32#include <tuple>
33
34using namespace arm_compute;
35
Jenkinsb3a371b2018-05-23 11:36:53 +010036namespace
Anthony Barbierdbdab852017-06-23 15:42:00 +010037{
Jenkinsb3a371b2018-05-23 11:36:53 +010038void calculate_shapes(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info,
39 TensorShape &shape_wr, TensorShape &shape_im2col, TensorShape &shape_gemm)
Anthony Barbierdbdab852017-06-23 15:42:00 +010040{
Jenkinsb3a371b2018-05-23 11:36:53 +010041 ARM_COMPUTE_UNUSED(output);
Anthony Barbierdbdab852017-06-23 15:42:00 +010042
Jenkinsb3a371b2018-05-23 11:36:53 +010043 const unsigned int kernel_width = weights->dimension(0);
44 const unsigned int kernel_height = weights->dimension(1);
Anthony Barbierdbdab852017-06-23 15:42:00 +010045
Jenkinsb3a371b2018-05-23 11:36:53 +010046 bool has_bias = (biases != nullptr);
Anthony Barbierdbdab852017-06-23 15:42:00 +010047
48 // Get convolved dimensions
49 unsigned int conv_w = 0;
50 unsigned int conv_h = 0;
Jenkinsb3a371b2018-05-23 11:36:53 +010051 std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height,
Kaizen8938bd32017-09-28 14:38:23 +010052 conv_info);
Anthony Barbierdbdab852017-06-23 15:42:00 +010053
Jenkinsb3a371b2018-05-23 11:36:53 +010054 const size_t mat_weights_cols = weights->dimension(3);
55 const size_t mat_weights_rows = weights->dimension(0) * weights->dimension(1) * weights->dimension(2) + ((has_bias) ? 1 : 0);
56 const size_t mat_weights_num = weights->dimension(4);
Anthony Barbierdbdab852017-06-23 15:42:00 +010057
Jenkinsb3a371b2018-05-23 11:36:53 +010058 shape_wr = TensorShape(mat_weights_cols, mat_weights_rows, mat_weights_num);
Anthony Barbierdbdab852017-06-23 15:42:00 +010059
Anthony Barbierdbdab852017-06-23 15:42:00 +010060 const size_t mat_input_cols = mat_weights_rows;
61 const size_t mat_input_rows = conv_w * conv_h;
Jenkinsb3a371b2018-05-23 11:36:53 +010062
63 shape_im2col = input->tensor_shape();
Anthony Barbierdbdab852017-06-23 15:42:00 +010064 shape_im2col.set(0, mat_input_cols);
65 shape_im2col.set(1, mat_input_rows);
66 shape_im2col.set(2, 1);
67
Jenkinsb3a371b2018-05-23 11:36:53 +010068 shape_gemm = shape_im2col;
Anthony Barbierdbdab852017-06-23 15:42:00 +010069 shape_gemm.set(0, mat_weights_cols);
70 shape_gemm.set(1, mat_input_rows);
Jenkinsb3a371b2018-05-23 11:36:53 +010071}
72} // namespace
73
74CLLocallyConnectedLayer::CLLocallyConnectedLayer(std::shared_ptr<IMemoryManager> memory_manager)
75 : _memory_group(std::move(memory_manager)), _input_im2col_kernel(), _weights_reshape_kernel(), _mm_kernel(), _output_col2im_kernel(), _input_im2col_reshaped(), _weights_reshaped(), _gemm_output(),
76 _is_first_run(false), _original_weights(nullptr)
77{
78}
79
80Status CLLocallyConnectedLayer::validate(const ITensorInfo *input, const ITensorInfo *weights, const ITensorInfo *biases, const ITensorInfo *output, const PadStrideInfo &conv_info)
81{
82 ARM_COMPUTE_RETURN_ERROR_ON_NULLPTR(input, weights, output);
83 ARM_COMPUTE_RETURN_ERROR_ON(weights->dimension(2) != input->dimension(2));
84 ARM_COMPUTE_RETURN_ERROR_ON(!conv_info.padding_is_symmetric());
85
86 bool has_bias = (biases != nullptr);
87
88 if(has_bias)
89 {
90 ARM_COMPUTE_RETURN_ERROR_ON(biases->dimension(0) != weights->dimension(3));
91 ARM_COMPUTE_RETURN_ERROR_ON(biases->num_dimensions() > 2);
92 }
93
94 const unsigned int kernel_width = weights->dimension(0);
95 const unsigned int kernel_height = weights->dimension(1);
96
97 // Get convolved dimensions
98 unsigned int conv_w = 0;
99 unsigned int conv_h = 0;
100 std::tie(conv_w, conv_h) = scaled_dimensions(input->dimension(0), input->dimension(1), kernel_width, kernel_height,
101 conv_info);
102
103 ARM_COMPUTE_RETURN_ERROR_ON_MSG((output->dimension(0) != conv_w) || (output->dimension(1) != conv_h), "Output shape does not match the expected one");
104 ARM_COMPUTE_RETURN_ERROR_ON_MSG(weights->dimension(4) != (conv_w * conv_h), "Weights shape does not match the expected one");
105
106 // Calculate intermediate buffer shapes
107 TensorShape shape_wr;
108 TensorShape shape_im2col;
109 TensorShape shape_gemm;
110 calculate_shapes(input, weights, biases, output, conv_info, shape_wr, shape_im2col, shape_gemm);
111
112 TensorInfo weights_reshaped_info(shape_wr, 1, weights->data_type());
113 TensorInfo input_im2col_reshaped_info(shape_im2col, 1, input->data_type());
114 TensorInfo gemm_output_info(shape_gemm, 1, input->data_type());
115
116 ARM_COMPUTE_RETURN_ON_ERROR(CLIm2ColKernel::validate(input, &input_im2col_reshaped_info, Size2D(kernel_width, kernel_height), conv_info, has_bias));
117 ARM_COMPUTE_RETURN_ON_ERROR(CLWeightsReshapeKernel::validate(weights, biases, &weights_reshaped_info));
118 ARM_COMPUTE_RETURN_ON_ERROR(CLLocallyConnectedMatrixMultiplyKernel::validate(&input_im2col_reshaped_info, &weights_reshaped_info, &gemm_output_info));
119 ARM_COMPUTE_RETURN_ON_ERROR(CLCol2ImKernel::validate(&gemm_output_info, output, std::make_pair(conv_w, conv_h)));
120
121 return Status{};
122}
123
124void CLLocallyConnectedLayer::configure(const ICLTensor *input, const ICLTensor *weights, const ICLTensor *biases, ICLTensor *output, const PadStrideInfo &conv_info)
125{
126 ARM_COMPUTE_ERROR_ON_NULLPTR(input, weights, output);
127 ARM_COMPUTE_ERROR_THROW_ON(CLLocallyConnectedLayer::validate(input->info(), weights->info(), biases == nullptr ? nullptr : biases->info(), output->info(), conv_info));
128
129 bool _has_bias = (biases != nullptr);
130 _original_weights = weights;
131 _is_first_run = true;
132
133 const unsigned int kernel_width = weights->info()->dimension(0);
134 const unsigned int kernel_height = weights->info()->dimension(1);
135
136 // Get convolved dimensions
137 unsigned int conv_w = 0;
138 unsigned int conv_h = 0;
139 std::tie(conv_w, conv_h) = scaled_dimensions(input->info()->dimension(0), input->info()->dimension(1), kernel_width, kernel_height,
140 conv_info);
141
142 // Calculate intermediate buffer shapes
143 TensorShape shape_wr;
144 TensorShape shape_im2col;
145 TensorShape shape_gemm;
146 calculate_shapes(input->info(), weights->info(), biases == nullptr ? nullptr : biases->info(), output->info(), conv_info, shape_wr, shape_im2col, shape_gemm);
147
148 _weights_reshaped.allocator()->init(TensorInfo(shape_wr, 1, weights->info()->data_type()));
149 _input_im2col_reshaped.allocator()->init(TensorInfo(shape_im2col, 1, input->info()->data_type()));
Anthony Barbierdbdab852017-06-23 15:42:00 +0100150 _gemm_output.allocator()->init(TensorInfo(shape_gemm, 1, input->info()->data_type()));
151
Kaizen8938bd32017-09-28 14:38:23 +0100152 // Manage intermediate buffers
153 _memory_group.manage(&_input_im2col_reshaped);
154 _memory_group.manage(&_gemm_output);
155
Anthony Barbierdbdab852017-06-23 15:42:00 +0100156 // Configure kernels
Jenkinsb3a371b2018-05-23 11:36:53 +0100157 _input_im2col_kernel.configure(input, &_input_im2col_reshaped, Size2D(kernel_width, kernel_height), conv_info, _has_bias);
Anthony Barbierdbdab852017-06-23 15:42:00 +0100158 _weights_reshape_kernel.configure(weights, biases, &_weights_reshaped);
159 _mm_kernel.configure(&_input_im2col_reshaped, &_weights_reshaped, &_gemm_output);
160 _output_col2im_kernel.configure(&_gemm_output, output, std::make_pair(conv_w, conv_h));
161
162 // Allocate intermediate tensors
163 _weights_reshaped.allocator()->allocate();
164 _input_im2col_reshaped.allocator()->allocate();
165 _gemm_output.allocator()->allocate();
166}
167
168void CLLocallyConnectedLayer::run()
169{
170 // Run weights reshaping (Runs once for every configure)
171 if(_is_first_run)
172 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100173 ARM_COMPUTE_ERROR_ON(!_original_weights->is_used());
174
Anthony Barbierdbdab852017-06-23 15:42:00 +0100175 _is_first_run = false;
176 CLScheduler::get().enqueue(_weights_reshape_kernel);
Jenkinsb3a371b2018-05-23 11:36:53 +0100177
178 // Mark original weights tensor as unused
179 _original_weights->mark_as_unused();
Anthony Barbierdbdab852017-06-23 15:42:00 +0100180 }
181
Kaizen8938bd32017-09-28 14:38:23 +0100182 _memory_group.acquire();
183
Anthony Barbierdbdab852017-06-23 15:42:00 +0100184 // Run input reshaping
185 CLScheduler::get().enqueue(_input_im2col_kernel);
186
187 // Runs vector matrix multiply on reshaped matrices
188 CLScheduler::get().enqueue(_mm_kernel);
189
190 // Reshape output matrix
191 CLScheduler::get().enqueue(_output_col2im_kernel, false);
Kaizen8938bd32017-09-28 14:38:23 +0100192
193 _memory_group.release();
Anthony Barbierdbdab852017-06-23 15:42:00 +0100194}