blob: 10c617e95355f260d2be6483406c762430c3f11c [file] [log] [blame]
Anthony Barbier8140e1e2017-12-14 23:48:46 +00001/*
Anthony Barbierf45d5a92018-01-24 16:23:15 +00002 * Copyright (c) 2017-2018 ARM Limited.
Anthony Barbier8140e1e2017-12-14 23:48:46 +00003 *
4 * SPDX-License-Identifier: MIT
5 *
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to
8 * deal in the Software without restriction, including without limitation the
9 * rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
10 * sell copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
12 *
13 * The above copyright notice and this permission notice shall be included in all
14 * copies or substantial portions of the Software.
15 *
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
19 * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
22 * SOFTWARE.
23 */
24#include "DepthwiseConvolutionLayer.h"
25
26#include "ConvolutionLayer.h"
27#include "Utils.h"
28
29#include "tests/validation/FixedPoint.h"
30#include "tests/validation/Helpers.h"
31#include "tests/validation/reference/Utils.h"
32#include "tests/validation/reference/UtilsQuantizedAsymm.h"
33
34#include "arm_compute/core/utils/quantization/AsymmHelpers.h"
35
36namespace arm_compute
37{
38namespace test
39{
40namespace validation
41{
42namespace reference
43{
44/** Perform a depthwise convolution
45 *
46 * - Three dimensions tensors
47 * - Third dimention is number of channels
48 * - Depths of input tensor and filter are equals
49 * - Padding, stride and output shape "match"
50 *
51 */
52template <typename T, typename TB>
Jenkinsb3a371b2018-05-23 11:36:53 +010053SimpleTensor<T> depthwise_convolution(const SimpleTensor<T> &src, const SimpleTensor<T> &weights, const SimpleTensor<TB> &biases, const TensorShape &dst_shape, const PadStrideInfo &conv_info,
54 unsigned int depth_multiplier)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000055{
Anthony Barbier8140e1e2017-12-14 23:48:46 +000056 SimpleTensor<T> dst{ dst_shape, src.data_type(), 1, src.fixed_point_position() };
57
58 // Compute reference
59 const int filter_width = weights.shape().x();
60 const int filter_height = weights.shape().y();
61 const int filter_plane = filter_width * filter_height;
62 const int input_width = src.shape().x();
63 const int input_height = src.shape().y();
64 const int input_depth = src.shape().z();
65 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
66
67 const int filter_half_width = filter_width / 2;
68 const int filter_half_height = filter_height / 2;
69
Anthony Barbier06ea0482018-02-22 15:45:35 +000070 const int pad_left = conv_info.pad_left();
71 const int pad_top = conv_info.pad_top();
72 const int pad_right = conv_info.pad_right();
73 const int pad_bottom = conv_info.pad_bottom();
Anthony Barbier8140e1e2017-12-14 23:48:46 +000074
75 const int minimum_x = -pad_left + filter_half_width;
76 const int minimum_y = -pad_top + filter_half_height;
77 const int maximum_x = input_width + pad_left - filter_half_width + pad_right - filter_half_width;
78 const int maximum_y = input_height + pad_top - filter_half_height + pad_bottom - filter_half_height;
79
Jenkinsb3a371b2018-05-23 11:36:53 +010080 const T border_value(0);
81
Anthony Barbier8140e1e2017-12-14 23:48:46 +000082 int out_pos = 0;
83 for(int r = 0; r < num_batches; ++r)
84 {
85 for(int z = 0; z < input_depth; ++z)
86 {
Jenkinsb3a371b2018-05-23 11:36:53 +010087 for(unsigned int m = 0; m < depth_multiplier; ++m)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000088 {
Jenkinsb3a371b2018-05-23 11:36:53 +010089 const int out_z = z * depth_multiplier + m;
Anthony Barbier8140e1e2017-12-14 23:48:46 +000090
Jenkinsb3a371b2018-05-23 11:36:53 +010091 for(int y = minimum_y; y < minimum_y + maximum_y; y += conv_info.stride().second)
92 {
93 for(int x = minimum_x; x < minimum_x + maximum_x; x += conv_info.stride().first)
Anthony Barbier8140e1e2017-12-14 23:48:46 +000094 {
Jenkinsb3a371b2018-05-23 11:36:53 +010095 Coordinates coords(static_cast<int>(x), static_cast<int>(y), static_cast<int>(z), static_cast<int>(r));
96 size_t filter_offset = filter_plane * out_z;
97
98 T val(0);
99 for(int j = y - filter_half_height; j <= static_cast<int>(y + filter_half_height); ++j)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000100 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100101 for(int i = x - filter_half_width; i <= static_cast<int>(x + filter_half_width); ++i)
102 {
103 coords.set(0, i);
104 coords.set(1, j);
105
106 val += *(weights.data() + filter_offset) * tensor_elem_at(src, coords, BorderMode::CONSTANT, border_value);
107 ++filter_offset;
108 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000109 }
Jenkinsb3a371b2018-05-23 11:36:53 +0100110
111 dst[out_pos++] = saturate_cast<T>(val + *static_cast<const TB *>(biases(Coordinates(out_z))));
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000112 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000113 }
114 }
115 }
116 }
117
118 return dst;
119}
120
121template <>
122SimpleTensor<uint8_t> depthwise_convolution(const SimpleTensor<uint8_t> &src, const SimpleTensor<uint8_t> &weights, const SimpleTensor<int32_t> &biases, const TensorShape &dst_shape,
Jenkinsb3a371b2018-05-23 11:36:53 +0100123 const PadStrideInfo &conv_info, unsigned int depth_multiplier)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000124{
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000125 SimpleTensor<uint8_t> dst{ dst_shape, src.data_type(), 1, src.fixed_point_position(), src.quantization_info() };
126
Jenkinsb3a371b2018-05-23 11:36:53 +0100127 // Create reference
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000128 const int input_offset = -src.quantization_info().offset;
129 const float input_scale = src.quantization_info().scale;
130 const int weights_offset = -weights.quantization_info().offset;
131 const float weights_scale = weights.quantization_info().scale;
132 const int output_offset = dst.quantization_info().offset;
133 const float output_scale = dst.quantization_info().scale;
134
135 int output_multiplier;
136 int output_shift;
137 const float multiplier = input_scale * weights_scale / output_scale;
138 arm_compute::quantization::calculate_quantized_multiplier_less_than_one(multiplier, &output_multiplier, &output_shift);
139
140 // Compute reference
141 const int filter_width = weights.shape().x();
142 const int filter_height = weights.shape().y();
143 const int filter_plane = filter_width * filter_height;
144 const int input_width = src.shape().x();
145 const int input_height = src.shape().y();
146 const int input_depth = src.shape().z();
147 const int num_batches = src.shape().total_size() / (input_width * input_height * input_depth);
148
Anthony Barbier06ea0482018-02-22 15:45:35 +0000149 const int filter_half_width = filter_width / 2;
150 const int filter_half_height = filter_height / 2;
151
152 const int pad_left = conv_info.pad_left();
153 const int pad_top = conv_info.pad_top();
154 const int pad_right = conv_info.pad_right();
155 const int pad_bottom = conv_info.pad_bottom();
156
157 const int minimum_x = -pad_left + filter_half_width;
158 const int minimum_y = -pad_top + filter_half_height;
159 const int maximum_x = input_width + pad_left - filter_half_width + pad_right - filter_half_width;
160 const int maximum_y = input_height + pad_top - filter_half_height + pad_bottom - filter_half_height;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000161
162 int out_pos = 0;
163 for(int r = 0; r < num_batches; ++r)
164 {
165 for(int z = 0; z < input_depth; ++z)
166 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100167 for(unsigned int m = 0; m < depth_multiplier; ++m)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000168 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100169 const int out_z = z * depth_multiplier + m;
170 const int32_t bias_val = *static_cast<const int32_t *>(biases(Coordinates(out_z)));
171
172 for(int y = minimum_y; y < minimum_y + maximum_y; y += conv_info.stride().second)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000173 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100174 for(int x = minimum_x; x < minimum_x + maximum_x; x += conv_info.stride().first)
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000175 {
Jenkinsb3a371b2018-05-23 11:36:53 +0100176 Coordinates coords(x, y, z, r);
177 int filter_offset = filter_plane * out_z;
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000178
Jenkinsb3a371b2018-05-23 11:36:53 +0100179 int32_t val = 0;
180 for(int j = y - filter_half_height; j <= (y + filter_half_height); ++j)
181 {
182 for(int i = x - filter_half_width; i <= (x + filter_half_width); ++i)
183 {
184 coords.set(0, i);
185 coords.set(1, j);
186 const auto in_val = tensor_elem_at<uint8_t>(src, coords, BorderMode::CONSTANT, -input_offset);
187 const uint8_t w_val = *(weights.data() + filter_offset);
188 val += (in_val + input_offset) * (w_val + weights_offset);
189 ++filter_offset;
190 }
191 }
192 val += bias_val;
193 val = asymm_rounding_divide_by_pow2(asymm_int_mult(val, output_multiplier), output_shift);
194 val += output_offset;
195 val = std::max<int32_t>(val, 0);
196 val = std::min<int32_t>(val, 255);
197
198 // Store the result
199 dst[out_pos++] = val;
200 }
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000201 }
202 }
203 }
204 }
205
206 return dst;
207}
208
209template SimpleTensor<float> depthwise_convolution(const SimpleTensor<float> &src, const SimpleTensor<float> &weights, const SimpleTensor<float> &biases, const TensorShape &dst_shape,
Jenkinsb3a371b2018-05-23 11:36:53 +0100210 const PadStrideInfo &conv_info, unsigned int depth_multiplier);
Anthony Barbierf45d5a92018-01-24 16:23:15 +0000211
212template SimpleTensor<half> depthwise_convolution(const SimpleTensor<half> &src, const SimpleTensor<half> &weights, const SimpleTensor<half> &biases, const TensorShape &dst_shape,
Jenkinsb3a371b2018-05-23 11:36:53 +0100213 const PadStrideInfo &conv_info, unsigned int depth_multiplier);
Anthony Barbier8140e1e2017-12-14 23:48:46 +0000214} // namespace reference
215} // namespace validation
216} // namespace test
217} // namespace arm_compute