blob: cd851c421521371985cccc604ab8b088b0ed3ff5 [file] [log] [blame]
cristy3ed852e2009-09-05 21:47:34 +00001/*
2%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3% %
4% %
5% %
6% QQQ U U AAA N N TTTTT IIIII ZZZZZ EEEEE %
7% Q Q U U A A NN N T I ZZ E %
8% Q Q U U AAAAA N N N T I ZZZ EEEEE %
9% Q QQ U U A A N NN T I ZZ E %
10% QQQQ UUU A A N N T IIIII ZZZZZ EEEEE %
11% %
12% %
13% MagickCore Methods to Reduce the Number of Unique Colors in an Image %
14% %
15% Software Design %
16% John Cristy %
17% July 1992 %
18% %
19% %
cristy7e41fe82010-12-04 23:12:08 +000020% Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization %
cristy3ed852e2009-09-05 21:47:34 +000021% dedicated to making software imaging solutions freely available. %
22% %
23% You may not use this file except in compliance with the License. You may %
24% obtain a copy of the License at %
25% %
26% http://www.imagemagick.org/script/license.php %
27% %
28% Unless required by applicable law or agreed to in writing, software %
29% distributed under the License is distributed on an "AS IS" BASIS, %
30% WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. %
31% See the License for the specific language governing permissions and %
32% limitations under the License. %
33% %
34%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
35%
36% Realism in computer graphics typically requires using 24 bits/pixel to
37% generate an image. Yet many graphic display devices do not contain the
38% amount of memory necessary to match the spatial and color resolution of
39% the human eye. The Quantize methods takes a 24 bit image and reduces
40% the number of colors so it can be displayed on raster device with less
41% bits per pixel. In most instances, the quantized image closely
42% resembles the original reference image.
43%
44% A reduction of colors in an image is also desirable for image
45% transmission and real-time animation.
46%
47% QuantizeImage() takes a standard RGB or monochrome images and quantizes
48% them down to some fixed number of colors.
49%
50% For purposes of color allocation, an image is a set of n pixels, where
51% each pixel is a point in RGB space. RGB space is a 3-dimensional
52% vector space, and each pixel, Pi, is defined by an ordered triple of
53% red, green, and blue coordinates, (Ri, Gi, Bi).
54%
55% Each primary color component (red, green, or blue) represents an
56% intensity which varies linearly from 0 to a maximum value, Cmax, which
57% corresponds to full saturation of that color. Color allocation is
58% defined over a domain consisting of the cube in RGB space with opposite
59% vertices at (0,0,0) and (Cmax, Cmax, Cmax). QUANTIZE requires Cmax =
60% 255.
61%
62% The algorithm maps this domain onto a tree in which each node
63% represents a cube within that domain. In the following discussion
64% these cubes are defined by the coordinate of two opposite vertices:
65% The vertex nearest the origin in RGB space and the vertex farthest from
66% the origin.
67%
68% The tree's root node represents the entire domain, (0,0,0) through
69% (Cmax,Cmax,Cmax). Each lower level in the tree is generated by
70% subdividing one node's cube into eight smaller cubes of equal size.
71% This corresponds to bisecting the parent cube with planes passing
72% through the midpoints of each edge.
73%
74% The basic algorithm operates in three phases: Classification,
75% Reduction, and Assignment. Classification builds a color description
76% tree for the image. Reduction collapses the tree until the number it
77% represents, at most, the number of colors desired in the output image.
78% Assignment defines the output image's color map and sets each pixel's
79% color by restorage_class in the reduced tree. Our goal is to minimize
80% the numerical discrepancies between the original colors and quantized
81% colors (quantization error).
82%
83% Classification begins by initializing a color description tree of
84% sufficient depth to represent each possible input color in a leaf.
85% However, it is impractical to generate a fully-formed color description
86% tree in the storage_class phase for realistic values of Cmax. If
87% colors components in the input image are quantized to k-bit precision,
88% so that Cmax= 2k-1, the tree would need k levels below the root node to
89% allow representing each possible input color in a leaf. This becomes
90% prohibitive because the tree's total number of nodes is 1 +
91% sum(i=1, k, 8k).
92%
93% A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
94% Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
95% Initializes data structures for nodes only as they are needed; (2)
96% Chooses a maximum depth for the tree as a function of the desired
97% number of colors in the output image (currently log2(colormap size)).
98%
99% For each pixel in the input image, storage_class scans downward from
100% the root of the color description tree. At each level of the tree it
101% identifies the single node which represents a cube in RGB space
102% containing the pixel's color. It updates the following data for each
103% such node:
104%
105% n1: Number of pixels whose color is contained in the RGB cube which
106% this node represents;
107%
108% n2: Number of pixels whose color is not represented in a node at
109% lower depth in the tree; initially, n2 = 0 for all nodes except
110% leaves of the tree.
111%
112% Sr, Sg, Sb: Sums of the red, green, and blue component values for all
113% pixels not classified at a lower depth. The combination of these sums
114% and n2 will ultimately characterize the mean color of a set of
115% pixels represented by this node.
116%
117% E: the distance squared in RGB space between each pixel contained
118% within a node and the nodes' center. This represents the
119% quantization error for a node.
120%
121% Reduction repeatedly prunes the tree until the number of nodes with n2
122% > 0 is less than or equal to the maximum number of colors allowed in
123% the output image. On any given iteration over the tree, it selects
124% those nodes whose E count is minimal for pruning and merges their color
125% statistics upward. It uses a pruning threshold, Ep, to govern node
126% selection as follows:
127%
128% Ep = 0
129% while number of nodes with (n2 > 0) > required maximum number of colors
130% prune all nodes such that E <= Ep
131% Set Ep to minimum E in remaining nodes
132%
133% This has the effect of minimizing any quantization error when merging
134% two nodes together.
135%
136% When a node to be pruned has offspring, the pruning procedure invokes
137% itself recursively in order to prune the tree from the leaves upward.
138% n2, Sr, Sg, and Sb in a node being pruned are always added to the
139% corresponding data in that node's parent. This retains the pruned
140% node's color characteristics for later averaging.
141%
142% For each node, n2 pixels exist for which that node represents the
143% smallest volume in RGB space containing those pixel's colors. When n2
144% > 0 the node will uniquely define a color in the output image. At the
145% beginning of reduction, n2 = 0 for all nodes except a the leaves of
146% the tree which represent colors present in the input image.
147%
148% The other pixel count, n1, indicates the total number of colors within
149% the cubic volume which the node represents. This includes n1 - n2
150% pixels whose colors should be defined by nodes at a lower level in the
151% tree.
152%
153% Assignment generates the output image from the pruned tree. The output
154% image consists of two parts: (1) A color map, which is an array of
155% color descriptions (RGB triples) for each color present in the output
156% image; (2) A pixel array, which represents each pixel as an index
157% into the color map array.
158%
159% First, the assignment phase makes one pass over the pruned color
160% description tree to establish the image's color map. For each node
161% with n2 > 0, it divides Sr, Sg, and Sb by n2 . This produces the mean
162% color of all pixels that classify no lower than this node. Each of
163% these colors becomes an entry in the color map.
164%
165% Finally, the assignment phase reclassifies each pixel in the pruned
166% tree to identify the deepest node containing the pixel's color. The
167% pixel's value in the pixel array becomes the index of this node's mean
168% color in the color map.
169%
170% This method is based on a similar algorithm written by Paul Raveling.
171%
172*/
173
174/*
175 Include declarations.
176*/
177#include "magick/studio.h"
178#include "magick/cache-view.h"
179#include "magick/color.h"
180#include "magick/color-private.h"
cristye7e40552010-04-24 21:34:22 +0000181#include "magick/colormap.h"
cristy3ed852e2009-09-05 21:47:34 +0000182#include "magick/colorspace.h"
183#include "magick/enhance.h"
184#include "magick/exception.h"
185#include "magick/exception-private.h"
cristyf2e11662009-10-14 01:24:43 +0000186#include "magick/histogram.h"
cristy3ed852e2009-09-05 21:47:34 +0000187#include "magick/image.h"
188#include "magick/image-private.h"
189#include "magick/list.h"
190#include "magick/memory_.h"
191#include "magick/monitor.h"
192#include "magick/monitor-private.h"
193#include "magick/option.h"
194#include "magick/pixel-private.h"
195#include "magick/quantize.h"
196#include "magick/quantum.h"
197#include "magick/string_.h"
cristye9717ac2011-02-20 16:17:17 +0000198#include "magick/thread-private.h"
cristy3ed852e2009-09-05 21:47:34 +0000199
200/*
201 Define declarations.
202*/
cristye1287512010-06-19 17:38:25 +0000203#if !defined(__APPLE__) && !defined(TARGET_OS_IPHONE)
cristy3ed852e2009-09-05 21:47:34 +0000204#define CacheShift 2
cristye1287512010-06-19 17:38:25 +0000205#else
206#define CacheShift 3
207#endif
cristy3ed852e2009-09-05 21:47:34 +0000208#define ErrorQueueLength 16
209#define MaxNodes 266817
210#define MaxTreeDepth 8
211#define NodesInAList 1920
212
213/*
214 Typdef declarations.
215*/
216typedef struct _RealPixelPacket
217{
218 MagickRealType
219 red,
220 green,
221 blue,
222 opacity;
223} RealPixelPacket;
224
225typedef struct _NodeInfo
226{
227 struct _NodeInfo
228 *parent,
229 *child[16];
230
231 MagickSizeType
232 number_unique;
233
234 RealPixelPacket
235 total_color;
236
237 MagickRealType
238 quantize_error;
239
cristybb503372010-05-27 20:51:26 +0000240 size_t
cristy3ed852e2009-09-05 21:47:34 +0000241 color_number,
242 id,
243 level;
244} NodeInfo;
245
246typedef struct _Nodes
247{
248 NodeInfo
249 *nodes;
250
251 struct _Nodes
252 *next;
253} Nodes;
254
255typedef struct _CubeInfo
256{
257 NodeInfo
258 *root;
259
cristybb503372010-05-27 20:51:26 +0000260 size_t
cristy3ed852e2009-09-05 21:47:34 +0000261 colors,
262 maximum_colors;
263
cristybb503372010-05-27 20:51:26 +0000264 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000265 transparent_index;
266
267 MagickSizeType
268 transparent_pixels;
269
270 RealPixelPacket
271 target;
272
273 MagickRealType
274 distance,
275 pruning_threshold,
276 next_threshold;
277
cristybb503372010-05-27 20:51:26 +0000278 size_t
cristy3ed852e2009-09-05 21:47:34 +0000279 nodes,
280 free_nodes,
281 color_number;
282
283 NodeInfo
284 *next_node;
285
286 Nodes
287 *node_queue;
288
cristybb503372010-05-27 20:51:26 +0000289 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000290 *cache;
291
292 RealPixelPacket
293 error[ErrorQueueLength];
294
295 MagickRealType
296 weights[ErrorQueueLength];
297
298 QuantizeInfo
299 *quantize_info;
300
301 MagickBooleanType
302 associate_alpha;
303
cristybb503372010-05-27 20:51:26 +0000304 ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000305 x,
306 y;
307
cristybb503372010-05-27 20:51:26 +0000308 size_t
cristy3ed852e2009-09-05 21:47:34 +0000309 depth;
310
311 MagickOffsetType
312 offset;
313
314 MagickSizeType
315 span;
316} CubeInfo;
317
318/*
319 Method prototypes.
320*/
321static CubeInfo
cristybb503372010-05-27 20:51:26 +0000322 *GetCubeInfo(const QuantizeInfo *,const size_t,const size_t);
cristy3ed852e2009-09-05 21:47:34 +0000323
324static NodeInfo
cristybb503372010-05-27 20:51:26 +0000325 *GetNodeInfo(CubeInfo *,const size_t,const size_t,NodeInfo *);
cristy3ed852e2009-09-05 21:47:34 +0000326
327static MagickBooleanType
328 AssignImageColors(Image *,CubeInfo *),
329 ClassifyImageColors(CubeInfo *,const Image *,ExceptionInfo *),
330 DitherImage(Image *,CubeInfo *),
331 SetGrayscaleImage(Image *);
332
cristybb503372010-05-27 20:51:26 +0000333static size_t
cristy3ed852e2009-09-05 21:47:34 +0000334 DefineImageColormap(Image *,CubeInfo *,NodeInfo *);
335
336static void
337 ClosestColor(const Image *,CubeInfo *,const NodeInfo *),
338 DestroyCubeInfo(CubeInfo *),
339 PruneLevel(const Image *,CubeInfo *,const NodeInfo *),
340 PruneToCubeDepth(const Image *,CubeInfo *,const NodeInfo *),
341 ReduceImageColors(const Image *,CubeInfo *);
342
343/*
344%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
345% %
346% %
347% %
348% A c q u i r e Q u a n t i z e I n f o %
349% %
350% %
351% %
352%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
353%
354% AcquireQuantizeInfo() allocates the QuantizeInfo structure.
355%
356% The format of the AcquireQuantizeInfo method is:
357%
358% QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
359%
360% A description of each parameter follows:
361%
362% o image_info: the image info.
363%
364*/
365MagickExport QuantizeInfo *AcquireQuantizeInfo(const ImageInfo *image_info)
366{
367 QuantizeInfo
368 *quantize_info;
369
cristy73bd4a52010-10-05 11:24:23 +0000370 quantize_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*quantize_info));
cristy3ed852e2009-09-05 21:47:34 +0000371 if (quantize_info == (QuantizeInfo *) NULL)
372 ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
373 GetQuantizeInfo(quantize_info);
374 if (image_info != (ImageInfo *) NULL)
375 {
376 const char
377 *option;
378
379 quantize_info->dither=image_info->dither;
380 option=GetImageOption(image_info,"dither");
381 if (option != (const char *) NULL)
cristy042ee782011-04-22 18:48:30 +0000382 quantize_info->dither_method=(DitherMethod) ParseCommandOption(
cristy3ed852e2009-09-05 21:47:34 +0000383 MagickDitherOptions,MagickFalse,option);
384 quantize_info->measure_error=image_info->verbose;
385 }
386 return(quantize_info);
387}
388
389/*
390%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
391% %
392% %
393% %
394+ A s s i g n I m a g e C o l o r s %
395% %
396% %
397% %
398%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
399%
400% AssignImageColors() generates the output image from the pruned tree. The
401% output image consists of two parts: (1) A color map, which is an array
402% of color descriptions (RGB triples) for each color present in the
403% output image; (2) A pixel array, which represents each pixel as an
404% index into the color map array.
405%
406% First, the assignment phase makes one pass over the pruned color
407% description tree to establish the image's color map. For each node
408% with n2 > 0, it divides Sr, Sg, and Sb by n2 . This produces the mean
409% color of all pixels that classify no lower than this node. Each of
410% these colors becomes an entry in the color map.
411%
412% Finally, the assignment phase reclassifies each pixel in the pruned
413% tree to identify the deepest node containing the pixel's color. The
414% pixel's value in the pixel array becomes the index of this node's mean
415% color in the color map.
416%
417% The format of the AssignImageColors() method is:
418%
419% MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info)
420%
421% A description of each parameter follows.
422%
423% o image: the image.
424%
425% o cube_info: A pointer to the Cube structure.
426%
427*/
428
429static inline void AssociateAlphaPixel(const CubeInfo *cube_info,
430 const PixelPacket *pixel,RealPixelPacket *alpha_pixel)
431{
432 MagickRealType
433 alpha;
434
435 if ((cube_info->associate_alpha == MagickFalse) ||
436 (pixel->opacity == OpaqueOpacity))
437 {
438 alpha_pixel->red=(MagickRealType) pixel->red;
439 alpha_pixel->green=(MagickRealType) pixel->green;
440 alpha_pixel->blue=(MagickRealType) pixel->blue;
441 alpha_pixel->opacity=(MagickRealType) pixel->opacity;
442 return;
443 }
444 alpha=(MagickRealType) (QuantumScale*(QuantumRange-pixel->opacity));
445 alpha_pixel->red=alpha*pixel->red;
446 alpha_pixel->green=alpha*pixel->green;
447 alpha_pixel->blue=alpha*pixel->blue;
448 alpha_pixel->opacity=(MagickRealType) pixel->opacity;
449}
450
cristy75ffdb72010-01-07 17:40:12 +0000451static inline Quantum ClampToUnsignedQuantum(const MagickRealType value)
cristy3ed852e2009-09-05 21:47:34 +0000452{
453 if (value <= 0.0)
454 return((Quantum) 0);
455 if (value >= QuantumRange)
456 return((Quantum) QuantumRange);
457 return((Quantum) (value+0.5));
458}
459
cristybb503372010-05-27 20:51:26 +0000460static inline size_t ColorToNodeId(const CubeInfo *cube_info,
461 const RealPixelPacket *pixel,size_t index)
cristy3ed852e2009-09-05 21:47:34 +0000462{
cristybb503372010-05-27 20:51:26 +0000463 size_t
cristy3ed852e2009-09-05 21:47:34 +0000464 id;
465
cristybb503372010-05-27 20:51:26 +0000466 id=(size_t) (
cristy75ffdb72010-01-07 17:40:12 +0000467 ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red)) >> index) & 0x1) |
468 ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green)) >> index) & 0x1) << 1 |
469 ((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue)) >> index) & 0x1) << 2);
cristy3ed852e2009-09-05 21:47:34 +0000470 if (cube_info->associate_alpha != MagickFalse)
cristy75ffdb72010-01-07 17:40:12 +0000471 id|=((ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->opacity)) >> index) & 0x1)
cristy3ed852e2009-09-05 21:47:34 +0000472 << 3;
473 return(id);
474}
475
476static inline MagickBooleanType IsSameColor(const Image *image,
477 const PixelPacket *p,const PixelPacket *q)
478{
cristy89bbeaf2011-04-22 20:25:27 +0000479 if ((GetRedPixelComponent(p) != q->red) || (GetGreenPixelComponent(p) != q->green) || (GetBluePixelComponent(p) != q->blue))
cristy3ed852e2009-09-05 21:47:34 +0000480 return(MagickFalse);
cristy89bbeaf2011-04-22 20:25:27 +0000481 if ((image->matte != MagickFalse) && (GetOpacityPixelComponent(p) != q->opacity))
cristy3ed852e2009-09-05 21:47:34 +0000482 return(MagickFalse);
483 return(MagickTrue);
484}
485
486static MagickBooleanType AssignImageColors(Image *image,CubeInfo *cube_info)
487{
488#define AssignImageTag "Assign/Image"
489
cristyecc31b12011-02-13 00:32:29 +0000490 ssize_t
cristyecc31b12011-02-13 00:32:29 +0000491 y;
492
cristy3ed852e2009-09-05 21:47:34 +0000493 /*
494 Allocate image colormap.
495 */
496 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
497 (cube_info->quantize_info->colorspace != CMYKColorspace))
498 (void) TransformImageColorspace((Image *) image,
499 cube_info->quantize_info->colorspace);
500 else
501 if ((image->colorspace != GRAYColorspace) &&
502 (image->colorspace != RGBColorspace) &&
503 (image->colorspace != CMYColorspace))
504 (void) TransformImageColorspace((Image *) image,RGBColorspace);
505 if (AcquireImageColormap(image,cube_info->colors) == MagickFalse)
506 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
507 image->filename);
508 image->colors=0;
509 cube_info->transparent_pixels=0;
510 cube_info->transparent_index=(-1);
511 (void) DefineImageColormap(image,cube_info,cube_info->root);
512 /*
513 Create a reduced color image.
514 */
515 if ((cube_info->quantize_info->dither != MagickFalse) &&
cristyd5acfd12010-06-15 00:11:38 +0000516 (cube_info->quantize_info->dither_method != NoDitherMethod))
cristy3ed852e2009-09-05 21:47:34 +0000517 (void) DitherImage(image,cube_info);
518 else
519 {
cristy3ed852e2009-09-05 21:47:34 +0000520 CacheView
521 *image_view;
522
cristye9717ac2011-02-20 16:17:17 +0000523 ExceptionInfo
524 *exception;
525
526 MagickBooleanType
527 status;
528
529 status=MagickTrue;
cristy3ed852e2009-09-05 21:47:34 +0000530 exception=(&image->exception);
531 image_view=AcquireCacheView(image);
cristye9717ac2011-02-20 16:17:17 +0000532#if defined(MAGICKCORE_OPENMP_SUPPORT)
533 #pragma omp parallel for schedule(dynamic,4) shared(status)
534#endif
cristybb503372010-05-27 20:51:26 +0000535 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000536 {
cristye9717ac2011-02-20 16:17:17 +0000537 CubeInfo
538 cube;
539
cristy3ed852e2009-09-05 21:47:34 +0000540 register IndexPacket
cristyc47d1f82009-11-26 01:44:43 +0000541 *restrict indexes;
cristy3ed852e2009-09-05 21:47:34 +0000542
543 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +0000544 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +0000545
cristye9717ac2011-02-20 16:17:17 +0000546 register ssize_t
547 x;
548
549 ssize_t
550 count;
551
552 if (status == MagickFalse)
553 continue;
cristy3ed852e2009-09-05 21:47:34 +0000554 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
555 exception);
556 if (q == (PixelPacket *) NULL)
cristye9717ac2011-02-20 16:17:17 +0000557 {
558 status=MagickFalse;
559 continue;
560 }
cristy3ed852e2009-09-05 21:47:34 +0000561 indexes=GetCacheViewAuthenticIndexQueue(image_view);
cristye9717ac2011-02-20 16:17:17 +0000562 cube=(*cube_info);
cristybb503372010-05-27 20:51:26 +0000563 for (x=0; x < (ssize_t) image->columns; x+=count)
cristy3ed852e2009-09-05 21:47:34 +0000564 {
cristye9717ac2011-02-20 16:17:17 +0000565 RealPixelPacket
566 pixel;
567
568 register const NodeInfo
569 *node_info;
570
571 register ssize_t
572 i;
573
574 size_t
575 id,
576 index;
577
cristy3ed852e2009-09-05 21:47:34 +0000578 /*
579 Identify the deepest node containing the pixel's color.
580 */
cristybb503372010-05-27 20:51:26 +0000581 for (count=1; (x+count) < (ssize_t) image->columns; count++)
cristy3ed852e2009-09-05 21:47:34 +0000582 if (IsSameColor(image,q,q+count) == MagickFalse)
583 break;
cristye9717ac2011-02-20 16:17:17 +0000584 AssociateAlphaPixel(&cube,q,&pixel);
585 node_info=cube.root;
cristybb503372010-05-27 20:51:26 +0000586 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +0000587 {
cristye9717ac2011-02-20 16:17:17 +0000588 id=ColorToNodeId(&cube,&pixel,index);
cristy3ed852e2009-09-05 21:47:34 +0000589 if (node_info->child[id] == (NodeInfo *) NULL)
590 break;
591 node_info=node_info->child[id];
592 }
593 /*
594 Find closest color among siblings and their children.
595 */
cristye9717ac2011-02-20 16:17:17 +0000596 cube.target=pixel;
597 cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*
cristy3ed852e2009-09-05 21:47:34 +0000598 (QuantumRange+1.0)+1.0);
cristye9717ac2011-02-20 16:17:17 +0000599 ClosestColor(image,&cube,node_info->parent);
600 index=cube.color_number;
cristybb503372010-05-27 20:51:26 +0000601 for (i=0; i < (ssize_t) count; i++)
cristy3ed852e2009-09-05 21:47:34 +0000602 {
603 if (image->storage_class == PseudoClass)
604 indexes[x+i]=(IndexPacket) index;
cristye9717ac2011-02-20 16:17:17 +0000605 if (cube.quantize_info->measure_error == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000606 {
607 q->red=image->colormap[index].red;
608 q->green=image->colormap[index].green;
609 q->blue=image->colormap[index].blue;
cristye9717ac2011-02-20 16:17:17 +0000610 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +0000611 q->opacity=image->colormap[index].opacity;
612 }
613 q++;
614 }
615 }
616 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
cristye9717ac2011-02-20 16:17:17 +0000617 status=MagickFalse;
618 if (image->progress_monitor != (MagickProgressMonitor) NULL)
619 {
620 MagickBooleanType
621 proceed;
622
623#if defined(MAGICKCORE_OPENMP_SUPPORT)
624 #pragma omp critical (MagickCore_AssignImageColors)
625#endif
626 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) y,
627 image->rows);
628 if (proceed == MagickFalse)
629 status=MagickFalse;
630 }
cristy3ed852e2009-09-05 21:47:34 +0000631 }
632 image_view=DestroyCacheView(image_view);
633 }
634 if (cube_info->quantize_info->measure_error != MagickFalse)
635 (void) GetImageQuantizeError(image);
636 if ((cube_info->quantize_info->number_colors == 2) &&
637 (cube_info->quantize_info->colorspace == GRAYColorspace))
638 {
639 Quantum
640 intensity;
641
642 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +0000643 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +0000644
cristye9717ac2011-02-20 16:17:17 +0000645 register ssize_t
646 i;
647
cristy3ed852e2009-09-05 21:47:34 +0000648 /*
649 Monochrome image.
650 */
651 q=image->colormap;
cristybb503372010-05-27 20:51:26 +0000652 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +0000653 {
654 intensity=(Quantum) (PixelIntensity(q) < ((MagickRealType)
655 QuantumRange/2.0) ? 0 : QuantumRange);
656 q->red=intensity;
657 q->green=intensity;
658 q->blue=intensity;
659 q++;
660 }
661 }
662 (void) SyncImage(image);
663 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
664 (cube_info->quantize_info->colorspace != CMYKColorspace))
665 (void) TransformImageColorspace((Image *) image,RGBColorspace);
666 return(MagickTrue);
667}
668
669/*
670%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
671% %
672% %
673% %
674+ C l a s s i f y I m a g e C o l o r s %
675% %
676% %
677% %
678%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
679%
680% ClassifyImageColors() begins by initializing a color description tree
681% of sufficient depth to represent each possible input color in a leaf.
682% However, it is impractical to generate a fully-formed color
683% description tree in the storage_class phase for realistic values of
684% Cmax. If colors components in the input image are quantized to k-bit
685% precision, so that Cmax= 2k-1, the tree would need k levels below the
686% root node to allow representing each possible input color in a leaf.
687% This becomes prohibitive because the tree's total number of nodes is
688% 1 + sum(i=1,k,8k).
689%
690% A complete tree would require 19,173,961 nodes for k = 8, Cmax = 255.
691% Therefore, to avoid building a fully populated tree, QUANTIZE: (1)
692% Initializes data structures for nodes only as they are needed; (2)
693% Chooses a maximum depth for the tree as a function of the desired
694% number of colors in the output image (currently log2(colormap size)).
695%
696% For each pixel in the input image, storage_class scans downward from
697% the root of the color description tree. At each level of the tree it
698% identifies the single node which represents a cube in RGB space
699% containing It updates the following data for each such node:
700%
701% n1 : Number of pixels whose color is contained in the RGB cube
702% which this node represents;
703%
704% n2 : Number of pixels whose color is not represented in a node at
705% lower depth in the tree; initially, n2 = 0 for all nodes except
706% leaves of the tree.
707%
708% Sr, Sg, Sb : Sums of the red, green, and blue component values for
709% all pixels not classified at a lower depth. The combination of
710% these sums and n2 will ultimately characterize the mean color of a
711% set of pixels represented by this node.
712%
713% E: the distance squared in RGB space between each pixel contained
714% within a node and the nodes' center. This represents the quantization
715% error for a node.
716%
717% The format of the ClassifyImageColors() method is:
718%
719% MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
720% const Image *image,ExceptionInfo *exception)
721%
722% A description of each parameter follows.
723%
724% o cube_info: A pointer to the Cube structure.
725%
726% o image: the image.
727%
728*/
729
730static inline void SetAssociatedAlpha(const Image *image,CubeInfo *cube_info)
731{
732 MagickBooleanType
733 associate_alpha;
734
735 associate_alpha=image->matte;
736 if (cube_info->quantize_info->colorspace == TransparentColorspace)
737 associate_alpha=MagickFalse;
738 if ((cube_info->quantize_info->number_colors == 2) &&
739 (cube_info->quantize_info->colorspace == GRAYColorspace))
740 associate_alpha=MagickFalse;
741 cube_info->associate_alpha=associate_alpha;
742}
743
744static MagickBooleanType ClassifyImageColors(CubeInfo *cube_info,
745 const Image *image,ExceptionInfo *exception)
746{
747#define ClassifyImageTag "Classify/Image"
748
cristyc4c8d132010-01-07 01:58:38 +0000749 CacheView
750 *image_view;
751
cristy3ed852e2009-09-05 21:47:34 +0000752 MagickBooleanType
753 proceed;
754
755 MagickRealType
756 bisect;
757
758 NodeInfo
759 *node_info;
760
761 RealPixelPacket
762 error,
763 mid,
764 midpoint,
765 pixel;
766
767 size_t
cristyecc31b12011-02-13 00:32:29 +0000768 count,
cristy3ed852e2009-09-05 21:47:34 +0000769 id,
770 index,
771 level;
772
cristyecc31b12011-02-13 00:32:29 +0000773 ssize_t
774 y;
775
cristy3ed852e2009-09-05 21:47:34 +0000776 /*
777 Classify the first cube_info->maximum_colors colors to a tree depth of 8.
778 */
779 SetAssociatedAlpha(image,cube_info);
780 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
781 (cube_info->quantize_info->colorspace != CMYKColorspace))
782 (void) TransformImageColorspace((Image *) image,
783 cube_info->quantize_info->colorspace);
784 else
785 if ((image->colorspace != GRAYColorspace) &&
786 (image->colorspace != CMYColorspace) &&
787 (image->colorspace != RGBColorspace))
788 (void) TransformImageColorspace((Image *) image,RGBColorspace);
789 midpoint.red=(MagickRealType) QuantumRange/2.0;
790 midpoint.green=(MagickRealType) QuantumRange/2.0;
791 midpoint.blue=(MagickRealType) QuantumRange/2.0;
792 midpoint.opacity=(MagickRealType) QuantumRange/2.0;
793 error.opacity=0.0;
794 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +0000795 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000796 {
797 register const PixelPacket
cristyc47d1f82009-11-26 01:44:43 +0000798 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +0000799
cristybb503372010-05-27 20:51:26 +0000800 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000801 x;
802
803 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
804 if (p == (const PixelPacket *) NULL)
805 break;
806 if (cube_info->nodes > MaxNodes)
807 {
808 /*
809 Prune one level if the color tree is too large.
810 */
811 PruneLevel(image,cube_info,cube_info->root);
812 cube_info->depth--;
813 }
cristybb503372010-05-27 20:51:26 +0000814 for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
cristy3ed852e2009-09-05 21:47:34 +0000815 {
816 /*
817 Start at the root and descend the color cube tree.
818 */
cristybb66d9c2010-10-09 01:40:31 +0000819 for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
cristy3ed852e2009-09-05 21:47:34 +0000820 if (IsSameColor(image,p,p+count) == MagickFalse)
821 break;
822 AssociateAlphaPixel(cube_info,p,&pixel);
823 index=MaxTreeDepth-1;
824 bisect=((MagickRealType) QuantumRange+1.0)/2.0;
825 mid=midpoint;
826 node_info=cube_info->root;
827 for (level=1; level <= MaxTreeDepth; level++)
828 {
829 bisect*=0.5;
830 id=ColorToNodeId(cube_info,&pixel,index);
831 mid.red+=(id & 1) != 0 ? bisect : -bisect;
832 mid.green+=(id & 2) != 0 ? bisect : -bisect;
833 mid.blue+=(id & 4) != 0 ? bisect : -bisect;
834 mid.opacity+=(id & 8) != 0 ? bisect : -bisect;
835 if (node_info->child[id] == (NodeInfo *) NULL)
836 {
837 /*
838 Set colors of new node to contain pixel.
839 */
840 node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
841 if (node_info->child[id] == (NodeInfo *) NULL)
842 (void) ThrowMagickException(exception,GetMagickModule(),
843 ResourceLimitError,"MemoryAllocationFailed","`%s'",
844 image->filename);
845 if (level == MaxTreeDepth)
846 cube_info->colors++;
847 }
848 /*
849 Approximate the quantization error represented by this node.
850 */
851 node_info=node_info->child[id];
852 error.red=QuantumScale*(pixel.red-mid.red);
853 error.green=QuantumScale*(pixel.green-mid.green);
854 error.blue=QuantumScale*(pixel.blue-mid.blue);
855 if (cube_info->associate_alpha != MagickFalse)
856 error.opacity=QuantumScale*(pixel.opacity-mid.opacity);
857 node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
858 count*error.green*error.green+count*error.blue*error.blue+
859 count*error.opacity*error.opacity));
860 cube_info->root->quantize_error+=node_info->quantize_error;
861 index--;
862 }
863 /*
864 Sum RGB for this leaf for later derivation of the mean cube color.
865 */
866 node_info->number_unique+=count;
867 node_info->total_color.red+=count*QuantumScale*pixel.red;
868 node_info->total_color.green+=count*QuantumScale*pixel.green;
869 node_info->total_color.blue+=count*QuantumScale*pixel.blue;
870 if (cube_info->associate_alpha != MagickFalse)
871 node_info->total_color.opacity+=count*QuantumScale*pixel.opacity;
872 p+=count;
873 }
874 if (cube_info->colors > cube_info->maximum_colors)
875 {
876 PruneToCubeDepth(image,cube_info,cube_info->root);
877 break;
878 }
cristycee97112010-05-28 00:44:52 +0000879 proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
880 image->rows);
cristy3ed852e2009-09-05 21:47:34 +0000881 if (proceed == MagickFalse)
882 break;
883 }
cristybb503372010-05-27 20:51:26 +0000884 for (y++; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +0000885 {
886 register const PixelPacket
cristyc47d1f82009-11-26 01:44:43 +0000887 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +0000888
cristybb503372010-05-27 20:51:26 +0000889 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +0000890 x;
891
892 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
893 if (p == (const PixelPacket *) NULL)
894 break;
895 if (cube_info->nodes > MaxNodes)
896 {
897 /*
898 Prune one level if the color tree is too large.
899 */
900 PruneLevel(image,cube_info,cube_info->root);
901 cube_info->depth--;
902 }
cristybb503372010-05-27 20:51:26 +0000903 for (x=0; x < (ssize_t) image->columns; x+=(ssize_t) count)
cristy3ed852e2009-09-05 21:47:34 +0000904 {
905 /*
906 Start at the root and descend the color cube tree.
907 */
cristybb66d9c2010-10-09 01:40:31 +0000908 for (count=1; (x+(ssize_t) count) < (ssize_t) image->columns; count++)
cristy3ed852e2009-09-05 21:47:34 +0000909 if (IsSameColor(image,p,p+count) == MagickFalse)
910 break;
911 AssociateAlphaPixel(cube_info,p,&pixel);
912 index=MaxTreeDepth-1;
913 bisect=((MagickRealType) QuantumRange+1.0)/2.0;
914 mid=midpoint;
915 node_info=cube_info->root;
916 for (level=1; level <= cube_info->depth; level++)
917 {
918 bisect*=0.5;
919 id=ColorToNodeId(cube_info,&pixel,index);
920 mid.red+=(id & 1) != 0 ? bisect : -bisect;
921 mid.green+=(id & 2) != 0 ? bisect : -bisect;
922 mid.blue+=(id & 4) != 0 ? bisect : -bisect;
923 mid.opacity+=(id & 8) != 0 ? bisect : -bisect;
924 if (node_info->child[id] == (NodeInfo *) NULL)
925 {
926 /*
927 Set colors of new node to contain pixel.
928 */
929 node_info->child[id]=GetNodeInfo(cube_info,id,level,node_info);
930 if (node_info->child[id] == (NodeInfo *) NULL)
931 (void) ThrowMagickException(exception,GetMagickModule(),
932 ResourceLimitError,"MemoryAllocationFailed","%s",
933 image->filename);
934 if (level == cube_info->depth)
935 cube_info->colors++;
936 }
937 /*
938 Approximate the quantization error represented by this node.
939 */
940 node_info=node_info->child[id];
941 error.red=QuantumScale*(pixel.red-mid.red);
942 error.green=QuantumScale*(pixel.green-mid.green);
943 error.blue=QuantumScale*(pixel.blue-mid.blue);
944 if (cube_info->associate_alpha != MagickFalse)
945 error.opacity=QuantumScale*(pixel.opacity-mid.opacity);
946 node_info->quantize_error+=sqrt((double) (count*error.red*error.red+
cristy83b6e792011-01-26 15:46:06 +0000947 count*error.green*error.green+count*error.blue*error.blue+
cristy3ed852e2009-09-05 21:47:34 +0000948 count*error.opacity*error.opacity));
949 cube_info->root->quantize_error+=node_info->quantize_error;
950 index--;
951 }
952 /*
953 Sum RGB for this leaf for later derivation of the mean cube color.
954 */
955 node_info->number_unique+=count;
956 node_info->total_color.red+=count*QuantumScale*pixel.red;
957 node_info->total_color.green+=count*QuantumScale*pixel.green;
958 node_info->total_color.blue+=count*QuantumScale*pixel.blue;
959 if (cube_info->associate_alpha != MagickFalse)
960 node_info->total_color.opacity+=count*QuantumScale*pixel.opacity;
961 p+=count;
962 }
cristycee97112010-05-28 00:44:52 +0000963 proceed=SetImageProgress(image,ClassifyImageTag,(MagickOffsetType) y,
964 image->rows);
cristy3ed852e2009-09-05 21:47:34 +0000965 if (proceed == MagickFalse)
966 break;
967 }
968 image_view=DestroyCacheView(image_view);
969 if ((cube_info->quantize_info->colorspace != UndefinedColorspace) &&
970 (cube_info->quantize_info->colorspace != CMYKColorspace))
971 (void) TransformImageColorspace((Image *) image,RGBColorspace);
972 return(MagickTrue);
973}
974
975/*
976%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
977% %
978% %
979% %
980% C l o n e Q u a n t i z e I n f o %
981% %
982% %
983% %
984%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
985%
986% CloneQuantizeInfo() makes a duplicate of the given quantize info structure,
987% or if quantize info is NULL, a new one.
988%
989% The format of the CloneQuantizeInfo method is:
990%
991% QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
992%
993% A description of each parameter follows:
994%
995% o clone_info: Method CloneQuantizeInfo returns a duplicate of the given
996% quantize info, or if image info is NULL a new one.
997%
998% o quantize_info: a structure of type info.
999%
1000*/
1001MagickExport QuantizeInfo *CloneQuantizeInfo(const QuantizeInfo *quantize_info)
1002{
1003 QuantizeInfo
1004 *clone_info;
1005
cristy73bd4a52010-10-05 11:24:23 +00001006 clone_info=(QuantizeInfo *) AcquireMagickMemory(sizeof(*clone_info));
cristy3ed852e2009-09-05 21:47:34 +00001007 if (clone_info == (QuantizeInfo *) NULL)
1008 ThrowFatalException(ResourceLimitFatalError,"MemoryAllocationFailed");
1009 GetQuantizeInfo(clone_info);
1010 if (quantize_info == (QuantizeInfo *) NULL)
1011 return(clone_info);
1012 clone_info->number_colors=quantize_info->number_colors;
1013 clone_info->tree_depth=quantize_info->tree_depth;
1014 clone_info->dither=quantize_info->dither;
1015 clone_info->dither_method=quantize_info->dither_method;
1016 clone_info->colorspace=quantize_info->colorspace;
1017 clone_info->measure_error=quantize_info->measure_error;
1018 return(clone_info);
1019}
1020
1021/*
1022%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1023% %
1024% %
1025% %
1026+ C l o s e s t C o l o r %
1027% %
1028% %
1029% %
1030%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1031%
1032% ClosestColor() traverses the color cube tree at a particular node and
1033% determines which colormap entry best represents the input color.
1034%
1035% The format of the ClosestColor method is:
1036%
1037% void ClosestColor(const Image *image,CubeInfo *cube_info,
1038% const NodeInfo *node_info)
1039%
1040% A description of each parameter follows.
1041%
1042% o image: the image.
1043%
1044% o cube_info: A pointer to the Cube structure.
1045%
1046% o node_info: the address of a structure of type NodeInfo which points to a
1047% node in the color cube tree that is to be pruned.
1048%
1049*/
1050static void ClosestColor(const Image *image,CubeInfo *cube_info,
1051 const NodeInfo *node_info)
1052{
cristybb503372010-05-27 20:51:26 +00001053 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001054 i;
1055
cristybb503372010-05-27 20:51:26 +00001056 size_t
cristy3ed852e2009-09-05 21:47:34 +00001057 number_children;
1058
1059 /*
1060 Traverse any children.
1061 */
1062 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00001063 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00001064 if (node_info->child[i] != (NodeInfo *) NULL)
1065 ClosestColor(image,cube_info,node_info->child[i]);
1066 if (node_info->number_unique != 0)
1067 {
1068 MagickRealType
1069 pixel;
1070
1071 register MagickRealType
1072 alpha,
1073 beta,
1074 distance;
1075
1076 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001077 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +00001078
1079 register RealPixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001080 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001081
1082 /*
1083 Determine if this color is "closest".
1084 */
1085 p=image->colormap+node_info->color_number;
1086 q=(&cube_info->target);
1087 alpha=1.0;
1088 beta=1.0;
cristy847620f2011-02-09 02:24:21 +00001089 if (cube_info->associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001090 {
cristy46f08202010-01-10 04:04:21 +00001091 alpha=(MagickRealType) (QuantumScale*GetAlphaPixelComponent(p));
1092 beta=(MagickRealType) (QuantumScale*GetAlphaPixelComponent(q));
cristy3ed852e2009-09-05 21:47:34 +00001093 }
cristyd05ecd12011-04-22 20:44:42 +00001094 pixel=alpha*GetRedPixelComponent(p)-beta*q->red;
cristy3ed852e2009-09-05 21:47:34 +00001095 distance=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001096 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001097 {
cristyd05ecd12011-04-22 20:44:42 +00001098 pixel=alpha*GetGreenPixelComponent(p)-beta*q->green;
cristy3ed852e2009-09-05 21:47:34 +00001099 distance+=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001100 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001101 {
cristyd05ecd12011-04-22 20:44:42 +00001102 pixel=alpha*GetBluePixelComponent(p)-beta*q->blue;
cristy3ed852e2009-09-05 21:47:34 +00001103 distance+=pixel*pixel;
cristy36fbc3b2011-02-09 02:30:04 +00001104 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001105 {
1106 pixel=alpha-beta;
1107 distance+=pixel*pixel;
cristyc4080402011-02-09 02:55:58 +00001108 if (distance <= cube_info->distance)
cristy3ed852e2009-09-05 21:47:34 +00001109 {
1110 cube_info->distance=distance;
1111 cube_info->color_number=node_info->color_number;
1112 }
1113 }
1114 }
1115 }
1116 }
1117}
1118
1119/*
1120%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1121% %
1122% %
1123% %
1124% C o m p r e s s I m a g e C o l o r m a p %
1125% %
1126% %
1127% %
1128%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1129%
1130% CompressImageColormap() compresses an image colormap by removing any
1131% duplicate or unused color entries.
1132%
1133% The format of the CompressImageColormap method is:
1134%
1135% MagickBooleanType CompressImageColormap(Image *image)
1136%
1137% A description of each parameter follows:
1138%
1139% o image: the image.
1140%
1141*/
1142MagickExport MagickBooleanType CompressImageColormap(Image *image)
1143{
1144 QuantizeInfo
1145 quantize_info;
1146
1147 assert(image != (Image *) NULL);
1148 assert(image->signature == MagickSignature);
1149 if (image->debug != MagickFalse)
1150 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
1151 if (IsPaletteImage(image,&image->exception) == MagickFalse)
1152 return(MagickFalse);
1153 GetQuantizeInfo(&quantize_info);
1154 quantize_info.number_colors=image->colors;
1155 quantize_info.tree_depth=MaxTreeDepth;
1156 return(QuantizeImage(&quantize_info,image));
1157}
1158
1159/*
1160%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1161% %
1162% %
1163% %
1164+ D e f i n e I m a g e C o l o r m a p %
1165% %
1166% %
1167% %
1168%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1169%
1170% DefineImageColormap() traverses the color cube tree and notes each colormap
1171% entry. A colormap entry is any node in the color cube tree where the
1172% of unique colors is not zero. DefineImageColormap() returns the number of
1173% colors in the image colormap.
1174%
1175% The format of the DefineImageColormap method is:
1176%
cristybb503372010-05-27 20:51:26 +00001177% size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
cristy3ed852e2009-09-05 21:47:34 +00001178% NodeInfo *node_info)
1179%
1180% A description of each parameter follows.
1181%
1182% o image: the image.
1183%
1184% o cube_info: A pointer to the Cube structure.
1185%
1186% o node_info: the address of a structure of type NodeInfo which points to a
1187% node in the color cube tree that is to be pruned.
1188%
1189*/
cristybb503372010-05-27 20:51:26 +00001190static size_t DefineImageColormap(Image *image,CubeInfo *cube_info,
cristy3ed852e2009-09-05 21:47:34 +00001191 NodeInfo *node_info)
1192{
cristybb503372010-05-27 20:51:26 +00001193 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001194 i;
1195
cristybb503372010-05-27 20:51:26 +00001196 size_t
cristy3ed852e2009-09-05 21:47:34 +00001197 number_children;
1198
1199 /*
1200 Traverse any children.
1201 */
1202 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00001203 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00001204 if (node_info->child[i] != (NodeInfo *) NULL)
cristycee97112010-05-28 00:44:52 +00001205 (void) DefineImageColormap(image,cube_info,node_info->child[i]);
cristy3ed852e2009-09-05 21:47:34 +00001206 if (node_info->number_unique != 0)
1207 {
1208 register MagickRealType
1209 alpha;
1210
1211 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001212 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001213
1214 /*
1215 Colormap entry is defined by the mean color in this cube.
1216 */
1217 q=image->colormap+image->colors;
1218 alpha=(MagickRealType) ((MagickOffsetType) node_info->number_unique);
1219 alpha=1.0/(fabs(alpha) <= MagickEpsilon ? 1.0 : alpha);
1220 if (cube_info->associate_alpha == MagickFalse)
1221 {
cristyce70c172010-01-07 17:15:30 +00001222 q->red=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001223 node_info->total_color.red));
cristyce70c172010-01-07 17:15:30 +00001224 q->green=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001225 node_info->total_color.green));
cristyce70c172010-01-07 17:15:30 +00001226 q->blue=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001227 node_info->total_color.blue));
cristyce70c172010-01-07 17:15:30 +00001228 SetOpacityPixelComponent(q,OpaqueOpacity);
cristy3ed852e2009-09-05 21:47:34 +00001229 }
1230 else
1231 {
1232 MagickRealType
1233 opacity;
1234
1235 opacity=(MagickRealType) (alpha*QuantumRange*
1236 node_info->total_color.opacity);
cristyce70c172010-01-07 17:15:30 +00001237 q->opacity=ClampToQuantum(opacity);
cristy3ed852e2009-09-05 21:47:34 +00001238 if (q->opacity == OpaqueOpacity)
1239 {
cristyce70c172010-01-07 17:15:30 +00001240 q->red=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001241 node_info->total_color.red));
cristyce70c172010-01-07 17:15:30 +00001242 q->green=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001243 node_info->total_color.green));
cristyce70c172010-01-07 17:15:30 +00001244 q->blue=ClampToQuantum((MagickRealType) (alpha*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001245 node_info->total_color.blue));
1246 }
1247 else
1248 {
1249 MagickRealType
1250 gamma;
1251
1252 gamma=(MagickRealType) (QuantumScale*(QuantumRange-
1253 (MagickRealType) q->opacity));
1254 gamma=1.0/(fabs(gamma) <= MagickEpsilon ? 1.0 : gamma);
cristyce70c172010-01-07 17:15:30 +00001255 q->red=ClampToQuantum((MagickRealType) (alpha*gamma*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001256 node_info->total_color.red));
cristyce70c172010-01-07 17:15:30 +00001257 q->green=ClampToQuantum((MagickRealType) (alpha*gamma*
cristy3ed852e2009-09-05 21:47:34 +00001258 QuantumRange*node_info->total_color.green));
cristyce70c172010-01-07 17:15:30 +00001259 q->blue=ClampToQuantum((MagickRealType) (alpha*gamma*QuantumRange*
cristy3ed852e2009-09-05 21:47:34 +00001260 node_info->total_color.blue));
1261 if (node_info->number_unique > cube_info->transparent_pixels)
1262 {
1263 cube_info->transparent_pixels=node_info->number_unique;
cristybb503372010-05-27 20:51:26 +00001264 cube_info->transparent_index=(ssize_t) image->colors;
cristy3ed852e2009-09-05 21:47:34 +00001265 }
1266 }
1267 }
1268 node_info->color_number=image->colors++;
1269 }
1270 return(image->colors);
1271}
1272
1273/*
1274%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1275% %
1276% %
1277% %
1278+ D e s t r o y C u b e I n f o %
1279% %
1280% %
1281% %
1282%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1283%
1284% DestroyCubeInfo() deallocates memory associated with an image.
1285%
1286% The format of the DestroyCubeInfo method is:
1287%
1288% DestroyCubeInfo(CubeInfo *cube_info)
1289%
1290% A description of each parameter follows:
1291%
1292% o cube_info: the address of a structure of type CubeInfo.
1293%
1294*/
1295static void DestroyCubeInfo(CubeInfo *cube_info)
1296{
1297 register Nodes
1298 *nodes;
1299
1300 /*
1301 Release color cube tree storage.
1302 */
1303 do
1304 {
1305 nodes=cube_info->node_queue->next;
1306 cube_info->node_queue->nodes=(NodeInfo *) RelinquishMagickMemory(
1307 cube_info->node_queue->nodes);
1308 cube_info->node_queue=(Nodes *) RelinquishMagickMemory(
1309 cube_info->node_queue);
1310 cube_info->node_queue=nodes;
1311 } while (cube_info->node_queue != (Nodes *) NULL);
cristybb503372010-05-27 20:51:26 +00001312 if (cube_info->cache != (ssize_t *) NULL)
1313 cube_info->cache=(ssize_t *) RelinquishMagickMemory(cube_info->cache);
cristy3ed852e2009-09-05 21:47:34 +00001314 cube_info->quantize_info=DestroyQuantizeInfo(cube_info->quantize_info);
1315 cube_info=(CubeInfo *) RelinquishMagickMemory(cube_info);
1316}
1317
1318/*
1319%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1320% %
1321% %
1322% %
1323% D e s t r o y Q u a n t i z e I n f o %
1324% %
1325% %
1326% %
1327%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1328%
1329% DestroyQuantizeInfo() deallocates memory associated with an QuantizeInfo
1330% structure.
1331%
1332% The format of the DestroyQuantizeInfo method is:
1333%
1334% QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1335%
1336% A description of each parameter follows:
1337%
1338% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1339%
1340*/
1341MagickExport QuantizeInfo *DestroyQuantizeInfo(QuantizeInfo *quantize_info)
1342{
1343 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
1344 assert(quantize_info != (QuantizeInfo *) NULL);
1345 assert(quantize_info->signature == MagickSignature);
1346 quantize_info->signature=(~MagickSignature);
1347 quantize_info=(QuantizeInfo *) RelinquishMagickMemory(quantize_info);
1348 return(quantize_info);
1349}
1350
1351/*
1352%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1353% %
1354% %
1355% %
1356+ D i t h e r I m a g e %
1357% %
1358% %
1359% %
1360%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1361%
1362% DitherImage() distributes the difference between an original image and
1363% the corresponding color reduced algorithm to neighboring pixels using
1364% serpentine-scan Floyd-Steinberg error diffusion. DitherImage returns
1365% MagickTrue if the image is dithered otherwise MagickFalse.
1366%
1367% The format of the DitherImage method is:
1368%
1369% MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info)
1370%
1371% A description of each parameter follows.
1372%
1373% o image: the image.
1374%
1375% o cube_info: A pointer to the Cube structure.
1376%
1377*/
1378
cristye9717ac2011-02-20 16:17:17 +00001379static RealPixelPacket **DestroyPixelThreadSet(RealPixelPacket **pixels)
1380{
1381 register ssize_t
1382 i;
1383
1384 assert(pixels != (RealPixelPacket **) NULL);
1385 for (i=0; i < (ssize_t) GetOpenMPMaximumThreads(); i++)
1386 if (pixels[i] != (RealPixelPacket *) NULL)
1387 pixels[i]=(RealPixelPacket *) RelinquishMagickMemory(pixels[i]);
1388 pixels=(RealPixelPacket **) RelinquishMagickMemory(pixels);
1389 return(pixels);
1390}
1391
1392static RealPixelPacket **AcquirePixelThreadSet(const size_t count)
1393{
1394 RealPixelPacket
1395 **pixels;
1396
1397 register ssize_t
1398 i;
1399
1400 size_t
1401 number_threads;
1402
1403 number_threads=GetOpenMPMaximumThreads();
1404 pixels=(RealPixelPacket **) AcquireQuantumMemory(number_threads,
1405 sizeof(*pixels));
1406 if (pixels == (RealPixelPacket **) NULL)
1407 return((RealPixelPacket **) NULL);
1408 (void) ResetMagickMemory(pixels,0,number_threads*sizeof(*pixels));
1409 for (i=0; i < (ssize_t) number_threads; i++)
1410 {
1411 pixels[i]=(RealPixelPacket *) AcquireQuantumMemory(count,
1412 2*sizeof(**pixels));
1413 if (pixels[i] == (RealPixelPacket *) NULL)
1414 return(DestroyPixelThreadSet(pixels));
1415 }
1416 return(pixels);
1417}
1418
cristyca972de2010-06-20 23:37:02 +00001419static inline ssize_t CacheOffset(CubeInfo *cube_info,
1420 const RealPixelPacket *pixel)
1421{
1422#define RedShift(pixel) (((pixel) >> CacheShift) << (0*(8-CacheShift)))
1423#define GreenShift(pixel) (((pixel) >> CacheShift) << (1*(8-CacheShift)))
1424#define BlueShift(pixel) (((pixel) >> CacheShift) << (2*(8-CacheShift)))
1425#define AlphaShift(pixel) (((pixel) >> CacheShift) << (3*(8-CacheShift)))
1426
1427 ssize_t
1428 offset;
1429
1430 offset=(ssize_t)
cristy15893a42010-11-20 18:57:15 +00001431 (RedShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->red))) |
cristyca972de2010-06-20 23:37:02 +00001432 GreenShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->green))) |
cristy15893a42010-11-20 18:57:15 +00001433 BlueShift(ScaleQuantumToChar(ClampToUnsignedQuantum(pixel->blue))));
cristyca972de2010-06-20 23:37:02 +00001434 if (cube_info->associate_alpha != MagickFalse)
cristy15893a42010-11-20 18:57:15 +00001435 offset|=AlphaShift(ScaleQuantumToChar(ClampToUnsignedQuantum(
1436 pixel->opacity)));
cristyca972de2010-06-20 23:37:02 +00001437 return(offset);
1438}
1439
cristy3ed852e2009-09-05 21:47:34 +00001440static MagickBooleanType FloydSteinbergDither(Image *image,CubeInfo *cube_info)
1441{
1442#define DitherImageTag "Dither/Image"
1443
cristyc4c8d132010-01-07 01:58:38 +00001444 CacheView
1445 *image_view;
1446
cristy3ed852e2009-09-05 21:47:34 +00001447 ExceptionInfo
1448 *exception;
1449
cristy3ed852e2009-09-05 21:47:34 +00001450 MagickBooleanType
cristye9717ac2011-02-20 16:17:17 +00001451 status;
cristy3ed852e2009-09-05 21:47:34 +00001452
1453 RealPixelPacket
cristye9717ac2011-02-20 16:17:17 +00001454 **pixels;
cristy3ed852e2009-09-05 21:47:34 +00001455
cristy847620f2011-02-09 02:24:21 +00001456 ssize_t
cristy847620f2011-02-09 02:24:21 +00001457 y;
1458
cristy3ed852e2009-09-05 21:47:34 +00001459 /*
1460 Distribute quantization error using Floyd-Steinberg.
1461 */
cristye9717ac2011-02-20 16:17:17 +00001462 pixels=AcquirePixelThreadSet(image->columns);
1463 if (pixels == (RealPixelPacket **) NULL)
cristy3ed852e2009-09-05 21:47:34 +00001464 return(MagickFalse);
cristy3ed852e2009-09-05 21:47:34 +00001465 exception=(&image->exception);
cristye9717ac2011-02-20 16:17:17 +00001466 status=MagickTrue;
cristy3ed852e2009-09-05 21:47:34 +00001467 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +00001468 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00001469 {
cristye9717ac2011-02-20 16:17:17 +00001470 const int
1471 id = GetOpenMPThreadId();
1472
1473 CubeInfo
1474 cube;
1475
1476 RealPixelPacket
1477 *current,
1478 *previous;
1479
cristy3ed852e2009-09-05 21:47:34 +00001480 register IndexPacket
cristyc47d1f82009-11-26 01:44:43 +00001481 *restrict indexes;
cristy3ed852e2009-09-05 21:47:34 +00001482
cristyecc31b12011-02-13 00:32:29 +00001483 register PixelPacket
1484 *restrict q;
1485
cristybb503372010-05-27 20:51:26 +00001486 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001487 x;
1488
cristye9717ac2011-02-20 16:17:17 +00001489 size_t
1490 index;
1491
1492 ssize_t
1493 v;
1494
1495 if (status == MagickFalse)
1496 continue;
cristy3ed852e2009-09-05 21:47:34 +00001497 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
1498 if (q == (PixelPacket *) NULL)
cristye9717ac2011-02-20 16:17:17 +00001499 {
1500 status=MagickFalse;
cristy00cbdd62011-02-20 17:29:26 +00001501 continue;
cristye9717ac2011-02-20 16:17:17 +00001502 }
cristy3ed852e2009-09-05 21:47:34 +00001503 indexes=GetCacheViewAuthenticIndexQueue(image_view);
cristye9717ac2011-02-20 16:17:17 +00001504 cube=(*cube_info);
1505 current=pixels[id]+(y & 0x01)*image->columns;
1506 previous=pixels[id]+((y+1) & 0x01)*image->columns;
cristycee97112010-05-28 00:44:52 +00001507 v=(ssize_t) ((y & 0x01) ? -1 : 1);
cristybb503372010-05-27 20:51:26 +00001508 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00001509 {
cristye9717ac2011-02-20 16:17:17 +00001510 RealPixelPacket
1511 color,
1512 pixel;
1513
1514 register ssize_t
1515 i;
1516
1517 ssize_t
1518 u;
1519
cristybb503372010-05-27 20:51:26 +00001520 u=(y & 0x01) ? (ssize_t) image->columns-1-x : x;
cristye9717ac2011-02-20 16:17:17 +00001521 AssociateAlphaPixel(&cube,q+u,&pixel);
cristy3ed852e2009-09-05 21:47:34 +00001522 if (x > 0)
1523 {
1524 pixel.red+=7*current[u-v].red/16;
1525 pixel.green+=7*current[u-v].green/16;
1526 pixel.blue+=7*current[u-v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001527 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001528 pixel.opacity+=7*current[u-v].opacity/16;
1529 }
1530 if (y > 0)
1531 {
cristybb503372010-05-27 20:51:26 +00001532 if (x < (ssize_t) (image->columns-1))
cristy3ed852e2009-09-05 21:47:34 +00001533 {
1534 pixel.red+=previous[u+v].red/16;
1535 pixel.green+=previous[u+v].green/16;
1536 pixel.blue+=previous[u+v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001537 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001538 pixel.opacity+=previous[u+v].opacity/16;
1539 }
1540 pixel.red+=5*previous[u].red/16;
1541 pixel.green+=5*previous[u].green/16;
1542 pixel.blue+=5*previous[u].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001543 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001544 pixel.opacity+=5*previous[u].opacity/16;
1545 if (x > 0)
1546 {
1547 pixel.red+=3*previous[u-v].red/16;
1548 pixel.green+=3*previous[u-v].green/16;
1549 pixel.blue+=3*previous[u-v].blue/16;
cristye9717ac2011-02-20 16:17:17 +00001550 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001551 pixel.opacity+=3*previous[u-v].opacity/16;
1552 }
1553 }
cristy75ffdb72010-01-07 17:40:12 +00001554 pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1555 pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1556 pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
cristye9717ac2011-02-20 16:17:17 +00001557 if (cube.associate_alpha != MagickFalse)
cristy75ffdb72010-01-07 17:40:12 +00001558 pixel.opacity=(MagickRealType) ClampToUnsignedQuantum(pixel.opacity);
cristye9717ac2011-02-20 16:17:17 +00001559 i=CacheOffset(&cube,&pixel);
1560 if (cube.cache[i] < 0)
cristy3ed852e2009-09-05 21:47:34 +00001561 {
1562 register NodeInfo
1563 *node_info;
1564
cristybb503372010-05-27 20:51:26 +00001565 register size_t
cristy3ed852e2009-09-05 21:47:34 +00001566 id;
1567
1568 /*
1569 Identify the deepest node containing the pixel's color.
1570 */
cristye9717ac2011-02-20 16:17:17 +00001571 node_info=cube.root;
cristybb503372010-05-27 20:51:26 +00001572 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +00001573 {
cristye9717ac2011-02-20 16:17:17 +00001574 id=ColorToNodeId(&cube,&pixel,index);
cristy3ed852e2009-09-05 21:47:34 +00001575 if (node_info->child[id] == (NodeInfo *) NULL)
1576 break;
1577 node_info=node_info->child[id];
1578 }
1579 /*
1580 Find closest color among siblings and their children.
1581 */
cristye9717ac2011-02-20 16:17:17 +00001582 cube.target=pixel;
1583 cube.distance=(MagickRealType) (4.0*(QuantumRange+1.0)*(QuantumRange+
cristy3ed852e2009-09-05 21:47:34 +00001584 1.0)+1.0);
cristye9717ac2011-02-20 16:17:17 +00001585 ClosestColor(image,&cube,node_info->parent);
1586 cube.cache[i]=(ssize_t) cube.color_number;
cristy3ed852e2009-09-05 21:47:34 +00001587 }
1588 /*
1589 Assign pixel to closest colormap entry.
1590 */
cristye9717ac2011-02-20 16:17:17 +00001591 index=(size_t) cube.cache[i];
cristy3ed852e2009-09-05 21:47:34 +00001592 if (image->storage_class == PseudoClass)
1593 indexes[u]=(IndexPacket) index;
cristye9717ac2011-02-20 16:17:17 +00001594 if (cube.quantize_info->measure_error == MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001595 {
1596 (q+u)->red=image->colormap[index].red;
1597 (q+u)->green=image->colormap[index].green;
1598 (q+u)->blue=image->colormap[index].blue;
cristye9717ac2011-02-20 16:17:17 +00001599 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001600 (q+u)->opacity=image->colormap[index].opacity;
1601 }
1602 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
cristye9717ac2011-02-20 16:17:17 +00001603 status=MagickFalse;
cristy3ed852e2009-09-05 21:47:34 +00001604 /*
1605 Store the error.
1606 */
cristye9717ac2011-02-20 16:17:17 +00001607 AssociateAlphaPixel(&cube,image->colormap+index,&color);
cristy3ed852e2009-09-05 21:47:34 +00001608 current[u].red=pixel.red-color.red;
1609 current[u].green=pixel.green-color.green;
1610 current[u].blue=pixel.blue-color.blue;
cristye9717ac2011-02-20 16:17:17 +00001611 if (cube.associate_alpha != MagickFalse)
cristy3ed852e2009-09-05 21:47:34 +00001612 current[u].opacity=pixel.opacity-color.opacity;
cristye9717ac2011-02-20 16:17:17 +00001613 if (image->progress_monitor != (MagickProgressMonitor) NULL)
1614 {
1615 MagickBooleanType
1616 proceed;
1617
1618#if defined(MAGICKCORE_OPENMP_SUPPORT)
1619 #pragma omp critical (MagickCore_FloydSteinbergDither)
1620#endif
1621 proceed=SetImageProgress(image,DitherImageTag,(MagickOffsetType) y,
1622 image->rows);
1623 if (proceed == MagickFalse)
1624 status=MagickFalse;
1625 }
cristy3ed852e2009-09-05 21:47:34 +00001626 }
1627 }
cristy3ed852e2009-09-05 21:47:34 +00001628 image_view=DestroyCacheView(image_view);
cristye9717ac2011-02-20 16:17:17 +00001629 pixels=DestroyPixelThreadSet(pixels);
cristy3ed852e2009-09-05 21:47:34 +00001630 return(MagickTrue);
1631}
1632
1633static MagickBooleanType
1634 RiemersmaDither(Image *,CacheView *,CubeInfo *,const unsigned int);
1635
1636static void Riemersma(Image *image,CacheView *image_view,CubeInfo *cube_info,
cristybb503372010-05-27 20:51:26 +00001637 const size_t level,const unsigned int direction)
cristy3ed852e2009-09-05 21:47:34 +00001638{
1639 if (level == 1)
1640 switch (direction)
1641 {
1642 case WestGravity:
1643 {
1644 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1645 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1646 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1647 break;
1648 }
1649 case EastGravity:
1650 {
1651 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1652 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1653 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1654 break;
1655 }
1656 case NorthGravity:
1657 {
1658 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1659 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1660 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1661 break;
1662 }
1663 case SouthGravity:
1664 {
1665 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1666 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1667 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1668 break;
1669 }
1670 default:
1671 break;
1672 }
1673 else
1674 switch (direction)
1675 {
1676 case WestGravity:
1677 {
1678 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1679 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1680 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1681 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1682 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1683 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1684 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1685 break;
1686 }
1687 case EastGravity:
1688 {
1689 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1690 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1691 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1692 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1693 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1694 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1695 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1696 break;
1697 }
1698 case NorthGravity:
1699 {
1700 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1701 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1702 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1703 (void) RiemersmaDither(image,image_view,cube_info,EastGravity);
1704 Riemersma(image,image_view,cube_info,level-1,NorthGravity);
1705 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1706 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1707 break;
1708 }
1709 case SouthGravity:
1710 {
1711 Riemersma(image,image_view,cube_info,level-1,EastGravity);
1712 (void) RiemersmaDither(image,image_view,cube_info,NorthGravity);
1713 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1714 (void) RiemersmaDither(image,image_view,cube_info,WestGravity);
1715 Riemersma(image,image_view,cube_info,level-1,SouthGravity);
1716 (void) RiemersmaDither(image,image_view,cube_info,SouthGravity);
1717 Riemersma(image,image_view,cube_info,level-1,WestGravity);
1718 break;
1719 }
1720 default:
1721 break;
1722 }
1723}
1724
1725static MagickBooleanType RiemersmaDither(Image *image,CacheView *image_view,
1726 CubeInfo *cube_info,const unsigned int direction)
1727{
1728#define DitherImageTag "Dither/Image"
1729
1730 MagickBooleanType
1731 proceed;
1732
1733 RealPixelPacket
1734 color,
1735 pixel;
1736
1737 register CubeInfo
1738 *p;
1739
cristybb503372010-05-27 20:51:26 +00001740 size_t
cristy3ed852e2009-09-05 21:47:34 +00001741 index;
1742
1743 p=cube_info;
cristybb503372010-05-27 20:51:26 +00001744 if ((p->x >= 0) && (p->x < (ssize_t) image->columns) &&
1745 (p->y >= 0) && (p->y < (ssize_t) image->rows))
cristy3ed852e2009-09-05 21:47:34 +00001746 {
1747 ExceptionInfo
1748 *exception;
1749
1750 register IndexPacket
cristyc47d1f82009-11-26 01:44:43 +00001751 *restrict indexes;
cristy3ed852e2009-09-05 21:47:34 +00001752
cristy3ed852e2009-09-05 21:47:34 +00001753 register PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00001754 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00001755
cristyecc31b12011-02-13 00:32:29 +00001756 register ssize_t
1757 i;
1758
cristy3ed852e2009-09-05 21:47:34 +00001759 /*
1760 Distribute error.
1761 */
1762 exception=(&image->exception);
1763 q=GetCacheViewAuthenticPixels(image_view,p->x,p->y,1,1,exception);
1764 if (q == (PixelPacket *) NULL)
1765 return(MagickFalse);
1766 indexes=GetCacheViewAuthenticIndexQueue(image_view);
1767 AssociateAlphaPixel(cube_info,q,&pixel);
1768 for (i=0; i < ErrorQueueLength; i++)
1769 {
1770 pixel.red+=p->weights[i]*p->error[i].red;
1771 pixel.green+=p->weights[i]*p->error[i].green;
1772 pixel.blue+=p->weights[i]*p->error[i].blue;
1773 if (cube_info->associate_alpha != MagickFalse)
1774 pixel.opacity+=p->weights[i]*p->error[i].opacity;
1775 }
cristy75ffdb72010-01-07 17:40:12 +00001776 pixel.red=(MagickRealType) ClampToUnsignedQuantum(pixel.red);
1777 pixel.green=(MagickRealType) ClampToUnsignedQuantum(pixel.green);
1778 pixel.blue=(MagickRealType) ClampToUnsignedQuantum(pixel.blue);
cristy3ed852e2009-09-05 21:47:34 +00001779 if (cube_info->associate_alpha != MagickFalse)
cristy75ffdb72010-01-07 17:40:12 +00001780 pixel.opacity=(MagickRealType) ClampToUnsignedQuantum(pixel.opacity);
cristyca972de2010-06-20 23:37:02 +00001781 i=CacheOffset(cube_info,&pixel);
cristy3ed852e2009-09-05 21:47:34 +00001782 if (p->cache[i] < 0)
1783 {
1784 register NodeInfo
1785 *node_info;
1786
cristybb503372010-05-27 20:51:26 +00001787 register size_t
cristy3ed852e2009-09-05 21:47:34 +00001788 id;
1789
1790 /*
1791 Identify the deepest node containing the pixel's color.
1792 */
1793 node_info=p->root;
cristybb503372010-05-27 20:51:26 +00001794 for (index=MaxTreeDepth-1; (ssize_t) index > 0; index--)
cristy3ed852e2009-09-05 21:47:34 +00001795 {
1796 id=ColorToNodeId(cube_info,&pixel,index);
1797 if (node_info->child[id] == (NodeInfo *) NULL)
1798 break;
1799 node_info=node_info->child[id];
1800 }
cristyecc31b12011-02-13 00:32:29 +00001801 node_info=node_info->parent;
cristy3ed852e2009-09-05 21:47:34 +00001802 /*
1803 Find closest color among siblings and their children.
1804 */
1805 p->target=pixel;
1806 p->distance=(MagickRealType) (4.0*(QuantumRange+1.0)*((MagickRealType)
1807 QuantumRange+1.0)+1.0);
1808 ClosestColor(image,p,node_info->parent);
cristybb503372010-05-27 20:51:26 +00001809 p->cache[i]=(ssize_t) p->color_number;
cristy3ed852e2009-09-05 21:47:34 +00001810 }
1811 /*
1812 Assign pixel to closest colormap entry.
1813 */
cristybb503372010-05-27 20:51:26 +00001814 index=(size_t) (1*p->cache[i]);
cristy3ed852e2009-09-05 21:47:34 +00001815 if (image->storage_class == PseudoClass)
1816 *indexes=(IndexPacket) index;
1817 if (cube_info->quantize_info->measure_error == MagickFalse)
1818 {
1819 q->red=image->colormap[index].red;
1820 q->green=image->colormap[index].green;
1821 q->blue=image->colormap[index].blue;
1822 if (cube_info->associate_alpha != MagickFalse)
1823 q->opacity=image->colormap[index].opacity;
1824 }
1825 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
1826 return(MagickFalse);
1827 /*
1828 Propagate the error as the last entry of the error queue.
1829 */
1830 (void) CopyMagickMemory(p->error,p->error+1,(ErrorQueueLength-1)*
1831 sizeof(p->error[0]));
1832 AssociateAlphaPixel(cube_info,image->colormap+index,&color);
1833 p->error[ErrorQueueLength-1].red=pixel.red-color.red;
1834 p->error[ErrorQueueLength-1].green=pixel.green-color.green;
1835 p->error[ErrorQueueLength-1].blue=pixel.blue-color.blue;
1836 if (cube_info->associate_alpha != MagickFalse)
1837 p->error[ErrorQueueLength-1].opacity=pixel.opacity-color.opacity;
1838 proceed=SetImageProgress(image,DitherImageTag,p->offset,p->span);
1839 if (proceed == MagickFalse)
1840 return(MagickFalse);
1841 p->offset++;
1842 }
1843 switch (direction)
1844 {
1845 case WestGravity: p->x--; break;
1846 case EastGravity: p->x++; break;
1847 case NorthGravity: p->y--; break;
1848 case SouthGravity: p->y++; break;
1849 }
1850 return(MagickTrue);
1851}
1852
cristybb503372010-05-27 20:51:26 +00001853static inline ssize_t MagickMax(const ssize_t x,const ssize_t y)
cristy3ed852e2009-09-05 21:47:34 +00001854{
1855 if (x > y)
1856 return(x);
1857 return(y);
1858}
1859
cristybb503372010-05-27 20:51:26 +00001860static inline ssize_t MagickMin(const ssize_t x,const ssize_t y)
cristy3ed852e2009-09-05 21:47:34 +00001861{
1862 if (x < y)
1863 return(x);
1864 return(y);
1865}
1866
1867static MagickBooleanType DitherImage(Image *image,CubeInfo *cube_info)
1868{
cristyc4c8d132010-01-07 01:58:38 +00001869 CacheView
1870 *image_view;
1871
cristy3ed852e2009-09-05 21:47:34 +00001872 MagickBooleanType
1873 status;
1874
cristybb503372010-05-27 20:51:26 +00001875 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001876 i;
1877
cristybb503372010-05-27 20:51:26 +00001878 size_t
cristy3ed852e2009-09-05 21:47:34 +00001879 depth;
1880
cristyfb7e9cd2011-02-20 16:26:15 +00001881 if (cube_info->quantize_info->dither_method != RiemersmaDitherMethod)
cristy3ed852e2009-09-05 21:47:34 +00001882 return(FloydSteinbergDither(image,cube_info));
1883 /*
cristycee97112010-05-28 00:44:52 +00001884 Distribute quantization error along a Hilbert curve.
cristy3ed852e2009-09-05 21:47:34 +00001885 */
1886 (void) ResetMagickMemory(cube_info->error,0,ErrorQueueLength*
1887 sizeof(*cube_info->error));
1888 cube_info->x=0;
1889 cube_info->y=0;
cristybb503372010-05-27 20:51:26 +00001890 i=MagickMax((ssize_t) image->columns,(ssize_t) image->rows);
cristy3ed852e2009-09-05 21:47:34 +00001891 for (depth=1; i != 0; depth++)
1892 i>>=1;
cristybb503372010-05-27 20:51:26 +00001893 if ((ssize_t) (1L << depth) < MagickMax((ssize_t) image->columns,(ssize_t) image->rows))
cristy3ed852e2009-09-05 21:47:34 +00001894 depth++;
1895 cube_info->offset=0;
1896 cube_info->span=(MagickSizeType) image->columns*image->rows;
1897 image_view=AcquireCacheView(image);
1898 if (depth > 1)
1899 Riemersma(image,image_view,cube_info,depth-1,NorthGravity);
1900 status=RiemersmaDither(image,image_view,cube_info,ForgetGravity);
1901 image_view=DestroyCacheView(image_view);
1902 return(status);
1903}
1904
1905/*
1906%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1907% %
1908% %
1909% %
1910+ G e t C u b e I n f o %
1911% %
1912% %
1913% %
1914%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
1915%
1916% GetCubeInfo() initialize the Cube data structure.
1917%
1918% The format of the GetCubeInfo method is:
1919%
1920% CubeInfo GetCubeInfo(const QuantizeInfo *quantize_info,
cristybb503372010-05-27 20:51:26 +00001921% const size_t depth,const size_t maximum_colors)
cristy3ed852e2009-09-05 21:47:34 +00001922%
1923% A description of each parameter follows.
1924%
1925% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
1926%
1927% o depth: Normally, this integer value is zero or one. A zero or
1928% one tells Quantize to choose a optimal tree depth of Log4(number_colors).
1929% A tree of this depth generally allows the best representation of the
1930% reference image with the least amount of memory and the fastest
1931% computational speed. In some cases, such as an image with low color
1932% dispersion (a few number of colors), a value other than
1933% Log4(number_colors) is required. To expand the color tree completely,
1934% use a value of 8.
1935%
1936% o maximum_colors: maximum colors.
1937%
1938*/
1939static CubeInfo *GetCubeInfo(const QuantizeInfo *quantize_info,
cristybb503372010-05-27 20:51:26 +00001940 const size_t depth,const size_t maximum_colors)
cristy3ed852e2009-09-05 21:47:34 +00001941{
1942 CubeInfo
1943 *cube_info;
1944
1945 MagickRealType
1946 sum,
1947 weight;
1948
cristybb503372010-05-27 20:51:26 +00001949 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00001950 i;
1951
cristyecc31b12011-02-13 00:32:29 +00001952 size_t
1953 length;
1954
cristy3ed852e2009-09-05 21:47:34 +00001955 /*
1956 Initialize tree to describe color cube_info.
1957 */
cristy73bd4a52010-10-05 11:24:23 +00001958 cube_info=(CubeInfo *) AcquireMagickMemory(sizeof(*cube_info));
cristy3ed852e2009-09-05 21:47:34 +00001959 if (cube_info == (CubeInfo *) NULL)
1960 return((CubeInfo *) NULL);
1961 (void) ResetMagickMemory(cube_info,0,sizeof(*cube_info));
1962 cube_info->depth=depth;
1963 if (cube_info->depth > MaxTreeDepth)
1964 cube_info->depth=MaxTreeDepth;
1965 if (cube_info->depth < 2)
1966 cube_info->depth=2;
1967 cube_info->maximum_colors=maximum_colors;
1968 /*
1969 Initialize root node.
1970 */
1971 cube_info->root=GetNodeInfo(cube_info,0,0,(NodeInfo *) NULL);
1972 if (cube_info->root == (NodeInfo *) NULL)
1973 return((CubeInfo *) NULL);
1974 cube_info->root->parent=cube_info->root;
1975 cube_info->quantize_info=CloneQuantizeInfo(quantize_info);
1976 if (cube_info->quantize_info->dither == MagickFalse)
1977 return(cube_info);
1978 /*
1979 Initialize dither resources.
1980 */
1981 length=(size_t) (1UL << (4*(8-CacheShift)));
cristybb503372010-05-27 20:51:26 +00001982 cube_info->cache=(ssize_t *) AcquireQuantumMemory(length,
cristy3ed852e2009-09-05 21:47:34 +00001983 sizeof(*cube_info->cache));
cristybb503372010-05-27 20:51:26 +00001984 if (cube_info->cache == (ssize_t *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00001985 return((CubeInfo *) NULL);
1986 /*
1987 Initialize color cache.
1988 */
cristybb503372010-05-27 20:51:26 +00001989 for (i=0; i < (ssize_t) length; i++)
cristy3ed852e2009-09-05 21:47:34 +00001990 cube_info->cache[i]=(-1);
1991 /*
cristycee97112010-05-28 00:44:52 +00001992 Distribute weights along a curve of exponential decay.
cristy3ed852e2009-09-05 21:47:34 +00001993 */
1994 weight=1.0;
1995 for (i=0; i < ErrorQueueLength; i++)
1996 {
1997 cube_info->weights[ErrorQueueLength-i-1]=1.0/weight;
1998 weight*=exp(log(((double) QuantumRange+1.0))/(ErrorQueueLength-1.0));
1999 }
2000 /*
2001 Normalize the weighting factors.
2002 */
2003 weight=0.0;
2004 for (i=0; i < ErrorQueueLength; i++)
2005 weight+=cube_info->weights[i];
2006 sum=0.0;
2007 for (i=0; i < ErrorQueueLength; i++)
2008 {
2009 cube_info->weights[i]/=weight;
2010 sum+=cube_info->weights[i];
2011 }
2012 cube_info->weights[0]+=1.0-sum;
2013 return(cube_info);
2014}
2015
2016/*
2017%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2018% %
2019% %
2020% %
2021+ G e t N o d e I n f o %
2022% %
2023% %
2024% %
2025%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2026%
2027% GetNodeInfo() allocates memory for a new node in the color cube tree and
2028% presets all fields to zero.
2029%
2030% The format of the GetNodeInfo method is:
2031%
cristybb503372010-05-27 20:51:26 +00002032% NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2033% const size_t level,NodeInfo *parent)
cristy3ed852e2009-09-05 21:47:34 +00002034%
2035% A description of each parameter follows.
2036%
2037% o node: The GetNodeInfo method returns a pointer to a queue of nodes.
2038%
2039% o id: Specifies the child number of the node.
2040%
2041% o level: Specifies the level in the storage_class the node resides.
2042%
2043*/
cristybb503372010-05-27 20:51:26 +00002044static NodeInfo *GetNodeInfo(CubeInfo *cube_info,const size_t id,
2045 const size_t level,NodeInfo *parent)
cristy3ed852e2009-09-05 21:47:34 +00002046{
2047 NodeInfo
2048 *node_info;
2049
2050 if (cube_info->free_nodes == 0)
2051 {
2052 Nodes
2053 *nodes;
2054
2055 /*
2056 Allocate a new queue of nodes.
2057 */
cristy73bd4a52010-10-05 11:24:23 +00002058 nodes=(Nodes *) AcquireMagickMemory(sizeof(*nodes));
cristy3ed852e2009-09-05 21:47:34 +00002059 if (nodes == (Nodes *) NULL)
2060 return((NodeInfo *) NULL);
2061 nodes->nodes=(NodeInfo *) AcquireQuantumMemory(NodesInAList,
2062 sizeof(*nodes->nodes));
2063 if (nodes->nodes == (NodeInfo *) NULL)
2064 return((NodeInfo *) NULL);
2065 nodes->next=cube_info->node_queue;
2066 cube_info->node_queue=nodes;
2067 cube_info->next_node=nodes->nodes;
2068 cube_info->free_nodes=NodesInAList;
2069 }
2070 cube_info->nodes++;
2071 cube_info->free_nodes--;
2072 node_info=cube_info->next_node++;
2073 (void) ResetMagickMemory(node_info,0,sizeof(*node_info));
2074 node_info->parent=parent;
2075 node_info->id=id;
2076 node_info->level=level;
2077 return(node_info);
2078}
2079
2080/*
2081%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2082% %
2083% %
2084% %
2085% G e t I m a g e Q u a n t i z e E r r o r %
2086% %
2087% %
2088% %
2089%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2090%
2091% GetImageQuantizeError() measures the difference between the original
2092% and quantized images. This difference is the total quantization error.
2093% The error is computed by summing over all pixels in an image the distance
2094% squared in RGB space between each reference pixel value and its quantized
2095% value. These values are computed:
2096%
2097% o mean_error_per_pixel: This value is the mean error for any single
2098% pixel in the image.
2099%
2100% o normalized_mean_square_error: This value is the normalized mean
2101% quantization error for any single pixel in the image. This distance
2102% measure is normalized to a range between 0 and 1. It is independent
2103% of the range of red, green, and blue values in the image.
2104%
2105% o normalized_maximum_square_error: Thsi value is the normalized
2106% maximum quantization error for any single pixel in the image. This
2107% distance measure is normalized to a range between 0 and 1. It is
2108% independent of the range of red, green, and blue values in your image.
2109%
2110% The format of the GetImageQuantizeError method is:
2111%
2112% MagickBooleanType GetImageQuantizeError(Image *image)
2113%
2114% A description of each parameter follows.
2115%
2116% o image: the image.
2117%
2118*/
2119MagickExport MagickBooleanType GetImageQuantizeError(Image *image)
2120{
cristyc4c8d132010-01-07 01:58:38 +00002121 CacheView
2122 *image_view;
2123
cristy3ed852e2009-09-05 21:47:34 +00002124 ExceptionInfo
2125 *exception;
2126
2127 IndexPacket
2128 *indexes;
2129
cristy3ed852e2009-09-05 21:47:34 +00002130 MagickRealType
2131 alpha,
2132 area,
2133 beta,
2134 distance,
2135 maximum_error,
2136 mean_error,
2137 mean_error_per_pixel;
2138
cristybb503372010-05-27 20:51:26 +00002139 size_t
cristy3ed852e2009-09-05 21:47:34 +00002140 index;
2141
cristyecc31b12011-02-13 00:32:29 +00002142 ssize_t
2143 y;
2144
cristy3ed852e2009-09-05 21:47:34 +00002145 assert(image != (Image *) NULL);
2146 assert(image->signature == MagickSignature);
2147 if (image->debug != MagickFalse)
2148 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2149 image->total_colors=GetNumberColors(image,(FILE *) NULL,&image->exception);
2150 (void) ResetMagickMemory(&image->error,0,sizeof(image->error));
2151 if (image->storage_class == DirectClass)
2152 return(MagickTrue);
2153 alpha=1.0;
2154 beta=1.0;
2155 area=3.0*image->columns*image->rows;
2156 maximum_error=0.0;
2157 mean_error_per_pixel=0.0;
2158 mean_error=0.0;
2159 exception=(&image->exception);
2160 image_view=AcquireCacheView(image);
cristybb503372010-05-27 20:51:26 +00002161 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00002162 {
2163 register const PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00002164 *restrict p;
cristy3ed852e2009-09-05 21:47:34 +00002165
cristybb503372010-05-27 20:51:26 +00002166 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002167 x;
2168
2169 p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception);
2170 if (p == (const PixelPacket *) NULL)
2171 break;
2172 indexes=GetCacheViewAuthenticIndexQueue(image_view);
cristybb503372010-05-27 20:51:26 +00002173 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00002174 {
2175 index=1UL*indexes[x];
2176 if (image->matte != MagickFalse)
2177 {
cristy46f08202010-01-10 04:04:21 +00002178 alpha=(MagickRealType) (QuantumScale*(GetAlphaPixelComponent(p)));
cristy3ed852e2009-09-05 21:47:34 +00002179 beta=(MagickRealType) (QuantumScale*(QuantumRange-
2180 image->colormap[index].opacity));
2181 }
cristyd05ecd12011-04-22 20:44:42 +00002182 distance=fabs(alpha*GetRedPixelComponent(p)-beta*image->colormap[index].red);
cristy3ed852e2009-09-05 21:47:34 +00002183 mean_error_per_pixel+=distance;
2184 mean_error+=distance*distance;
2185 if (distance > maximum_error)
2186 maximum_error=distance;
cristyd05ecd12011-04-22 20:44:42 +00002187 distance=fabs(alpha*GetGreenPixelComponent(p)-beta*image->colormap[index].green);
cristy3ed852e2009-09-05 21:47:34 +00002188 mean_error_per_pixel+=distance;
2189 mean_error+=distance*distance;
2190 if (distance > maximum_error)
2191 maximum_error=distance;
cristyd05ecd12011-04-22 20:44:42 +00002192 distance=fabs(alpha*GetBluePixelComponent(p)-beta*image->colormap[index].blue);
cristy3ed852e2009-09-05 21:47:34 +00002193 mean_error_per_pixel+=distance;
2194 mean_error+=distance*distance;
2195 if (distance > maximum_error)
2196 maximum_error=distance;
2197 p++;
2198 }
2199 }
2200 image_view=DestroyCacheView(image_view);
2201 image->error.mean_error_per_pixel=(double) mean_error_per_pixel/area;
2202 image->error.normalized_mean_error=(double) QuantumScale*QuantumScale*
2203 mean_error/area;
2204 image->error.normalized_maximum_error=(double) QuantumScale*maximum_error;
2205 return(MagickTrue);
2206}
2207
2208/*
2209%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2210% %
2211% %
2212% %
2213% G e t Q u a n t i z e I n f o %
2214% %
2215% %
2216% %
2217%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2218%
2219% GetQuantizeInfo() initializes the QuantizeInfo structure.
2220%
2221% The format of the GetQuantizeInfo method is:
2222%
2223% GetQuantizeInfo(QuantizeInfo *quantize_info)
2224%
2225% A description of each parameter follows:
2226%
2227% o quantize_info: Specifies a pointer to a QuantizeInfo structure.
2228%
2229*/
2230MagickExport void GetQuantizeInfo(QuantizeInfo *quantize_info)
2231{
2232 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"...");
2233 assert(quantize_info != (QuantizeInfo *) NULL);
2234 (void) ResetMagickMemory(quantize_info,0,sizeof(*quantize_info));
2235 quantize_info->number_colors=256;
2236 quantize_info->dither=MagickTrue;
2237 quantize_info->dither_method=RiemersmaDitherMethod;
2238 quantize_info->colorspace=UndefinedColorspace;
2239 quantize_info->measure_error=MagickFalse;
2240 quantize_info->signature=MagickSignature;
2241}
2242
2243/*
2244%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2245% %
2246% %
2247% %
cristyd1a2c0f2011-02-09 14:14:50 +00002248% P o s t e r i z e I m a g e C h a n n e l %
cristy3ed852e2009-09-05 21:47:34 +00002249% %
2250% %
2251% %
2252%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2253%
2254% PosterizeImage() reduces the image to a limited number of colors for a
2255% "poster" effect.
2256%
2257% The format of the PosterizeImage method is:
2258%
cristybb503372010-05-27 20:51:26 +00002259% MagickBooleanType PosterizeImage(Image *image,const size_t levels,
cristy3ed852e2009-09-05 21:47:34 +00002260% const MagickBooleanType dither)
cristyd1a2c0f2011-02-09 14:14:50 +00002261% MagickBooleanType PosterizeImageChannel(Image *image,
2262% const ChannelType channel,const size_t levels,
2263% const MagickBooleanType dither)
cristy3ed852e2009-09-05 21:47:34 +00002264%
2265% A description of each parameter follows:
2266%
2267% o image: Specifies a pointer to an Image structure.
2268%
2269% o levels: Number of color levels allowed in each channel. Very low values
2270% (2, 3, or 4) have the most visible effect.
2271%
cristy847620f2011-02-09 02:24:21 +00002272% o dither: Set this integer value to something other than zero to dither
2273% the mapped image.
cristy3ed852e2009-09-05 21:47:34 +00002274%
2275*/
cristyd1a2c0f2011-02-09 14:14:50 +00002276
cristy4d727152011-02-10 19:57:21 +00002277static inline ssize_t MagickRound(MagickRealType x)
2278{
2279 /*
cristyecc31b12011-02-13 00:32:29 +00002280 Round the fraction to nearest integer.
cristy4d727152011-02-10 19:57:21 +00002281 */
2282 if (x >= 0.0)
2283 return((ssize_t) (x+0.5));
2284 return((ssize_t) (x-0.5));
2285}
2286
cristyd1a2c0f2011-02-09 14:14:50 +00002287MagickExport MagickBooleanType PosterizeImage(Image *image,const size_t levels,
2288 const MagickBooleanType dither)
cristy3ed852e2009-09-05 21:47:34 +00002289{
cristyd1a2c0f2011-02-09 14:14:50 +00002290 MagickBooleanType
2291 status;
2292
2293 status=PosterizeImageChannel(image,DefaultChannels,levels,dither);
2294 return(status);
2295}
2296
2297MagickExport MagickBooleanType PosterizeImageChannel(Image *image,
2298 const ChannelType channel,const size_t levels,const MagickBooleanType dither)
2299{
2300#define PosterizeImageTag "Posterize/Image"
cristy4d727152011-02-10 19:57:21 +00002301#define PosterizePixel(pixel) (Quantum) (QuantumRange*(MagickRound( \
cristy3e9cad02011-02-20 01:42:00 +00002302 QuantumScale*pixel*(levels-1)))/MagickMax((ssize_t) levels-1,1))
cristyd1a2c0f2011-02-09 14:14:50 +00002303
cristyc4c8d132010-01-07 01:58:38 +00002304 CacheView
cristyd1a2c0f2011-02-09 14:14:50 +00002305 *image_view;
cristyc4c8d132010-01-07 01:58:38 +00002306
cristy3ed852e2009-09-05 21:47:34 +00002307 ExceptionInfo
2308 *exception;
2309
cristy3ed852e2009-09-05 21:47:34 +00002310 MagickBooleanType
2311 status;
2312
cristyd1a2c0f2011-02-09 14:14:50 +00002313 MagickOffsetType
2314 progress;
2315
cristy3ed852e2009-09-05 21:47:34 +00002316 QuantizeInfo
2317 *quantize_info;
2318
cristy847620f2011-02-09 02:24:21 +00002319 register ssize_t
2320 i;
2321
cristy847620f2011-02-09 02:24:21 +00002322 ssize_t
cristyd1a2c0f2011-02-09 14:14:50 +00002323 y;
cristy847620f2011-02-09 02:24:21 +00002324
cristy3ed852e2009-09-05 21:47:34 +00002325 assert(image != (Image *) NULL);
2326 assert(image->signature == MagickSignature);
2327 if (image->debug != MagickFalse)
2328 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
cristyd1a2c0f2011-02-09 14:14:50 +00002329 if (image->storage_class == PseudoClass)
2330#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00002331 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
cristyd1a2c0f2011-02-09 14:14:50 +00002332#endif
2333 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +00002334 {
cristyd1a2c0f2011-02-09 14:14:50 +00002335 /*
2336 Posterize colormap.
2337 */
2338 if ((channel & RedChannel) != 0)
2339 image->colormap[i].red=PosterizePixel(image->colormap[i].red);
2340 if ((channel & GreenChannel) != 0)
2341 image->colormap[i].green=PosterizePixel(image->colormap[i].green);
2342 if ((channel & BlueChannel) != 0)
2343 image->colormap[i].blue=PosterizePixel(image->colormap[i].blue);
2344 if ((channel & OpacityChannel) != 0)
2345 image->colormap[i].opacity=PosterizePixel(image->colormap[i].opacity);
cristy3ed852e2009-09-05 21:47:34 +00002346 }
cristyd1a2c0f2011-02-09 14:14:50 +00002347 /*
2348 Posterize image.
2349 */
2350 status=MagickTrue;
2351 progress=0;
cristy3ed852e2009-09-05 21:47:34 +00002352 exception=(&image->exception);
cristyd1a2c0f2011-02-09 14:14:50 +00002353 image_view=AcquireCacheView(image);
2354#if defined(MAGICKCORE_OPENMP_SUPPORT)
2355 #pragma omp parallel for schedule(dynamic,4) shared(progress,status)
2356#endif
2357 for (y=0; y < (ssize_t) image->rows; y++)
2358 {
2359 register IndexPacket
2360 *restrict indexes;
2361
2362 register PixelPacket
2363 *restrict q;
2364
2365 register ssize_t
2366 x;
2367
2368 if (status == MagickFalse)
2369 continue;
2370 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
2371 if (q == (PixelPacket *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00002372 {
cristyd1a2c0f2011-02-09 14:14:50 +00002373 status=MagickFalse;
2374 continue;
cristy3ed852e2009-09-05 21:47:34 +00002375 }
cristyd1a2c0f2011-02-09 14:14:50 +00002376 indexes=GetCacheViewAuthenticIndexQueue(image_view);
2377 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00002378 {
cristyd1a2c0f2011-02-09 14:14:50 +00002379 if ((channel & RedChannel) != 0)
2380 q->red=PosterizePixel(q->red);
2381 if ((channel & GreenChannel) != 0)
2382 q->green=PosterizePixel(q->green);
2383 if ((channel & BlueChannel) != 0)
2384 q->blue=PosterizePixel(q->blue);
2385 if (((channel & OpacityChannel) != 0) &&
2386 (image->matte == MagickTrue))
2387 q->opacity=PosterizePixel(q->opacity);
2388 if (((channel & IndexChannel) != 0) &&
2389 (image->colorspace == CMYKColorspace))
2390 indexes[x]=PosterizePixel(indexes[x]);
2391 q++;
cristy3ed852e2009-09-05 21:47:34 +00002392 }
cristyd1a2c0f2011-02-09 14:14:50 +00002393 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
2394 status=MagickFalse;
2395 if (image->progress_monitor != (MagickProgressMonitor) NULL)
2396 {
2397 MagickBooleanType
2398 proceed;
2399
2400#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00002401 #pragma omp critical (MagickCore_PosterizeImageChannel)
cristyd1a2c0f2011-02-09 14:14:50 +00002402#endif
2403 proceed=SetImageProgress(image,PosterizeImageTag,progress++,
2404 image->rows);
2405 if (proceed == MagickFalse)
2406 status=MagickFalse;
2407 }
2408 }
2409 image_view=DestroyCacheView(image_view);
cristy3ed852e2009-09-05 21:47:34 +00002410 quantize_info=AcquireQuantizeInfo((ImageInfo *) NULL);
cristyd1a2c0f2011-02-09 14:14:50 +00002411 quantize_info->number_colors=(size_t) MagickMin((ssize_t) levels*levels*
2412 levels,MaxColormapSize+1);
cristy3ed852e2009-09-05 21:47:34 +00002413 quantize_info->dither=dither;
cristy3e9cad02011-02-20 01:42:00 +00002414 quantize_info->tree_depth=MaxTreeDepth;
cristyd1a2c0f2011-02-09 14:14:50 +00002415 status=QuantizeImage(quantize_info,image);
cristy3ed852e2009-09-05 21:47:34 +00002416 quantize_info=DestroyQuantizeInfo(quantize_info);
cristy3ed852e2009-09-05 21:47:34 +00002417 return(status);
2418}
2419
2420/*
2421%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2422% %
2423% %
2424% %
2425+ P r u n e C h i l d %
2426% %
2427% %
2428% %
2429%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2430%
2431% PruneChild() deletes the given node and merges its statistics into its
2432% parent.
2433%
2434% The format of the PruneSubtree method is:
2435%
2436% PruneChild(const Image *image,CubeInfo *cube_info,
2437% const NodeInfo *node_info)
2438%
2439% A description of each parameter follows.
2440%
2441% o image: the image.
2442%
2443% o cube_info: A pointer to the Cube structure.
2444%
2445% o node_info: pointer to node in color cube tree that is to be pruned.
2446%
2447*/
2448static void PruneChild(const Image *image,CubeInfo *cube_info,
2449 const NodeInfo *node_info)
2450{
2451 NodeInfo
2452 *parent;
2453
cristybb503372010-05-27 20:51:26 +00002454 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002455 i;
2456
cristybb503372010-05-27 20:51:26 +00002457 size_t
cristy3ed852e2009-09-05 21:47:34 +00002458 number_children;
2459
2460 /*
2461 Traverse any children.
2462 */
2463 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002464 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002465 if (node_info->child[i] != (NodeInfo *) NULL)
2466 PruneChild(image,cube_info,node_info->child[i]);
2467 /*
2468 Merge color statistics into parent.
2469 */
2470 parent=node_info->parent;
2471 parent->number_unique+=node_info->number_unique;
2472 parent->total_color.red+=node_info->total_color.red;
2473 parent->total_color.green+=node_info->total_color.green;
2474 parent->total_color.blue+=node_info->total_color.blue;
2475 parent->total_color.opacity+=node_info->total_color.opacity;
2476 parent->child[node_info->id]=(NodeInfo *) NULL;
2477 cube_info->nodes--;
2478}
2479
2480/*
2481%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2482% %
2483% %
2484% %
2485+ P r u n e L e v e l %
2486% %
2487% %
2488% %
2489%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2490%
2491% PruneLevel() deletes all nodes at the bottom level of the color tree merging
2492% their color statistics into their parent node.
2493%
2494% The format of the PruneLevel method is:
2495%
2496% PruneLevel(const Image *image,CubeInfo *cube_info,
2497% const NodeInfo *node_info)
2498%
2499% A description of each parameter follows.
2500%
2501% o image: the image.
2502%
2503% o cube_info: A pointer to the Cube structure.
2504%
2505% o node_info: pointer to node in color cube tree that is to be pruned.
2506%
2507*/
2508static void PruneLevel(const Image *image,CubeInfo *cube_info,
2509 const NodeInfo *node_info)
2510{
cristybb503372010-05-27 20:51:26 +00002511 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002512 i;
2513
cristybb503372010-05-27 20:51:26 +00002514 size_t
cristy3ed852e2009-09-05 21:47:34 +00002515 number_children;
2516
2517 /*
2518 Traverse any children.
2519 */
2520 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002521 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002522 if (node_info->child[i] != (NodeInfo *) NULL)
2523 PruneLevel(image,cube_info,node_info->child[i]);
2524 if (node_info->level == cube_info->depth)
2525 PruneChild(image,cube_info,node_info);
2526}
2527
2528/*
2529%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2530% %
2531% %
2532% %
2533+ P r u n e T o C u b e D e p t h %
2534% %
2535% %
2536% %
2537%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2538%
2539% PruneToCubeDepth() deletes any nodes at a depth greater than
2540% cube_info->depth while merging their color statistics into their parent
2541% node.
2542%
2543% The format of the PruneToCubeDepth method is:
2544%
2545% PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2546% const NodeInfo *node_info)
2547%
2548% A description of each parameter follows.
2549%
2550% o cube_info: A pointer to the Cube structure.
2551%
2552% o node_info: pointer to node in color cube tree that is to be pruned.
2553%
2554*/
2555static void PruneToCubeDepth(const Image *image,CubeInfo *cube_info,
2556 const NodeInfo *node_info)
2557{
cristybb503372010-05-27 20:51:26 +00002558 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002559 i;
2560
cristybb503372010-05-27 20:51:26 +00002561 size_t
cristy3ed852e2009-09-05 21:47:34 +00002562 number_children;
2563
2564 /*
2565 Traverse any children.
2566 */
2567 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002568 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002569 if (node_info->child[i] != (NodeInfo *) NULL)
2570 PruneToCubeDepth(image,cube_info,node_info->child[i]);
2571 if (node_info->level > cube_info->depth)
2572 PruneChild(image,cube_info,node_info);
2573}
2574
2575/*
2576%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2577% %
2578% %
2579% %
2580% Q u a n t i z e I m a g e %
2581% %
2582% %
2583% %
2584%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2585%
2586% QuantizeImage() analyzes the colors within a reference image and chooses a
2587% fixed number of colors to represent the image. The goal of the algorithm
2588% is to minimize the color difference between the input and output image while
2589% minimizing the processing time.
2590%
2591% The format of the QuantizeImage method is:
2592%
2593% MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2594% Image *image)
2595%
2596% A description of each parameter follows:
2597%
2598% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2599%
2600% o image: the image.
2601%
2602*/
2603MagickExport MagickBooleanType QuantizeImage(const QuantizeInfo *quantize_info,
2604 Image *image)
2605{
2606 CubeInfo
2607 *cube_info;
2608
2609 MagickBooleanType
2610 status;
2611
cristybb503372010-05-27 20:51:26 +00002612 size_t
cristy3ed852e2009-09-05 21:47:34 +00002613 depth,
2614 maximum_colors;
2615
2616 assert(quantize_info != (const QuantizeInfo *) NULL);
2617 assert(quantize_info->signature == MagickSignature);
2618 assert(image != (Image *) NULL);
2619 assert(image->signature == MagickSignature);
2620 if (image->debug != MagickFalse)
2621 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2622 maximum_colors=quantize_info->number_colors;
2623 if (maximum_colors == 0)
2624 maximum_colors=MaxColormapSize;
2625 if (maximum_colors > MaxColormapSize)
2626 maximum_colors=MaxColormapSize;
cristy8e752752011-04-16 13:48:22 +00002627 if ((IsGrayImage(image,&image->exception) != MagickFalse) &&
2628 (image->matte == MagickFalse))
2629 (void) SetGrayscaleImage(image);
cristy3ed852e2009-09-05 21:47:34 +00002630 if ((image->storage_class == PseudoClass) &&
2631 (image->colors <= maximum_colors))
2632 return(MagickTrue);
2633 depth=quantize_info->tree_depth;
2634 if (depth == 0)
2635 {
cristybb503372010-05-27 20:51:26 +00002636 size_t
cristy3ed852e2009-09-05 21:47:34 +00002637 colors;
2638
2639 /*
2640 Depth of color tree is: Log4(colormap size)+2.
2641 */
2642 colors=maximum_colors;
2643 for (depth=1; colors != 0; depth++)
2644 colors>>=2;
2645 if ((quantize_info->dither != MagickFalse) && (depth > 2))
2646 depth--;
2647 if ((image->matte != MagickFalse) && (depth > 5))
2648 depth--;
2649 }
2650 /*
2651 Initialize color cube.
2652 */
2653 cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2654 if (cube_info == (CubeInfo *) NULL)
2655 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
2656 image->filename);
2657 status=ClassifyImageColors(cube_info,image,&image->exception);
2658 if (status != MagickFalse)
2659 {
2660 /*
2661 Reduce the number of colors in the image.
2662 */
2663 ReduceImageColors(image,cube_info);
2664 status=AssignImageColors(image,cube_info);
2665 }
2666 DestroyCubeInfo(cube_info);
2667 return(status);
2668}
2669
2670/*
2671%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2672% %
2673% %
2674% %
2675% Q u a n t i z e I m a g e s %
2676% %
2677% %
2678% %
2679%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2680%
2681% QuantizeImages() analyzes the colors within a set of reference images and
2682% chooses a fixed number of colors to represent the set. The goal of the
2683% algorithm is to minimize the color difference between the input and output
2684% images while minimizing the processing time.
2685%
2686% The format of the QuantizeImages method is:
2687%
2688% MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2689% Image *images)
2690%
2691% A description of each parameter follows:
2692%
2693% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2694%
2695% o images: Specifies a pointer to a list of Image structures.
2696%
2697*/
2698MagickExport MagickBooleanType QuantizeImages(const QuantizeInfo *quantize_info,
2699 Image *images)
2700{
2701 CubeInfo
2702 *cube_info;
2703
2704 Image
2705 *image;
2706
2707 MagickBooleanType
2708 proceed,
2709 status;
2710
2711 MagickProgressMonitor
2712 progress_monitor;
2713
cristybb503372010-05-27 20:51:26 +00002714 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002715 i;
2716
cristybb503372010-05-27 20:51:26 +00002717 size_t
cristy3ed852e2009-09-05 21:47:34 +00002718 depth,
2719 maximum_colors,
2720 number_images;
2721
2722 assert(quantize_info != (const QuantizeInfo *) NULL);
2723 assert(quantize_info->signature == MagickSignature);
2724 assert(images != (Image *) NULL);
2725 assert(images->signature == MagickSignature);
2726 if (images->debug != MagickFalse)
2727 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
2728 if (GetNextImageInList(images) == (Image *) NULL)
2729 {
2730 /*
2731 Handle a single image with QuantizeImage.
2732 */
2733 status=QuantizeImage(quantize_info,images);
2734 return(status);
2735 }
2736 status=MagickFalse;
2737 maximum_colors=quantize_info->number_colors;
2738 if (maximum_colors == 0)
2739 maximum_colors=MaxColormapSize;
2740 if (maximum_colors > MaxColormapSize)
2741 maximum_colors=MaxColormapSize;
2742 depth=quantize_info->tree_depth;
2743 if (depth == 0)
2744 {
cristybb503372010-05-27 20:51:26 +00002745 size_t
cristy3ed852e2009-09-05 21:47:34 +00002746 colors;
2747
2748 /*
2749 Depth of color tree is: Log4(colormap size)+2.
2750 */
2751 colors=maximum_colors;
2752 for (depth=1; colors != 0; depth++)
2753 colors>>=2;
2754 if (quantize_info->dither != MagickFalse)
2755 depth--;
2756 }
2757 /*
2758 Initialize color cube.
2759 */
2760 cube_info=GetCubeInfo(quantize_info,depth,maximum_colors);
2761 if (cube_info == (CubeInfo *) NULL)
2762 {
2763 (void) ThrowMagickException(&images->exception,GetMagickModule(),
2764 ResourceLimitError,"MemoryAllocationFailed","`%s'",images->filename);
2765 return(MagickFalse);
2766 }
2767 number_images=GetImageListLength(images);
2768 image=images;
2769 for (i=0; image != (Image *) NULL; i++)
2770 {
2771 progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor) NULL,
2772 image->client_data);
2773 status=ClassifyImageColors(cube_info,image,&image->exception);
2774 if (status == MagickFalse)
2775 break;
2776 (void) SetImageProgressMonitor(image,progress_monitor,image->client_data);
cristycee97112010-05-28 00:44:52 +00002777 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2778 number_images);
cristy3ed852e2009-09-05 21:47:34 +00002779 if (proceed == MagickFalse)
2780 break;
2781 image=GetNextImageInList(image);
2782 }
2783 if (status != MagickFalse)
2784 {
2785 /*
2786 Reduce the number of colors in an image sequence.
2787 */
2788 ReduceImageColors(images,cube_info);
2789 image=images;
2790 for (i=0; image != (Image *) NULL; i++)
2791 {
2792 progress_monitor=SetImageProgressMonitor(image,(MagickProgressMonitor)
2793 NULL,image->client_data);
2794 status=AssignImageColors(image,cube_info);
2795 if (status == MagickFalse)
2796 break;
2797 (void) SetImageProgressMonitor(image,progress_monitor,
2798 image->client_data);
cristycee97112010-05-28 00:44:52 +00002799 proceed=SetImageProgress(image,AssignImageTag,(MagickOffsetType) i,
2800 number_images);
cristy3ed852e2009-09-05 21:47:34 +00002801 if (proceed == MagickFalse)
2802 break;
2803 image=GetNextImageInList(image);
2804 }
2805 }
2806 DestroyCubeInfo(cube_info);
2807 return(status);
2808}
2809
2810/*
2811%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2812% %
2813% %
2814% %
2815+ R e d u c e %
2816% %
2817% %
2818% %
2819%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2820%
2821% Reduce() traverses the color cube tree and prunes any node whose
2822% quantization error falls below a particular threshold.
2823%
2824% The format of the Reduce method is:
2825%
2826% Reduce(const Image *image,CubeInfo *cube_info,const NodeInfo *node_info)
2827%
2828% A description of each parameter follows.
2829%
2830% o image: the image.
2831%
2832% o cube_info: A pointer to the Cube structure.
2833%
2834% o node_info: pointer to node in color cube tree that is to be pruned.
2835%
2836*/
2837static void Reduce(const Image *image,CubeInfo *cube_info,
2838 const NodeInfo *node_info)
2839{
cristybb503372010-05-27 20:51:26 +00002840 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00002841 i;
2842
cristybb503372010-05-27 20:51:26 +00002843 size_t
cristy3ed852e2009-09-05 21:47:34 +00002844 number_children;
2845
2846 /*
2847 Traverse any children.
2848 */
2849 number_children=cube_info->associate_alpha == MagickFalse ? 8UL : 16UL;
cristybb503372010-05-27 20:51:26 +00002850 for (i=0; i < (ssize_t) number_children; i++)
cristy3ed852e2009-09-05 21:47:34 +00002851 if (node_info->child[i] != (NodeInfo *) NULL)
2852 Reduce(image,cube_info,node_info->child[i]);
2853 if (node_info->quantize_error <= cube_info->pruning_threshold)
2854 PruneChild(image,cube_info,node_info);
2855 else
2856 {
2857 /*
2858 Find minimum pruning threshold.
2859 */
2860 if (node_info->number_unique > 0)
2861 cube_info->colors++;
2862 if (node_info->quantize_error < cube_info->next_threshold)
2863 cube_info->next_threshold=node_info->quantize_error;
2864 }
2865}
2866
2867/*
2868%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2869% %
2870% %
2871% %
2872+ R e d u c e I m a g e C o l o r s %
2873% %
2874% %
2875% %
2876%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2877%
2878% ReduceImageColors() repeatedly prunes the tree until the number of nodes
2879% with n2 > 0 is less than or equal to the maximum number of colors allowed
2880% in the output image. On any given iteration over the tree, it selects
2881% those nodes whose E value is minimal for pruning and merges their
2882% color statistics upward. It uses a pruning threshold, Ep, to govern
2883% node selection as follows:
2884%
2885% Ep = 0
2886% while number of nodes with (n2 > 0) > required maximum number of colors
2887% prune all nodes such that E <= Ep
2888% Set Ep to minimum E in remaining nodes
2889%
2890% This has the effect of minimizing any quantization error when merging
2891% two nodes together.
2892%
2893% When a node to be pruned has offspring, the pruning procedure invokes
2894% itself recursively in order to prune the tree from the leaves upward.
2895% n2, Sr, Sg, and Sb in a node being pruned are always added to the
2896% corresponding data in that node's parent. This retains the pruned
2897% node's color characteristics for later averaging.
2898%
2899% For each node, n2 pixels exist for which that node represents the
2900% smallest volume in RGB space containing those pixel's colors. When n2
2901% > 0 the node will uniquely define a color in the output image. At the
2902% beginning of reduction, n2 = 0 for all nodes except a the leaves of
2903% the tree which represent colors present in the input image.
2904%
2905% The other pixel count, n1, indicates the total number of colors
2906% within the cubic volume which the node represents. This includes n1 -
2907% n2 pixels whose colors should be defined by nodes at a lower level in
2908% the tree.
2909%
2910% The format of the ReduceImageColors method is:
2911%
2912% ReduceImageColors(const Image *image,CubeInfo *cube_info)
2913%
2914% A description of each parameter follows.
2915%
2916% o image: the image.
2917%
2918% o cube_info: A pointer to the Cube structure.
2919%
2920*/
2921static void ReduceImageColors(const Image *image,CubeInfo *cube_info)
2922{
2923#define ReduceImageTag "Reduce/Image"
2924
2925 MagickBooleanType
2926 proceed;
2927
2928 MagickOffsetType
2929 offset;
2930
cristybb503372010-05-27 20:51:26 +00002931 size_t
cristy3ed852e2009-09-05 21:47:34 +00002932 span;
2933
2934 cube_info->next_threshold=0.0;
2935 for (span=cube_info->colors; cube_info->colors > cube_info->maximum_colors; )
2936 {
2937 cube_info->pruning_threshold=cube_info->next_threshold;
2938 cube_info->next_threshold=cube_info->root->quantize_error-1;
2939 cube_info->colors=0;
2940 Reduce(image,cube_info,cube_info->root);
2941 offset=(MagickOffsetType) span-cube_info->colors;
2942 proceed=SetImageProgress(image,ReduceImageTag,offset,span-
2943 cube_info->maximum_colors+1);
2944 if (proceed == MagickFalse)
2945 break;
2946 }
2947}
2948
2949/*
2950%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2951% %
2952% %
2953% %
2954% R e m a p I m a g e %
2955% %
2956% %
2957% %
2958%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
2959%
2960% RemapImage() replaces the colors of an image with the closest color from
2961% a reference image.
2962%
2963% The format of the RemapImage method is:
2964%
2965% MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
2966% Image *image,const Image *remap_image)
2967%
2968% A description of each parameter follows:
2969%
2970% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
2971%
2972% o image: the image.
2973%
2974% o remap_image: the reference image.
2975%
2976*/
2977MagickExport MagickBooleanType RemapImage(const QuantizeInfo *quantize_info,
2978 Image *image,const Image *remap_image)
2979{
2980 CubeInfo
2981 *cube_info;
2982
2983 MagickBooleanType
2984 status;
2985
2986 /*
2987 Initialize color cube.
2988 */
2989 assert(image != (Image *) NULL);
2990 assert(image->signature == MagickSignature);
2991 if (image->debug != MagickFalse)
2992 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename);
2993 assert(remap_image != (Image *) NULL);
2994 assert(remap_image->signature == MagickSignature);
2995 cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
2996 quantize_info->number_colors);
2997 if (cube_info == (CubeInfo *) NULL)
2998 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
2999 image->filename);
3000 status=ClassifyImageColors(cube_info,remap_image,&image->exception);
3001 if (status != MagickFalse)
3002 {
3003 /*
3004 Classify image colors from the reference image.
3005 */
3006 cube_info->quantize_info->number_colors=cube_info->colors;
3007 status=AssignImageColors(image,cube_info);
3008 }
3009 DestroyCubeInfo(cube_info);
3010 return(status);
3011}
3012
3013/*
3014%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3015% %
3016% %
3017% %
3018% R e m a p I m a g e s %
3019% %
3020% %
3021% %
3022%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3023%
3024% RemapImages() replaces the colors of a sequence of images with the
3025% closest color from a reference image.
3026%
3027% The format of the RemapImage method is:
3028%
3029% MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3030% Image *images,Image *remap_image)
3031%
3032% A description of each parameter follows:
3033%
3034% o quantize_info: Specifies a pointer to an QuantizeInfo structure.
3035%
3036% o images: the image sequence.
3037%
3038% o remap_image: the reference image.
3039%
3040*/
3041MagickExport MagickBooleanType RemapImages(const QuantizeInfo *quantize_info,
3042 Image *images,const Image *remap_image)
3043{
3044 CubeInfo
3045 *cube_info;
3046
3047 Image
3048 *image;
3049
3050 MagickBooleanType
3051 status;
3052
3053 assert(images != (Image *) NULL);
3054 assert(images->signature == MagickSignature);
3055 if (images->debug != MagickFalse)
3056 (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",images->filename);
3057 image=images;
3058 if (remap_image == (Image *) NULL)
3059 {
3060 /*
3061 Create a global colormap for an image sequence.
3062 */
3063 status=QuantizeImages(quantize_info,images);
3064 return(status);
3065 }
3066 /*
3067 Classify image colors from the reference image.
3068 */
3069 cube_info=GetCubeInfo(quantize_info,MaxTreeDepth,
3070 quantize_info->number_colors);
3071 if (cube_info == (CubeInfo *) NULL)
3072 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3073 image->filename);
3074 status=ClassifyImageColors(cube_info,remap_image,&image->exception);
3075 if (status != MagickFalse)
3076 {
3077 /*
3078 Classify image colors from the reference image.
3079 */
3080 cube_info->quantize_info->number_colors=cube_info->colors;
3081 image=images;
3082 for ( ; image != (Image *) NULL; image=GetNextImageInList(image))
3083 {
3084 status=AssignImageColors(image,cube_info);
3085 if (status == MagickFalse)
3086 break;
3087 }
3088 }
3089 DestroyCubeInfo(cube_info);
3090 return(status);
3091}
3092
3093/*
3094%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3095% %
3096% %
3097% %
3098% S e t G r a y s c a l e I m a g e %
3099% %
3100% %
3101% %
3102%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
3103%
3104% SetGrayscaleImage() converts an image to a PseudoClass grayscale image.
3105%
3106% The format of the SetGrayscaleImage method is:
3107%
3108% MagickBooleanType SetGrayscaleImage(Image *image)
3109%
3110% A description of each parameter follows:
3111%
3112% o image: The image.
3113%
3114*/
3115
3116#if defined(__cplusplus) || defined(c_plusplus)
3117extern "C" {
3118#endif
3119
3120static int IntensityCompare(const void *x,const void *y)
3121{
cristy3ed852e2009-09-05 21:47:34 +00003122 PixelPacket
3123 *color_1,
3124 *color_2;
3125
cristyecc31b12011-02-13 00:32:29 +00003126 ssize_t
3127 intensity;
3128
cristy3ed852e2009-09-05 21:47:34 +00003129 color_1=(PixelPacket *) x;
3130 color_2=(PixelPacket *) y;
cristybb503372010-05-27 20:51:26 +00003131 intensity=PixelIntensityToQuantum(color_1)-(ssize_t)
cristy3ed852e2009-09-05 21:47:34 +00003132 PixelIntensityToQuantum(color_2);
cristycee97112010-05-28 00:44:52 +00003133 return((int) intensity);
cristy3ed852e2009-09-05 21:47:34 +00003134}
3135
3136#if defined(__cplusplus) || defined(c_plusplus)
3137}
3138#endif
3139
3140static MagickBooleanType SetGrayscaleImage(Image *image)
3141{
cristyc4c8d132010-01-07 01:58:38 +00003142 CacheView
3143 *image_view;
3144
cristy3ed852e2009-09-05 21:47:34 +00003145 ExceptionInfo
3146 *exception;
3147
cristyecc31b12011-02-13 00:32:29 +00003148 MagickBooleanType
3149 status;
cristy3ed852e2009-09-05 21:47:34 +00003150
3151 PixelPacket
3152 *colormap;
3153
cristybb503372010-05-27 20:51:26 +00003154 register ssize_t
cristy3ed852e2009-09-05 21:47:34 +00003155 i;
3156
cristyecc31b12011-02-13 00:32:29 +00003157 ssize_t
3158 *colormap_index,
3159 j,
3160 y;
cristy3ed852e2009-09-05 21:47:34 +00003161
cristy3ed852e2009-09-05 21:47:34 +00003162 assert(image != (Image *) NULL);
3163 assert(image->signature == MagickSignature);
3164 if (image->type != GrayscaleType)
3165 (void) TransformImageColorspace(image,GRAYColorspace);
cristybb503372010-05-27 20:51:26 +00003166 colormap_index=(ssize_t *) AcquireQuantumMemory(MaxMap+1,
cristy3ed852e2009-09-05 21:47:34 +00003167 sizeof(*colormap_index));
cristybb503372010-05-27 20:51:26 +00003168 if (colormap_index == (ssize_t *) NULL)
cristy3ed852e2009-09-05 21:47:34 +00003169 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3170 image->filename);
3171 if (image->storage_class != PseudoClass)
3172 {
3173 ExceptionInfo
3174 *exception;
3175
cristybb503372010-05-27 20:51:26 +00003176 for (i=0; i <= (ssize_t) MaxMap; i++)
cristy3ed852e2009-09-05 21:47:34 +00003177 colormap_index[i]=(-1);
3178 if (AcquireImageColormap(image,MaxMap+1) == MagickFalse)
3179 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3180 image->filename);
3181 image->colors=0;
3182 status=MagickTrue;
3183 exception=(&image->exception);
3184 image_view=AcquireCacheView(image);
cristyb5d5f722009-11-04 03:03:49 +00003185#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy00cbdd62011-02-20 17:29:26 +00003186 #pragma omp parallel for schedule(dynamic,4) shared(status)
cristy3ed852e2009-09-05 21:47:34 +00003187#endif
cristybb503372010-05-27 20:51:26 +00003188 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00003189 {
3190 register IndexPacket
cristyc47d1f82009-11-26 01:44:43 +00003191 *restrict indexes;
cristy3ed852e2009-09-05 21:47:34 +00003192
cristy3ed852e2009-09-05 21:47:34 +00003193 register const PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00003194 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00003195
cristyecc31b12011-02-13 00:32:29 +00003196 register ssize_t
3197 x;
3198
cristy3ed852e2009-09-05 21:47:34 +00003199 if (status == MagickFalse)
3200 continue;
3201 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,
3202 exception);
3203 if (q == (PixelPacket *) NULL)
3204 {
3205 status=MagickFalse;
3206 continue;
3207 }
3208 indexes=GetCacheViewAuthenticIndexQueue(image_view);
cristybb503372010-05-27 20:51:26 +00003209 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00003210 {
cristybb503372010-05-27 20:51:26 +00003211 register size_t
cristy3ed852e2009-09-05 21:47:34 +00003212 intensity;
3213
3214 intensity=ScaleQuantumToMap(q->red);
3215 if (colormap_index[intensity] < 0)
3216 {
cristyb5d5f722009-11-04 03:03:49 +00003217#if defined(MAGICKCORE_OPENMP_SUPPORT)
cristy3ed852e2009-09-05 21:47:34 +00003218 #pragma omp critical (MagickCore_SetGrayscaleImage)
3219#endif
3220 if (colormap_index[intensity] < 0)
3221 {
cristybb503372010-05-27 20:51:26 +00003222 colormap_index[intensity]=(ssize_t) image->colors;
cristy3ed852e2009-09-05 21:47:34 +00003223 image->colormap[image->colors]=(*q);
3224 image->colors++;
3225 }
3226 }
3227 indexes[x]=(IndexPacket) colormap_index[intensity];
3228 q++;
3229 }
3230 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3231 status=MagickFalse;
3232 }
3233 image_view=DestroyCacheView(image_view);
3234 }
cristybb503372010-05-27 20:51:26 +00003235 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +00003236 image->colormap[i].opacity=(unsigned short) i;
3237 qsort((void *) image->colormap,image->colors,sizeof(PixelPacket),
3238 IntensityCompare);
3239 colormap=(PixelPacket *) AcquireQuantumMemory(image->colors,
3240 sizeof(*colormap));
3241 if (colormap == (PixelPacket *) NULL)
3242 ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed",
3243 image->filename);
3244 j=0;
3245 colormap[j]=image->colormap[0];
cristybb503372010-05-27 20:51:26 +00003246 for (i=0; i < (ssize_t) image->colors; i++)
cristy3ed852e2009-09-05 21:47:34 +00003247 {
3248 if (IsSameColor(image,&colormap[j],&image->colormap[i]) == MagickFalse)
3249 {
3250 j++;
3251 colormap[j]=image->colormap[i];
3252 }
cristybb503372010-05-27 20:51:26 +00003253 colormap_index[(ssize_t) image->colormap[i].opacity]=j;
cristy3ed852e2009-09-05 21:47:34 +00003254 }
cristybb503372010-05-27 20:51:26 +00003255 image->colors=(size_t) (j+1);
cristy3ed852e2009-09-05 21:47:34 +00003256 image->colormap=(PixelPacket *) RelinquishMagickMemory(image->colormap);
3257 image->colormap=colormap;
3258 status=MagickTrue;
3259 exception=(&image->exception);
3260 image_view=AcquireCacheView(image);
cristyb5d5f722009-11-04 03:03:49 +00003261#if defined(MAGICKCORE_OPENMP_SUPPORT)
3262 #pragma omp parallel for schedule(dynamic,4) shared(status)
cristy3ed852e2009-09-05 21:47:34 +00003263#endif
cristybb503372010-05-27 20:51:26 +00003264 for (y=0; y < (ssize_t) image->rows; y++)
cristy3ed852e2009-09-05 21:47:34 +00003265 {
3266 register IndexPacket
cristyc47d1f82009-11-26 01:44:43 +00003267 *restrict indexes;
cristy3ed852e2009-09-05 21:47:34 +00003268
cristy3ed852e2009-09-05 21:47:34 +00003269 register const PixelPacket
cristyc47d1f82009-11-26 01:44:43 +00003270 *restrict q;
cristy3ed852e2009-09-05 21:47:34 +00003271
cristyecc31b12011-02-13 00:32:29 +00003272 register ssize_t
3273 x;
3274
cristy3ed852e2009-09-05 21:47:34 +00003275 if (status == MagickFalse)
3276 continue;
3277 q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception);
3278 if (q == (PixelPacket *) NULL)
3279 {
3280 status=MagickFalse;
3281 continue;
3282 }
3283 indexes=GetCacheViewAuthenticIndexQueue(image_view);
cristybb503372010-05-27 20:51:26 +00003284 for (x=0; x < (ssize_t) image->columns; x++)
cristy3ed852e2009-09-05 21:47:34 +00003285 indexes[x]=(IndexPacket) colormap_index[ScaleQuantumToMap(indexes[x])];
3286 if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse)
3287 status=MagickFalse;
3288 }
3289 image_view=DestroyCacheView(image_view);
cristybb503372010-05-27 20:51:26 +00003290 colormap_index=(ssize_t *) RelinquishMagickMemory(colormap_index);
cristy3ed852e2009-09-05 21:47:34 +00003291 image->type=GrayscaleType;
3292 if (IsMonochromeImage(image,&image->exception) != MagickFalse)
3293 image->type=BilevelType;
3294 return(status);
3295}