cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1 | /* |
| 2 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 3 | % % |
| 4 | % % |
| 5 | % % |
| 6 | % SSSSS EEEEE GGGG M M EEEEE N N TTTTT % |
| 7 | % SS E G MM MM E NN N T % |
| 8 | % SSS EEE G GGG M M M EEE N N N T % |
| 9 | % SS E G G M M E N NN T % |
| 10 | % SSSSS EEEEE GGGG M M EEEEE N N T % |
| 11 | % % |
| 12 | % % |
| 13 | % MagickCore Methods to Segment an Image with Thresholding Fuzzy c-Means % |
| 14 | % % |
| 15 | % Software Design % |
| 16 | % John Cristy % |
| 17 | % April 1993 % |
| 18 | % % |
| 19 | % % |
cristy | 7e41fe8 | 2010-12-04 23:12:08 +0000 | [diff] [blame] | 20 | % Copyright 1999-2011 ImageMagick Studio LLC, a non-profit organization % |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 21 | % dedicated to making software imaging solutions freely available. % |
| 22 | % % |
| 23 | % You may not use this file except in compliance with the License. You may % |
| 24 | % obtain a copy of the License at % |
| 25 | % % |
| 26 | % http://www.imagemagick.org/script/license.php % |
| 27 | % % |
| 28 | % Unless required by applicable law or agreed to in writing, software % |
| 29 | % distributed under the License is distributed on an "AS IS" BASIS, % |
| 30 | % WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. % |
| 31 | % See the License for the specific language governing permissions and % |
| 32 | % limitations under the License. % |
| 33 | % % |
| 34 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 35 | % |
| 36 | % Segment segments an image by analyzing the histograms of the color |
| 37 | % components and identifying units that are homogeneous with the fuzzy |
| 38 | % c-means technique. The scale-space filter analyzes the histograms of |
| 39 | % the three color components of the image and identifies a set of |
| 40 | % classes. The extents of each class is used to coarsely segment the |
| 41 | % image with thresholding. The color associated with each class is |
| 42 | % determined by the mean color of all pixels within the extents of a |
| 43 | % particular class. Finally, any unclassified pixels are assigned to |
| 44 | % the closest class with the fuzzy c-means technique. |
| 45 | % |
| 46 | % The fuzzy c-Means algorithm can be summarized as follows: |
| 47 | % |
| 48 | % o Build a histogram, one for each color component of the image. |
| 49 | % |
| 50 | % o For each histogram, successively apply the scale-space filter and |
| 51 | % build an interval tree of zero crossings in the second derivative |
| 52 | % at each scale. Analyze this scale-space ``fingerprint'' to |
| 53 | % determine which peaks and valleys in the histogram are most |
| 54 | % predominant. |
| 55 | % |
| 56 | % o The fingerprint defines intervals on the axis of the histogram. |
| 57 | % Each interval contains either a minima or a maxima in the original |
| 58 | % signal. If each color component lies within the maxima interval, |
| 59 | % that pixel is considered ``classified'' and is assigned an unique |
| 60 | % class number. |
| 61 | % |
| 62 | % o Any pixel that fails to be classified in the above thresholding |
| 63 | % pass is classified using the fuzzy c-Means technique. It is |
| 64 | % assigned to one of the classes discovered in the histogram analysis |
| 65 | % phase. |
| 66 | % |
| 67 | % The fuzzy c-Means technique attempts to cluster a pixel by finding |
| 68 | % the local minima of the generalized within group sum of squared error |
| 69 | % objective function. A pixel is assigned to the closest class of |
| 70 | % which the fuzzy membership has a maximum value. |
| 71 | % |
| 72 | % Segment is strongly based on software written by Andy Gallo, |
| 73 | % University of Delaware. |
| 74 | % |
| 75 | % The following reference was used in creating this program: |
| 76 | % |
| 77 | % Young Won Lim, Sang Uk Lee, "On The Color Image Segmentation |
| 78 | % Algorithm Based on the Thresholding and the Fuzzy c-Means |
| 79 | % Techniques", Pattern Recognition, Volume 23, Number 9, pages |
| 80 | % 935-952, 1990. |
| 81 | % |
| 82 | % |
| 83 | */ |
| 84 | |
| 85 | #include "magick/studio.h" |
| 86 | #include "magick/cache.h" |
| 87 | #include "magick/color.h" |
cristy | e7e4055 | 2010-04-24 21:34:22 +0000 | [diff] [blame] | 88 | #include "magick/colormap.h" |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 89 | #include "magick/colorspace.h" |
| 90 | #include "magick/exception.h" |
| 91 | #include "magick/exception-private.h" |
| 92 | #include "magick/image.h" |
| 93 | #include "magick/image-private.h" |
| 94 | #include "magick/memory_.h" |
| 95 | #include "magick/monitor.h" |
| 96 | #include "magick/monitor-private.h" |
| 97 | #include "magick/quantize.h" |
| 98 | #include "magick/quantum.h" |
| 99 | #include "magick/quantum-private.h" |
| 100 | #include "magick/segment.h" |
| 101 | #include "magick/string_.h" |
| 102 | |
| 103 | /* |
| 104 | Define declarations. |
| 105 | */ |
| 106 | #define MaxDimension 3 |
| 107 | #define DeltaTau 0.5f |
| 108 | #if defined(FastClassify) |
| 109 | #define WeightingExponent 2.0 |
| 110 | #define SegmentPower(ratio) (ratio) |
| 111 | #else |
| 112 | #define WeightingExponent 2.5 |
| 113 | #define SegmentPower(ratio) pow(ratio,(double) (1.0/(weighting_exponent-1.0))); |
| 114 | #endif |
| 115 | #define Tau 5.2f |
| 116 | |
| 117 | /* |
| 118 | Typedef declarations. |
| 119 | */ |
| 120 | typedef struct _ExtentPacket |
| 121 | { |
| 122 | MagickRealType |
| 123 | center; |
| 124 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 125 | ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 126 | index, |
| 127 | left, |
| 128 | right; |
| 129 | } ExtentPacket; |
| 130 | |
| 131 | typedef struct _Cluster |
| 132 | { |
| 133 | struct _Cluster |
| 134 | *next; |
| 135 | |
| 136 | ExtentPacket |
| 137 | red, |
| 138 | green, |
| 139 | blue; |
| 140 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 141 | ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 142 | count, |
| 143 | id; |
| 144 | } Cluster; |
| 145 | |
| 146 | typedef struct _IntervalTree |
| 147 | { |
| 148 | MagickRealType |
| 149 | tau; |
| 150 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 151 | ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 152 | left, |
| 153 | right; |
| 154 | |
| 155 | MagickRealType |
| 156 | mean_stability, |
| 157 | stability; |
| 158 | |
| 159 | struct _IntervalTree |
| 160 | *sibling, |
| 161 | *child; |
| 162 | } IntervalTree; |
| 163 | |
| 164 | typedef struct _ZeroCrossing |
| 165 | { |
| 166 | MagickRealType |
| 167 | tau, |
| 168 | histogram[256]; |
| 169 | |
| 170 | short |
| 171 | crossings[256]; |
| 172 | } ZeroCrossing; |
| 173 | |
| 174 | /* |
| 175 | Constant declarations. |
| 176 | */ |
| 177 | static const int |
| 178 | Blue = 2, |
| 179 | Green = 1, |
| 180 | Red = 0, |
| 181 | SafeMargin = 3, |
| 182 | TreeLength = 600; |
| 183 | |
| 184 | /* |
| 185 | Method prototypes. |
| 186 | */ |
| 187 | static MagickRealType |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 188 | OptimalTau(const ssize_t *,const double,const double,const double, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 189 | const double,short *); |
| 190 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 191 | static ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 192 | DefineRegion(const short *,ExtentPacket *); |
| 193 | |
| 194 | static void |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 195 | InitializeHistogram(const Image *,ssize_t **,ExceptionInfo *), |
| 196 | ScaleSpace(const ssize_t *,const MagickRealType,MagickRealType *), |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 197 | ZeroCrossHistogram(MagickRealType *,const MagickRealType,short *); |
| 198 | |
| 199 | /* |
| 200 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 201 | % % |
| 202 | % % |
| 203 | % % |
| 204 | + C l a s s i f y % |
| 205 | % % |
| 206 | % % |
| 207 | % % |
| 208 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 209 | % |
| 210 | % Classify() defines one or more classes. Each pixel is thresholded to |
cristy | 33c5302 | 2010-06-25 12:17:27 +0000 | [diff] [blame] | 211 | % determine which class it belongs to. If the class is not identified it is |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 212 | % assigned to the closest class based on the fuzzy c-Means technique. |
| 213 | % |
| 214 | % The format of the Classify method is: |
| 215 | % |
| 216 | % MagickBooleanType Classify(Image *image,short **extrema, |
| 217 | % const MagickRealType cluster_threshold, |
| 218 | % const MagickRealType weighting_exponent, |
| 219 | % const MagickBooleanType verbose) |
| 220 | % |
| 221 | % A description of each parameter follows. |
| 222 | % |
| 223 | % o image: the image. |
| 224 | % |
| 225 | % o extrema: Specifies a pointer to an array of integers. They |
| 226 | % represent the peaks and valleys of the histogram for each color |
| 227 | % component. |
| 228 | % |
| 229 | % o cluster_threshold: This MagickRealType represents the minimum number of |
| 230 | % pixels contained in a hexahedra before it can be considered valid |
| 231 | % (expressed as a percentage). |
| 232 | % |
| 233 | % o weighting_exponent: Specifies the membership weighting exponent. |
| 234 | % |
| 235 | % o verbose: A value greater than zero prints detailed information about |
| 236 | % the identified classes. |
| 237 | % |
| 238 | */ |
| 239 | static MagickBooleanType Classify(Image *image,short **extrema, |
| 240 | const MagickRealType cluster_threshold, |
| 241 | const MagickRealType weighting_exponent,const MagickBooleanType verbose) |
| 242 | { |
| 243 | #define SegmentImageTag "Segment/Image" |
| 244 | |
cristy | c4c8d13 | 2010-01-07 01:58:38 +0000 | [diff] [blame] | 245 | CacheView |
| 246 | *image_view; |
| 247 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 248 | Cluster |
| 249 | *cluster, |
| 250 | *head, |
| 251 | *last_cluster, |
| 252 | *next_cluster; |
| 253 | |
| 254 | ExceptionInfo |
| 255 | *exception; |
| 256 | |
| 257 | ExtentPacket |
| 258 | blue, |
| 259 | green, |
| 260 | red; |
| 261 | |
cristy | 5f95947 | 2010-05-27 22:19:46 +0000 | [diff] [blame] | 262 | MagickOffsetType |
| 263 | progress; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 264 | |
| 265 | MagickRealType |
| 266 | *free_squares; |
| 267 | |
| 268 | MagickStatusType |
| 269 | status; |
| 270 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 271 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 272 | i; |
| 273 | |
| 274 | register MagickRealType |
| 275 | *squares; |
| 276 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 277 | size_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 278 | number_clusters; |
| 279 | |
cristy | 5f95947 | 2010-05-27 22:19:46 +0000 | [diff] [blame] | 280 | ssize_t |
| 281 | count, |
| 282 | y; |
| 283 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 284 | /* |
| 285 | Form clusters. |
| 286 | */ |
| 287 | cluster=(Cluster *) NULL; |
| 288 | head=(Cluster *) NULL; |
| 289 | (void) ResetMagickMemory(&red,0,sizeof(red)); |
| 290 | (void) ResetMagickMemory(&green,0,sizeof(green)); |
| 291 | (void) ResetMagickMemory(&blue,0,sizeof(blue)); |
| 292 | while (DefineRegion(extrema[Red],&red) != 0) |
| 293 | { |
| 294 | green.index=0; |
| 295 | while (DefineRegion(extrema[Green],&green) != 0) |
| 296 | { |
| 297 | blue.index=0; |
| 298 | while (DefineRegion(extrema[Blue],&blue) != 0) |
| 299 | { |
| 300 | /* |
| 301 | Allocate a new class. |
| 302 | */ |
| 303 | if (head != (Cluster *) NULL) |
| 304 | { |
| 305 | cluster->next=(Cluster *) AcquireMagickMemory( |
| 306 | sizeof(*cluster->next)); |
| 307 | cluster=cluster->next; |
| 308 | } |
| 309 | else |
| 310 | { |
cristy | 73bd4a5 | 2010-10-05 11:24:23 +0000 | [diff] [blame] | 311 | cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 312 | head=cluster; |
| 313 | } |
| 314 | if (cluster == (Cluster *) NULL) |
| 315 | ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| 316 | image->filename); |
| 317 | /* |
| 318 | Initialize a new class. |
| 319 | */ |
| 320 | cluster->count=0; |
| 321 | cluster->red=red; |
| 322 | cluster->green=green; |
| 323 | cluster->blue=blue; |
| 324 | cluster->next=(Cluster *) NULL; |
| 325 | } |
| 326 | } |
| 327 | } |
| 328 | if (head == (Cluster *) NULL) |
| 329 | { |
| 330 | /* |
| 331 | No classes were identified-- create one. |
| 332 | */ |
cristy | 73bd4a5 | 2010-10-05 11:24:23 +0000 | [diff] [blame] | 333 | cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 334 | if (cluster == (Cluster *) NULL) |
| 335 | ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| 336 | image->filename); |
| 337 | /* |
| 338 | Initialize a new class. |
| 339 | */ |
| 340 | cluster->count=0; |
| 341 | cluster->red=red; |
| 342 | cluster->green=green; |
| 343 | cluster->blue=blue; |
| 344 | cluster->next=(Cluster *) NULL; |
| 345 | head=cluster; |
| 346 | } |
| 347 | /* |
| 348 | Count the pixels for each cluster. |
| 349 | */ |
| 350 | status=MagickTrue; |
| 351 | count=0; |
| 352 | progress=0; |
| 353 | exception=(&image->exception); |
| 354 | image_view=AcquireCacheView(image); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 355 | for (y=0; y < (ssize_t) image->rows; y++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 356 | { |
| 357 | register const PixelPacket |
| 358 | *p; |
| 359 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 360 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 361 | x; |
| 362 | |
| 363 | p=GetCacheViewVirtualPixels(image_view,0,y,image->columns,1,exception); |
| 364 | if (p == (const PixelPacket *) NULL) |
| 365 | break; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 366 | for (x=0; x < (ssize_t) image->columns; x++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 367 | { |
| 368 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 369 | if (((ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 370 | (cluster->red.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 371 | ((ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 372 | (cluster->red.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 373 | ((ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 374 | (cluster->green.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 375 | ((ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 376 | (cluster->green.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 377 | ((ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 378 | (cluster->blue.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 379 | ((ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 380 | (cluster->blue.right+SafeMargin))) |
| 381 | { |
| 382 | /* |
| 383 | Count this pixel. |
| 384 | */ |
| 385 | count++; |
cristy | ce70c17 | 2010-01-07 17:15:30 +0000 | [diff] [blame] | 386 | cluster->red.center+=(MagickRealType) ScaleQuantumToChar(GetRedPixelComponent(p)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 387 | cluster->green.center+=(MagickRealType) |
cristy | ce70c17 | 2010-01-07 17:15:30 +0000 | [diff] [blame] | 388 | ScaleQuantumToChar(GetGreenPixelComponent(p)); |
| 389 | cluster->blue.center+=(MagickRealType) ScaleQuantumToChar(GetBluePixelComponent(p)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 390 | cluster->count++; |
| 391 | break; |
| 392 | } |
| 393 | p++; |
| 394 | } |
| 395 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| 396 | { |
| 397 | MagickBooleanType |
| 398 | proceed; |
| 399 | |
cristy | b5d5f72 | 2009-11-04 03:03:49 +0000 | [diff] [blame] | 400 | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 401 | #pragma omp critical (MagickCore_Classify) |
| 402 | #endif |
| 403 | proceed=SetImageProgress(image,SegmentImageTag,progress++, |
| 404 | 2*image->rows); |
| 405 | if (proceed == MagickFalse) |
| 406 | status=MagickFalse; |
| 407 | } |
| 408 | } |
| 409 | image_view=DestroyCacheView(image_view); |
| 410 | /* |
| 411 | Remove clusters that do not meet minimum cluster threshold. |
| 412 | */ |
| 413 | count=0; |
| 414 | last_cluster=head; |
| 415 | next_cluster=head; |
| 416 | for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| 417 | { |
| 418 | next_cluster=cluster->next; |
| 419 | if ((cluster->count > 0) && |
| 420 | (cluster->count >= (count*cluster_threshold/100.0))) |
| 421 | { |
| 422 | /* |
| 423 | Initialize cluster. |
| 424 | */ |
| 425 | cluster->id=count; |
| 426 | cluster->red.center/=cluster->count; |
| 427 | cluster->green.center/=cluster->count; |
| 428 | cluster->blue.center/=cluster->count; |
| 429 | count++; |
| 430 | last_cluster=cluster; |
| 431 | continue; |
| 432 | } |
| 433 | /* |
| 434 | Delete cluster. |
| 435 | */ |
| 436 | if (cluster == head) |
| 437 | head=next_cluster; |
| 438 | else |
| 439 | last_cluster->next=next_cluster; |
| 440 | cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| 441 | } |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 442 | number_clusters=(size_t) count; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 443 | if (verbose != MagickFalse) |
| 444 | { |
| 445 | /* |
| 446 | Print cluster statistics. |
| 447 | */ |
| 448 | (void) fprintf(stdout,"Fuzzy C-means Statistics\n"); |
| 449 | (void) fprintf(stdout,"===================\n\n"); |
cristy | e7f5109 | 2010-01-17 00:39:37 +0000 | [diff] [blame] | 450 | (void) fprintf(stdout,"\tCluster Threshold = %g\n",(double) |
cristy | 4f3c0be | 2009-09-12 16:04:05 +0000 | [diff] [blame] | 451 | cluster_threshold); |
cristy | e7f5109 | 2010-01-17 00:39:37 +0000 | [diff] [blame] | 452 | (void) fprintf(stdout,"\tWeighting Exponent = %g\n",(double) |
cristy | 4f3c0be | 2009-09-12 16:04:05 +0000 | [diff] [blame] | 453 | weighting_exponent); |
cristy | e8c25f9 | 2010-06-03 00:53:06 +0000 | [diff] [blame] | 454 | (void) fprintf(stdout,"\tTotal Number of Clusters = %.20g\n\n",(double) |
| 455 | number_clusters); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 456 | /* |
| 457 | Print the total number of points per cluster. |
| 458 | */ |
| 459 | (void) fprintf(stdout,"\n\nNumber of Vectors Per Cluster\n"); |
| 460 | (void) fprintf(stdout,"=============================\n\n"); |
| 461 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
cristy | e8c25f9 | 2010-06-03 00:53:06 +0000 | [diff] [blame] | 462 | (void) fprintf(stdout,"Cluster #%.20g = %.20g\n",(double) cluster->id, |
| 463 | (double) cluster->count); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 464 | /* |
| 465 | Print the cluster extents. |
| 466 | */ |
| 467 | (void) fprintf(stdout, |
| 468 | "\n\n\nCluster Extents: (Vector Size: %d)\n",MaxDimension); |
| 469 | (void) fprintf(stdout,"================"); |
| 470 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| 471 | { |
cristy | e8c25f9 | 2010-06-03 00:53:06 +0000 | [diff] [blame] | 472 | (void) fprintf(stdout,"\n\nCluster #%.20g\n\n",(double) cluster->id); |
| 473 | (void) fprintf(stdout,"%.20g-%.20g %.20g-%.20g %.20g-%.20g\n",(double) |
| 474 | cluster->red.left,(double) cluster->red.right,(double) |
| 475 | cluster->green.left,(double) cluster->green.right,(double) |
| 476 | cluster->blue.left,(double) cluster->blue.right); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 477 | } |
| 478 | /* |
| 479 | Print the cluster center values. |
| 480 | */ |
| 481 | (void) fprintf(stdout, |
| 482 | "\n\n\nCluster Center Values: (Vector Size: %d)\n",MaxDimension); |
| 483 | (void) fprintf(stdout,"====================="); |
| 484 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| 485 | { |
cristy | e8c25f9 | 2010-06-03 00:53:06 +0000 | [diff] [blame] | 486 | (void) fprintf(stdout,"\n\nCluster #%.20g\n\n",(double) cluster->id); |
cristy | e7f5109 | 2010-01-17 00:39:37 +0000 | [diff] [blame] | 487 | (void) fprintf(stdout,"%g %g %g\n",(double) |
cristy | 8cd5b31 | 2010-01-07 01:10:24 +0000 | [diff] [blame] | 488 | cluster->red.center,(double) cluster->green.center,(double) |
| 489 | cluster->blue.center); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 490 | } |
| 491 | (void) fprintf(stdout,"\n"); |
| 492 | } |
| 493 | if (number_clusters > 256) |
| 494 | ThrowBinaryException(ImageError,"TooManyClusters",image->filename); |
| 495 | /* |
| 496 | Speed up distance calculations. |
| 497 | */ |
| 498 | squares=(MagickRealType *) AcquireQuantumMemory(513UL,sizeof(*squares)); |
| 499 | if (squares == (MagickRealType *) NULL) |
| 500 | ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| 501 | image->filename); |
| 502 | squares+=255; |
| 503 | for (i=(-255); i <= 255; i++) |
| 504 | squares[i]=(MagickRealType) i*(MagickRealType) i; |
| 505 | /* |
| 506 | Allocate image colormap. |
| 507 | */ |
| 508 | if (AcquireImageColormap(image,number_clusters) == MagickFalse) |
| 509 | ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| 510 | image->filename); |
| 511 | i=0; |
| 512 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| 513 | { |
| 514 | image->colormap[i].red=ScaleCharToQuantum((unsigned char) |
| 515 | (cluster->red.center+0.5)); |
| 516 | image->colormap[i].green=ScaleCharToQuantum((unsigned char) |
| 517 | (cluster->green.center+0.5)); |
| 518 | image->colormap[i].blue=ScaleCharToQuantum((unsigned char) |
| 519 | (cluster->blue.center+0.5)); |
| 520 | i++; |
| 521 | } |
| 522 | /* |
| 523 | Do course grain classes. |
| 524 | */ |
| 525 | exception=(&image->exception); |
| 526 | image_view=AcquireCacheView(image); |
cristy | b5d5f72 | 2009-11-04 03:03:49 +0000 | [diff] [blame] | 527 | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
| 528 | #pragma omp parallel for schedule(dynamic,4) shared(progress,status) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 529 | #endif |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 530 | for (y=0; y < (ssize_t) image->rows; y++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 531 | { |
| 532 | Cluster |
| 533 | *cluster; |
| 534 | |
| 535 | register const PixelPacket |
cristy | c47d1f8 | 2009-11-26 01:44:43 +0000 | [diff] [blame] | 536 | *restrict p; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 537 | |
| 538 | register IndexPacket |
cristy | c47d1f8 | 2009-11-26 01:44:43 +0000 | [diff] [blame] | 539 | *restrict indexes; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 540 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 541 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 542 | x; |
| 543 | |
| 544 | register PixelPacket |
cristy | c47d1f8 | 2009-11-26 01:44:43 +0000 | [diff] [blame] | 545 | *restrict q; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 546 | |
| 547 | if (status == MagickFalse) |
| 548 | continue; |
| 549 | q=GetCacheViewAuthenticPixels(image_view,0,y,image->columns,1,exception); |
| 550 | if (q == (PixelPacket *) NULL) |
| 551 | { |
| 552 | status=MagickFalse; |
| 553 | continue; |
| 554 | } |
| 555 | indexes=GetCacheViewAuthenticIndexQueue(image_view); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 556 | for (x=0; x < (ssize_t) image->columns; x++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 557 | { |
cristy | fba5a8b | 2011-05-03 17:12:12 +0000 | [diff] [blame] | 558 | SetIndexPixelComponent(indexes+x,0); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 559 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
| 560 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 561 | if (((ssize_t) ScaleQuantumToChar(q->red) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 562 | (cluster->red.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 563 | ((ssize_t) ScaleQuantumToChar(q->red) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 564 | (cluster->red.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 565 | ((ssize_t) ScaleQuantumToChar(q->green) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 566 | (cluster->green.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 567 | ((ssize_t) ScaleQuantumToChar(q->green) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 568 | (cluster->green.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 569 | ((ssize_t) ScaleQuantumToChar(q->blue) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 570 | (cluster->blue.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 571 | ((ssize_t) ScaleQuantumToChar(q->blue) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 572 | (cluster->blue.right+SafeMargin))) |
| 573 | { |
| 574 | /* |
| 575 | Classify this pixel. |
| 576 | */ |
cristy | fba5a8b | 2011-05-03 17:12:12 +0000 | [diff] [blame] | 577 | SetIndexPixelComponent(indexes+x,cluster->id); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 578 | break; |
| 579 | } |
| 580 | } |
| 581 | if (cluster == (Cluster *) NULL) |
| 582 | { |
| 583 | MagickRealType |
| 584 | distance_squared, |
| 585 | local_minima, |
| 586 | numerator, |
| 587 | ratio, |
| 588 | sum; |
| 589 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 590 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 591 | j, |
| 592 | k; |
| 593 | |
| 594 | /* |
| 595 | Compute fuzzy membership. |
| 596 | */ |
| 597 | local_minima=0.0; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 598 | for (j=0; j < (ssize_t) image->colors; j++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 599 | { |
| 600 | sum=0.0; |
| 601 | p=image->colormap+j; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 602 | distance_squared=squares[(ssize_t) ScaleQuantumToChar(q->red)- |
| 603 | (ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p))]+ |
| 604 | squares[(ssize_t) ScaleQuantumToChar(q->green)- |
| 605 | (ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p))]+ |
| 606 | squares[(ssize_t) ScaleQuantumToChar(q->blue)- |
| 607 | (ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p))]; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 608 | numerator=distance_squared; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 609 | for (k=0; k < (ssize_t) image->colors; k++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 610 | { |
| 611 | p=image->colormap+k; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 612 | distance_squared=squares[(ssize_t) ScaleQuantumToChar(q->red)- |
| 613 | (ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p))]+ |
| 614 | squares[(ssize_t) ScaleQuantumToChar(q->green)- |
| 615 | (ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p))]+ |
| 616 | squares[(ssize_t) ScaleQuantumToChar(q->blue)- |
| 617 | (ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p))]; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 618 | ratio=numerator/distance_squared; |
| 619 | sum+=SegmentPower(ratio); |
| 620 | } |
| 621 | if ((sum != 0.0) && ((1.0/sum) > local_minima)) |
| 622 | { |
| 623 | /* |
| 624 | Classify this pixel. |
| 625 | */ |
| 626 | local_minima=1.0/sum; |
cristy | fba5a8b | 2011-05-03 17:12:12 +0000 | [diff] [blame] | 627 | SetIndexPixelComponent(indexes+x,j); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 628 | } |
| 629 | } |
| 630 | } |
| 631 | q++; |
| 632 | } |
| 633 | if (SyncCacheViewAuthenticPixels(image_view,exception) == MagickFalse) |
| 634 | status=MagickFalse; |
| 635 | if (image->progress_monitor != (MagickProgressMonitor) NULL) |
| 636 | { |
| 637 | MagickBooleanType |
| 638 | proceed; |
| 639 | |
cristy | b5d5f72 | 2009-11-04 03:03:49 +0000 | [diff] [blame] | 640 | #if defined(MAGICKCORE_OPENMP_SUPPORT) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 641 | #pragma omp critical (MagickCore_Classify) |
| 642 | #endif |
| 643 | proceed=SetImageProgress(image,SegmentImageTag,progress++, |
| 644 | 2*image->rows); |
| 645 | if (proceed == MagickFalse) |
| 646 | status=MagickFalse; |
| 647 | } |
| 648 | } |
| 649 | image_view=DestroyCacheView(image_view); |
| 650 | status&=SyncImage(image); |
| 651 | /* |
| 652 | Relinquish resources. |
| 653 | */ |
| 654 | for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| 655 | { |
| 656 | next_cluster=cluster->next; |
| 657 | cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| 658 | } |
| 659 | squares-=255; |
| 660 | free_squares=squares; |
| 661 | free_squares=(MagickRealType *) RelinquishMagickMemory(free_squares); |
| 662 | return(MagickTrue); |
| 663 | } |
| 664 | |
| 665 | /* |
| 666 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 667 | % % |
| 668 | % % |
| 669 | % % |
| 670 | + C o n s o l i d a t e C r o s s i n g s % |
| 671 | % % |
| 672 | % % |
| 673 | % % |
| 674 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 675 | % |
| 676 | % ConsolidateCrossings() guarantees that an even number of zero crossings |
| 677 | % always lie between two crossings. |
| 678 | % |
| 679 | % The format of the ConsolidateCrossings method is: |
| 680 | % |
| 681 | % ConsolidateCrossings(ZeroCrossing *zero_crossing, |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 682 | % const size_t number_crossings) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 683 | % |
| 684 | % A description of each parameter follows. |
| 685 | % |
| 686 | % o zero_crossing: Specifies an array of structures of type ZeroCrossing. |
| 687 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 688 | % o number_crossings: This size_t specifies the number of elements |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 689 | % in the zero_crossing array. |
| 690 | % |
| 691 | */ |
| 692 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 693 | static inline ssize_t MagickAbsoluteValue(const ssize_t x) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 694 | { |
| 695 | if (x < 0) |
| 696 | return(-x); |
| 697 | return(x); |
| 698 | } |
| 699 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 700 | static inline ssize_t MagickMax(const ssize_t x,const ssize_t y) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 701 | { |
| 702 | if (x > y) |
| 703 | return(x); |
| 704 | return(y); |
| 705 | } |
| 706 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 707 | static inline ssize_t MagickMin(const ssize_t x,const ssize_t y) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 708 | { |
| 709 | if (x < y) |
| 710 | return(x); |
| 711 | return(y); |
| 712 | } |
| 713 | |
| 714 | static void ConsolidateCrossings(ZeroCrossing *zero_crossing, |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 715 | const size_t number_crossings) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 716 | { |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 717 | register ssize_t |
| 718 | i, |
| 719 | j, |
| 720 | k, |
| 721 | l; |
| 722 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 723 | ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 724 | center, |
| 725 | correct, |
| 726 | count, |
| 727 | left, |
| 728 | right; |
| 729 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 730 | /* |
| 731 | Consolidate zero crossings. |
| 732 | */ |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 733 | for (i=(ssize_t) number_crossings-1; i >= 0; i--) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 734 | for (j=0; j <= 255; j++) |
| 735 | { |
| 736 | if (zero_crossing[i].crossings[j] == 0) |
| 737 | continue; |
| 738 | /* |
| 739 | Find the entry that is closest to j and still preserves the |
| 740 | property that there are an even number of crossings between |
| 741 | intervals. |
| 742 | */ |
| 743 | for (k=j-1; k > 0; k--) |
| 744 | if (zero_crossing[i+1].crossings[k] != 0) |
| 745 | break; |
| 746 | left=MagickMax(k,0); |
| 747 | center=j; |
| 748 | for (k=j+1; k < 255; k++) |
| 749 | if (zero_crossing[i+1].crossings[k] != 0) |
| 750 | break; |
| 751 | right=MagickMin(k,255); |
| 752 | /* |
| 753 | K is the zero crossing just left of j. |
| 754 | */ |
| 755 | for (k=j-1; k > 0; k--) |
| 756 | if (zero_crossing[i].crossings[k] != 0) |
| 757 | break; |
| 758 | if (k < 0) |
| 759 | k=0; |
| 760 | /* |
| 761 | Check center for an even number of crossings between k and j. |
| 762 | */ |
| 763 | correct=(-1); |
| 764 | if (zero_crossing[i+1].crossings[j] != 0) |
| 765 | { |
| 766 | count=0; |
| 767 | for (l=k+1; l < center; l++) |
| 768 | if (zero_crossing[i+1].crossings[l] != 0) |
| 769 | count++; |
| 770 | if (((count % 2) == 0) && (center != k)) |
| 771 | correct=center; |
| 772 | } |
| 773 | /* |
| 774 | Check left for an even number of crossings between k and j. |
| 775 | */ |
| 776 | if (correct == -1) |
| 777 | { |
| 778 | count=0; |
| 779 | for (l=k+1; l < left; l++) |
| 780 | if (zero_crossing[i+1].crossings[l] != 0) |
| 781 | count++; |
| 782 | if (((count % 2) == 0) && (left != k)) |
| 783 | correct=left; |
| 784 | } |
| 785 | /* |
| 786 | Check right for an even number of crossings between k and j. |
| 787 | */ |
| 788 | if (correct == -1) |
| 789 | { |
| 790 | count=0; |
| 791 | for (l=k+1; l < right; l++) |
| 792 | if (zero_crossing[i+1].crossings[l] != 0) |
| 793 | count++; |
| 794 | if (((count % 2) == 0) && (right != k)) |
| 795 | correct=right; |
| 796 | } |
cristy | cee9711 | 2010-05-28 00:44:52 +0000 | [diff] [blame] | 797 | l=(ssize_t) zero_crossing[i].crossings[j]; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 798 | zero_crossing[i].crossings[j]=0; |
| 799 | if (correct != -1) |
| 800 | zero_crossing[i].crossings[correct]=(short) l; |
| 801 | } |
| 802 | } |
| 803 | |
| 804 | /* |
| 805 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 806 | % % |
| 807 | % % |
| 808 | % % |
| 809 | + D e f i n e R e g i o n % |
| 810 | % % |
| 811 | % % |
| 812 | % % |
| 813 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 814 | % |
| 815 | % DefineRegion() defines the left and right boundaries of a peak region. |
| 816 | % |
| 817 | % The format of the DefineRegion method is: |
| 818 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 819 | % ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 820 | % |
| 821 | % A description of each parameter follows. |
| 822 | % |
| 823 | % o extrema: Specifies a pointer to an array of integers. They |
| 824 | % represent the peaks and valleys of the histogram for each color |
| 825 | % component. |
| 826 | % |
| 827 | % o extents: This pointer to an ExtentPacket represent the extends |
| 828 | % of a particular peak or valley of a color component. |
| 829 | % |
| 830 | */ |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 831 | static ssize_t DefineRegion(const short *extrema,ExtentPacket *extents) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 832 | { |
| 833 | /* |
| 834 | Initialize to default values. |
| 835 | */ |
| 836 | extents->left=0; |
| 837 | extents->center=0.0; |
| 838 | extents->right=255; |
| 839 | /* |
| 840 | Find the left side (maxima). |
| 841 | */ |
| 842 | for ( ; extents->index <= 255; extents->index++) |
| 843 | if (extrema[extents->index] > 0) |
| 844 | break; |
| 845 | if (extents->index > 255) |
| 846 | return(MagickFalse); /* no left side - no region exists */ |
| 847 | extents->left=extents->index; |
| 848 | /* |
| 849 | Find the right side (minima). |
| 850 | */ |
| 851 | for ( ; extents->index <= 255; extents->index++) |
| 852 | if (extrema[extents->index] < 0) |
| 853 | break; |
| 854 | extents->right=extents->index-1; |
| 855 | return(MagickTrue); |
| 856 | } |
| 857 | |
| 858 | /* |
| 859 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 860 | % % |
| 861 | % % |
| 862 | % % |
| 863 | + D e r i v a t i v e H i s t o g r a m % |
| 864 | % % |
| 865 | % % |
| 866 | % % |
| 867 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 868 | % |
| 869 | % DerivativeHistogram() determines the derivative of the histogram using |
| 870 | % central differencing. |
| 871 | % |
| 872 | % The format of the DerivativeHistogram method is: |
| 873 | % |
| 874 | % DerivativeHistogram(const MagickRealType *histogram, |
| 875 | % MagickRealType *derivative) |
| 876 | % |
| 877 | % A description of each parameter follows. |
| 878 | % |
| 879 | % o histogram: Specifies an array of MagickRealTypes representing the number |
| 880 | % of pixels for each intensity of a particular color component. |
| 881 | % |
| 882 | % o derivative: This array of MagickRealTypes is initialized by |
| 883 | % DerivativeHistogram to the derivative of the histogram using central |
| 884 | % differencing. |
| 885 | % |
| 886 | */ |
| 887 | static void DerivativeHistogram(const MagickRealType *histogram, |
| 888 | MagickRealType *derivative) |
| 889 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 890 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 891 | i, |
| 892 | n; |
| 893 | |
| 894 | /* |
| 895 | Compute endpoints using second order polynomial interpolation. |
| 896 | */ |
| 897 | n=255; |
| 898 | derivative[0]=(-1.5*histogram[0]+2.0*histogram[1]-0.5*histogram[2]); |
| 899 | derivative[n]=(0.5*histogram[n-2]-2.0*histogram[n-1]+1.5*histogram[n]); |
| 900 | /* |
| 901 | Compute derivative using central differencing. |
| 902 | */ |
| 903 | for (i=1; i < n; i++) |
| 904 | derivative[i]=(histogram[i+1]-histogram[i-1])/2.0; |
| 905 | return; |
| 906 | } |
| 907 | |
| 908 | /* |
| 909 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 910 | % % |
| 911 | % % |
| 912 | % % |
| 913 | + G e t I m a g e D y n a m i c T h r e s h o l d % |
| 914 | % % |
| 915 | % % |
| 916 | % % |
| 917 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 918 | % |
| 919 | % GetImageDynamicThreshold() returns the dynamic threshold for an image. |
| 920 | % |
| 921 | % The format of the GetImageDynamicThreshold method is: |
| 922 | % |
| 923 | % MagickBooleanType GetImageDynamicThreshold(const Image *image, |
| 924 | % const double cluster_threshold,const double smooth_threshold, |
| 925 | % MagickPixelPacket *pixel,ExceptionInfo *exception) |
| 926 | % |
| 927 | % A description of each parameter follows. |
| 928 | % |
| 929 | % o image: the image. |
| 930 | % |
| 931 | % o cluster_threshold: This MagickRealType represents the minimum number of |
| 932 | % pixels contained in a hexahedra before it can be considered valid |
| 933 | % (expressed as a percentage). |
| 934 | % |
| 935 | % o smooth_threshold: the smoothing threshold eliminates noise in the second |
| 936 | % derivative of the histogram. As the value is increased, you can expect a |
| 937 | % smoother second derivative. |
| 938 | % |
| 939 | % o pixel: return the dynamic threshold here. |
| 940 | % |
| 941 | % o exception: return any errors or warnings in this structure. |
| 942 | % |
| 943 | */ |
| 944 | MagickExport MagickBooleanType GetImageDynamicThreshold(const Image *image, |
| 945 | const double cluster_threshold,const double smooth_threshold, |
| 946 | MagickPixelPacket *pixel,ExceptionInfo *exception) |
| 947 | { |
| 948 | Cluster |
| 949 | *background, |
| 950 | *cluster, |
| 951 | *object, |
| 952 | *head, |
| 953 | *last_cluster, |
| 954 | *next_cluster; |
| 955 | |
| 956 | ExtentPacket |
| 957 | blue, |
| 958 | green, |
| 959 | red; |
| 960 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 961 | MagickBooleanType |
| 962 | proceed; |
| 963 | |
| 964 | MagickRealType |
| 965 | threshold; |
| 966 | |
| 967 | register const PixelPacket |
| 968 | *p; |
| 969 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 970 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 971 | i, |
| 972 | x; |
| 973 | |
| 974 | short |
| 975 | *extrema[MaxDimension]; |
| 976 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 977 | ssize_t |
| 978 | count, |
| 979 | *histogram[MaxDimension], |
| 980 | y; |
| 981 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 982 | /* |
| 983 | Allocate histogram and extrema. |
| 984 | */ |
| 985 | assert(image != (Image *) NULL); |
| 986 | assert(image->signature == MagickSignature); |
| 987 | if (image->debug != MagickFalse) |
| 988 | (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| 989 | GetMagickPixelPacket(image,pixel); |
| 990 | for (i=0; i < MaxDimension; i++) |
| 991 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 992 | histogram[i]=(ssize_t *) AcquireQuantumMemory(256UL,sizeof(**histogram)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 993 | extrema[i]=(short *) AcquireQuantumMemory(256UL,sizeof(**histogram)); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 994 | if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 995 | { |
| 996 | for (i-- ; i >= 0; i--) |
| 997 | { |
| 998 | extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 999 | histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1000 | } |
| 1001 | (void) ThrowMagickException(exception,GetMagickModule(), |
| 1002 | ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| 1003 | return(MagickFalse); |
| 1004 | } |
| 1005 | } |
| 1006 | /* |
| 1007 | Initialize histogram. |
| 1008 | */ |
| 1009 | InitializeHistogram(image,histogram,exception); |
| 1010 | (void) OptimalTau(histogram[Red],Tau,0.2f,DeltaTau, |
| 1011 | (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Red]); |
| 1012 | (void) OptimalTau(histogram[Green],Tau,0.2f,DeltaTau, |
| 1013 | (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Green]); |
| 1014 | (void) OptimalTau(histogram[Blue],Tau,0.2f,DeltaTau, |
| 1015 | (smooth_threshold == 0.0f ? 1.0f : smooth_threshold),extrema[Blue]); |
| 1016 | /* |
| 1017 | Form clusters. |
| 1018 | */ |
| 1019 | cluster=(Cluster *) NULL; |
| 1020 | head=(Cluster *) NULL; |
| 1021 | (void) ResetMagickMemory(&red,0,sizeof(red)); |
| 1022 | (void) ResetMagickMemory(&green,0,sizeof(green)); |
| 1023 | (void) ResetMagickMemory(&blue,0,sizeof(blue)); |
| 1024 | while (DefineRegion(extrema[Red],&red) != 0) |
| 1025 | { |
| 1026 | green.index=0; |
| 1027 | while (DefineRegion(extrema[Green],&green) != 0) |
| 1028 | { |
| 1029 | blue.index=0; |
| 1030 | while (DefineRegion(extrema[Blue],&blue) != 0) |
| 1031 | { |
| 1032 | /* |
| 1033 | Allocate a new class. |
| 1034 | */ |
| 1035 | if (head != (Cluster *) NULL) |
| 1036 | { |
| 1037 | cluster->next=(Cluster *) AcquireMagickMemory( |
| 1038 | sizeof(*cluster->next)); |
| 1039 | cluster=cluster->next; |
| 1040 | } |
| 1041 | else |
| 1042 | { |
cristy | 73bd4a5 | 2010-10-05 11:24:23 +0000 | [diff] [blame] | 1043 | cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1044 | head=cluster; |
| 1045 | } |
| 1046 | if (cluster == (Cluster *) NULL) |
| 1047 | { |
| 1048 | (void) ThrowMagickException(exception,GetMagickModule(), |
| 1049 | ResourceLimitError,"MemoryAllocationFailed","`%s'", |
| 1050 | image->filename); |
| 1051 | return(MagickFalse); |
| 1052 | } |
| 1053 | /* |
| 1054 | Initialize a new class. |
| 1055 | */ |
| 1056 | cluster->count=0; |
| 1057 | cluster->red=red; |
| 1058 | cluster->green=green; |
| 1059 | cluster->blue=blue; |
| 1060 | cluster->next=(Cluster *) NULL; |
| 1061 | } |
| 1062 | } |
| 1063 | } |
| 1064 | if (head == (Cluster *) NULL) |
| 1065 | { |
| 1066 | /* |
| 1067 | No classes were identified-- create one. |
| 1068 | */ |
cristy | 73bd4a5 | 2010-10-05 11:24:23 +0000 | [diff] [blame] | 1069 | cluster=(Cluster *) AcquireMagickMemory(sizeof(*cluster)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1070 | if (cluster == (Cluster *) NULL) |
| 1071 | { |
| 1072 | (void) ThrowMagickException(exception,GetMagickModule(), |
| 1073 | ResourceLimitError,"MemoryAllocationFailed","`%s'",image->filename); |
| 1074 | return(MagickFalse); |
| 1075 | } |
| 1076 | /* |
| 1077 | Initialize a new class. |
| 1078 | */ |
| 1079 | cluster->count=0; |
| 1080 | cluster->red=red; |
| 1081 | cluster->green=green; |
| 1082 | cluster->blue=blue; |
| 1083 | cluster->next=(Cluster *) NULL; |
| 1084 | head=cluster; |
| 1085 | } |
| 1086 | /* |
| 1087 | Count the pixels for each cluster. |
| 1088 | */ |
| 1089 | count=0; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1090 | for (y=0; y < (ssize_t) image->rows; y++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1091 | { |
| 1092 | p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| 1093 | if (p == (const PixelPacket *) NULL) |
| 1094 | break; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1095 | for (x=0; x < (ssize_t) image->columns; x++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1096 | { |
| 1097 | for (cluster=head; cluster != (Cluster *) NULL; cluster=cluster->next) |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1098 | if (((ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1099 | (cluster->red.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1100 | ((ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1101 | (cluster->red.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1102 | ((ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1103 | (cluster->green.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1104 | ((ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1105 | (cluster->green.right+SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1106 | ((ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p)) >= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1107 | (cluster->blue.left-SafeMargin)) && |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1108 | ((ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p)) <= |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1109 | (cluster->blue.right+SafeMargin))) |
| 1110 | { |
| 1111 | /* |
| 1112 | Count this pixel. |
| 1113 | */ |
| 1114 | count++; |
| 1115 | cluster->red.center+=(MagickRealType) |
cristy | ce70c17 | 2010-01-07 17:15:30 +0000 | [diff] [blame] | 1116 | ScaleQuantumToChar(GetRedPixelComponent(p)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1117 | cluster->green.center+=(MagickRealType) |
cristy | ce70c17 | 2010-01-07 17:15:30 +0000 | [diff] [blame] | 1118 | ScaleQuantumToChar(GetGreenPixelComponent(p)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1119 | cluster->blue.center+=(MagickRealType) |
cristy | ce70c17 | 2010-01-07 17:15:30 +0000 | [diff] [blame] | 1120 | ScaleQuantumToChar(GetBluePixelComponent(p)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1121 | cluster->count++; |
| 1122 | break; |
| 1123 | } |
| 1124 | p++; |
| 1125 | } |
cristy | cee9711 | 2010-05-28 00:44:52 +0000 | [diff] [blame] | 1126 | proceed=SetImageProgress(image,SegmentImageTag,(MagickOffsetType) y, |
| 1127 | 2*image->rows); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1128 | if (proceed == MagickFalse) |
| 1129 | break; |
| 1130 | } |
| 1131 | /* |
| 1132 | Remove clusters that do not meet minimum cluster threshold. |
| 1133 | */ |
| 1134 | count=0; |
| 1135 | last_cluster=head; |
| 1136 | next_cluster=head; |
| 1137 | for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| 1138 | { |
| 1139 | next_cluster=cluster->next; |
| 1140 | if ((cluster->count > 0) && |
| 1141 | (cluster->count >= (count*cluster_threshold/100.0))) |
| 1142 | { |
| 1143 | /* |
| 1144 | Initialize cluster. |
| 1145 | */ |
| 1146 | cluster->id=count; |
| 1147 | cluster->red.center/=cluster->count; |
| 1148 | cluster->green.center/=cluster->count; |
| 1149 | cluster->blue.center/=cluster->count; |
| 1150 | count++; |
| 1151 | last_cluster=cluster; |
| 1152 | continue; |
| 1153 | } |
| 1154 | /* |
| 1155 | Delete cluster. |
| 1156 | */ |
| 1157 | if (cluster == head) |
| 1158 | head=next_cluster; |
| 1159 | else |
| 1160 | last_cluster->next=next_cluster; |
| 1161 | cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| 1162 | } |
| 1163 | object=head; |
| 1164 | background=head; |
| 1165 | if (count > 1) |
| 1166 | { |
| 1167 | object=head->next; |
| 1168 | for (cluster=object; cluster->next != (Cluster *) NULL; ) |
| 1169 | { |
| 1170 | if (cluster->count < object->count) |
| 1171 | object=cluster; |
| 1172 | cluster=cluster->next; |
| 1173 | } |
| 1174 | background=head->next; |
| 1175 | for (cluster=background; cluster->next != (Cluster *) NULL; ) |
| 1176 | { |
| 1177 | if (cluster->count > background->count) |
| 1178 | background=cluster; |
| 1179 | cluster=cluster->next; |
| 1180 | } |
| 1181 | } |
| 1182 | threshold=(background->red.center+object->red.center)/2.0; |
| 1183 | pixel->red=(MagickRealType) ScaleCharToQuantum((unsigned char) |
| 1184 | (threshold+0.5)); |
| 1185 | threshold=(background->green.center+object->green.center)/2.0; |
| 1186 | pixel->green=(MagickRealType) ScaleCharToQuantum((unsigned char) |
| 1187 | (threshold+0.5)); |
| 1188 | threshold=(background->blue.center+object->blue.center)/2.0; |
| 1189 | pixel->blue=(MagickRealType) ScaleCharToQuantum((unsigned char) |
| 1190 | (threshold+0.5)); |
| 1191 | /* |
| 1192 | Relinquish resources. |
| 1193 | */ |
| 1194 | for (cluster=head; cluster != (Cluster *) NULL; cluster=next_cluster) |
| 1195 | { |
| 1196 | next_cluster=cluster->next; |
| 1197 | cluster=(Cluster *) RelinquishMagickMemory(cluster); |
| 1198 | } |
| 1199 | for (i=0; i < MaxDimension; i++) |
| 1200 | { |
| 1201 | extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1202 | histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1203 | } |
| 1204 | return(MagickTrue); |
| 1205 | } |
| 1206 | |
| 1207 | /* |
| 1208 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1209 | % % |
| 1210 | % % |
| 1211 | % % |
| 1212 | + I n i t i a l i z e H i s t o g r a m % |
| 1213 | % % |
| 1214 | % % |
| 1215 | % % |
| 1216 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1217 | % |
| 1218 | % InitializeHistogram() computes the histogram for an image. |
| 1219 | % |
| 1220 | % The format of the InitializeHistogram method is: |
| 1221 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1222 | % InitializeHistogram(const Image *image,ssize_t **histogram) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1223 | % |
| 1224 | % A description of each parameter follows. |
| 1225 | % |
| 1226 | % o image: Specifies a pointer to an Image structure; returned from |
| 1227 | % ReadImage. |
| 1228 | % |
| 1229 | % o histogram: Specifies an array of integers representing the number |
| 1230 | % of pixels for each intensity of a particular color component. |
| 1231 | % |
| 1232 | */ |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1233 | static void InitializeHistogram(const Image *image,ssize_t **histogram, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1234 | ExceptionInfo *exception) |
| 1235 | { |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1236 | register const PixelPacket |
| 1237 | *p; |
| 1238 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1239 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1240 | i, |
| 1241 | x; |
| 1242 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1243 | ssize_t |
| 1244 | y; |
| 1245 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1246 | /* |
| 1247 | Initialize histogram. |
| 1248 | */ |
| 1249 | for (i=0; i <= 255; i++) |
| 1250 | { |
| 1251 | histogram[Red][i]=0; |
| 1252 | histogram[Green][i]=0; |
| 1253 | histogram[Blue][i]=0; |
| 1254 | } |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1255 | for (y=0; y < (ssize_t) image->rows; y++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1256 | { |
| 1257 | p=GetVirtualPixels(image,0,y,image->columns,1,exception); |
| 1258 | if (p == (const PixelPacket *) NULL) |
| 1259 | break; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1260 | for (x=0; x < (ssize_t) image->columns; x++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1261 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1262 | histogram[Red][(ssize_t) ScaleQuantumToChar(GetRedPixelComponent(p))]++; |
| 1263 | histogram[Green][(ssize_t) ScaleQuantumToChar(GetGreenPixelComponent(p))]++; |
| 1264 | histogram[Blue][(ssize_t) ScaleQuantumToChar(GetBluePixelComponent(p))]++; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1265 | p++; |
| 1266 | } |
| 1267 | } |
| 1268 | } |
| 1269 | |
| 1270 | /* |
| 1271 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1272 | % % |
| 1273 | % % |
| 1274 | % % |
| 1275 | + I n i t i a l i z e I n t e r v a l T r e e % |
| 1276 | % % |
| 1277 | % % |
| 1278 | % % |
| 1279 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1280 | % |
| 1281 | % InitializeIntervalTree() initializes an interval tree from the lists of |
| 1282 | % zero crossings. |
| 1283 | % |
| 1284 | % The format of the InitializeIntervalTree method is: |
| 1285 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1286 | % InitializeIntervalTree(IntervalTree **list,ssize_t *number_nodes, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1287 | % IntervalTree *node) |
| 1288 | % |
| 1289 | % A description of each parameter follows. |
| 1290 | % |
| 1291 | % o zero_crossing: Specifies an array of structures of type ZeroCrossing. |
| 1292 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1293 | % o number_crossings: This size_t specifies the number of elements |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1294 | % in the zero_crossing array. |
| 1295 | % |
| 1296 | */ |
| 1297 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1298 | static void InitializeList(IntervalTree **list,ssize_t *number_nodes, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1299 | IntervalTree *node) |
| 1300 | { |
| 1301 | if (node == (IntervalTree *) NULL) |
| 1302 | return; |
| 1303 | if (node->child == (IntervalTree *) NULL) |
| 1304 | list[(*number_nodes)++]=node; |
| 1305 | InitializeList(list,number_nodes,node->sibling); |
| 1306 | InitializeList(list,number_nodes,node->child); |
| 1307 | } |
| 1308 | |
| 1309 | static void MeanStability(IntervalTree *node) |
| 1310 | { |
| 1311 | register IntervalTree |
| 1312 | *child; |
| 1313 | |
| 1314 | if (node == (IntervalTree *) NULL) |
| 1315 | return; |
| 1316 | node->mean_stability=0.0; |
| 1317 | child=node->child; |
| 1318 | if (child != (IntervalTree *) NULL) |
| 1319 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1320 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1321 | count; |
| 1322 | |
| 1323 | register MagickRealType |
| 1324 | sum; |
| 1325 | |
| 1326 | sum=0.0; |
| 1327 | count=0; |
| 1328 | for ( ; child != (IntervalTree *) NULL; child=child->sibling) |
| 1329 | { |
| 1330 | sum+=child->stability; |
| 1331 | count++; |
| 1332 | } |
| 1333 | node->mean_stability=sum/(MagickRealType) count; |
| 1334 | } |
| 1335 | MeanStability(node->sibling); |
| 1336 | MeanStability(node->child); |
| 1337 | } |
| 1338 | |
| 1339 | static void Stability(IntervalTree *node) |
| 1340 | { |
| 1341 | if (node == (IntervalTree *) NULL) |
| 1342 | return; |
| 1343 | if (node->child == (IntervalTree *) NULL) |
| 1344 | node->stability=0.0; |
| 1345 | else |
| 1346 | node->stability=node->tau-(node->child)->tau; |
| 1347 | Stability(node->sibling); |
| 1348 | Stability(node->child); |
| 1349 | } |
| 1350 | |
| 1351 | static IntervalTree *InitializeIntervalTree(const ZeroCrossing *zero_crossing, |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1352 | const size_t number_crossings) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1353 | { |
| 1354 | IntervalTree |
| 1355 | *head, |
| 1356 | **list, |
| 1357 | *node, |
| 1358 | *root; |
| 1359 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1360 | register ssize_t |
| 1361 | i; |
| 1362 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1363 | ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1364 | j, |
| 1365 | k, |
| 1366 | left, |
| 1367 | number_nodes; |
| 1368 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1369 | /* |
| 1370 | Allocate interval tree. |
| 1371 | */ |
| 1372 | list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, |
| 1373 | sizeof(*list)); |
| 1374 | if (list == (IntervalTree **) NULL) |
| 1375 | return((IntervalTree *) NULL); |
| 1376 | /* |
| 1377 | The root is the entire histogram. |
| 1378 | */ |
cristy | 73bd4a5 | 2010-10-05 11:24:23 +0000 | [diff] [blame] | 1379 | root=(IntervalTree *) AcquireMagickMemory(sizeof(*root)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1380 | root->child=(IntervalTree *) NULL; |
| 1381 | root->sibling=(IntervalTree *) NULL; |
| 1382 | root->tau=0.0; |
| 1383 | root->left=0; |
| 1384 | root->right=255; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1385 | for (i=(-1); i < (ssize_t) number_crossings; i++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1386 | { |
| 1387 | /* |
| 1388 | Initialize list with all nodes with no children. |
| 1389 | */ |
| 1390 | number_nodes=0; |
| 1391 | InitializeList(list,&number_nodes,root); |
| 1392 | /* |
| 1393 | Split list. |
| 1394 | */ |
| 1395 | for (j=0; j < number_nodes; j++) |
| 1396 | { |
| 1397 | head=list[j]; |
| 1398 | left=head->left; |
| 1399 | node=head; |
| 1400 | for (k=head->left+1; k < head->right; k++) |
| 1401 | { |
| 1402 | if (zero_crossing[i+1].crossings[k] != 0) |
| 1403 | { |
| 1404 | if (node == head) |
| 1405 | { |
| 1406 | node->child=(IntervalTree *) AcquireMagickMemory( |
| 1407 | sizeof(*node->child)); |
| 1408 | node=node->child; |
| 1409 | } |
| 1410 | else |
| 1411 | { |
| 1412 | node->sibling=(IntervalTree *) AcquireMagickMemory( |
| 1413 | sizeof(*node->sibling)); |
| 1414 | node=node->sibling; |
| 1415 | } |
| 1416 | node->tau=zero_crossing[i+1].tau; |
| 1417 | node->child=(IntervalTree *) NULL; |
| 1418 | node->sibling=(IntervalTree *) NULL; |
| 1419 | node->left=left; |
| 1420 | node->right=k; |
| 1421 | left=k; |
| 1422 | } |
| 1423 | } |
| 1424 | if (left != head->left) |
| 1425 | { |
| 1426 | node->sibling=(IntervalTree *) AcquireMagickMemory( |
| 1427 | sizeof(*node->sibling)); |
| 1428 | node=node->sibling; |
| 1429 | node->tau=zero_crossing[i+1].tau; |
| 1430 | node->child=(IntervalTree *) NULL; |
| 1431 | node->sibling=(IntervalTree *) NULL; |
| 1432 | node->left=left; |
| 1433 | node->right=head->right; |
| 1434 | } |
| 1435 | } |
| 1436 | } |
| 1437 | /* |
| 1438 | Determine the stability: difference between a nodes tau and its child. |
| 1439 | */ |
| 1440 | Stability(root->child); |
| 1441 | MeanStability(root->child); |
| 1442 | list=(IntervalTree **) RelinquishMagickMemory(list); |
| 1443 | return(root); |
| 1444 | } |
| 1445 | |
| 1446 | /* |
| 1447 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1448 | % % |
| 1449 | % % |
| 1450 | % % |
| 1451 | + O p t i m a l T a u % |
| 1452 | % % |
| 1453 | % % |
| 1454 | % % |
| 1455 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1456 | % |
| 1457 | % OptimalTau() finds the optimal tau for each band of the histogram. |
| 1458 | % |
| 1459 | % The format of the OptimalTau method is: |
| 1460 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1461 | % MagickRealType OptimalTau(const ssize_t *histogram,const double max_tau, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1462 | % const double min_tau,const double delta_tau, |
| 1463 | % const double smooth_threshold,short *extrema) |
| 1464 | % |
| 1465 | % A description of each parameter follows. |
| 1466 | % |
| 1467 | % o histogram: Specifies an array of integers representing the number |
| 1468 | % of pixels for each intensity of a particular color component. |
| 1469 | % |
| 1470 | % o extrema: Specifies a pointer to an array of integers. They |
| 1471 | % represent the peaks and valleys of the histogram for each color |
| 1472 | % component. |
| 1473 | % |
| 1474 | */ |
| 1475 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1476 | static void ActiveNodes(IntervalTree **list,ssize_t *number_nodes, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1477 | IntervalTree *node) |
| 1478 | { |
| 1479 | if (node == (IntervalTree *) NULL) |
| 1480 | return; |
| 1481 | if (node->stability >= node->mean_stability) |
| 1482 | { |
| 1483 | list[(*number_nodes)++]=node; |
| 1484 | ActiveNodes(list,number_nodes,node->sibling); |
| 1485 | } |
| 1486 | else |
| 1487 | { |
| 1488 | ActiveNodes(list,number_nodes,node->sibling); |
| 1489 | ActiveNodes(list,number_nodes,node->child); |
| 1490 | } |
| 1491 | } |
| 1492 | |
| 1493 | static void FreeNodes(IntervalTree *node) |
| 1494 | { |
| 1495 | if (node == (IntervalTree *) NULL) |
| 1496 | return; |
| 1497 | FreeNodes(node->sibling); |
| 1498 | FreeNodes(node->child); |
| 1499 | node=(IntervalTree *) RelinquishMagickMemory(node); |
| 1500 | } |
| 1501 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1502 | static MagickRealType OptimalTau(const ssize_t *histogram,const double max_tau, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1503 | const double min_tau,const double delta_tau,const double smooth_threshold, |
| 1504 | short *extrema) |
| 1505 | { |
| 1506 | IntervalTree |
| 1507 | **list, |
| 1508 | *node, |
| 1509 | *root; |
| 1510 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1511 | MagickBooleanType |
| 1512 | peak; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1513 | |
| 1514 | MagickRealType |
| 1515 | average_tau, |
| 1516 | *derivative, |
| 1517 | *second_derivative, |
| 1518 | tau, |
| 1519 | value; |
| 1520 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1521 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1522 | i, |
| 1523 | x; |
| 1524 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1525 | size_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1526 | count, |
| 1527 | number_crossings; |
| 1528 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1529 | ssize_t |
| 1530 | index, |
| 1531 | j, |
| 1532 | k, |
| 1533 | number_nodes; |
| 1534 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1535 | ZeroCrossing |
| 1536 | *zero_crossing; |
| 1537 | |
| 1538 | /* |
| 1539 | Allocate interval tree. |
| 1540 | */ |
| 1541 | list=(IntervalTree **) AcquireQuantumMemory((size_t) TreeLength, |
| 1542 | sizeof(*list)); |
| 1543 | if (list == (IntervalTree **) NULL) |
| 1544 | return(0.0); |
| 1545 | /* |
| 1546 | Allocate zero crossing list. |
| 1547 | */ |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1548 | count=(size_t) ((max_tau-min_tau)/delta_tau)+2; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1549 | zero_crossing=(ZeroCrossing *) AcquireQuantumMemory((size_t) count, |
| 1550 | sizeof(*zero_crossing)); |
| 1551 | if (zero_crossing == (ZeroCrossing *) NULL) |
| 1552 | return(0.0); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1553 | for (i=0; i < (ssize_t) count; i++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1554 | zero_crossing[i].tau=(-1.0); |
| 1555 | /* |
| 1556 | Initialize zero crossing list. |
| 1557 | */ |
| 1558 | derivative=(MagickRealType *) AcquireQuantumMemory(256,sizeof(*derivative)); |
| 1559 | second_derivative=(MagickRealType *) AcquireQuantumMemory(256, |
| 1560 | sizeof(*second_derivative)); |
| 1561 | if ((derivative == (MagickRealType *) NULL) || |
| 1562 | (second_derivative == (MagickRealType *) NULL)) |
| 1563 | ThrowFatalException(ResourceLimitFatalError, |
| 1564 | "UnableToAllocateDerivatives"); |
| 1565 | i=0; |
| 1566 | for (tau=max_tau; tau >= min_tau; tau-=delta_tau) |
| 1567 | { |
| 1568 | zero_crossing[i].tau=tau; |
| 1569 | ScaleSpace(histogram,tau,zero_crossing[i].histogram); |
| 1570 | DerivativeHistogram(zero_crossing[i].histogram,derivative); |
| 1571 | DerivativeHistogram(derivative,second_derivative); |
| 1572 | ZeroCrossHistogram(second_derivative,smooth_threshold, |
| 1573 | zero_crossing[i].crossings); |
| 1574 | i++; |
| 1575 | } |
| 1576 | /* |
| 1577 | Add an entry for the original histogram. |
| 1578 | */ |
| 1579 | zero_crossing[i].tau=0.0; |
| 1580 | for (j=0; j <= 255; j++) |
| 1581 | zero_crossing[i].histogram[j]=(MagickRealType) histogram[j]; |
| 1582 | DerivativeHistogram(zero_crossing[i].histogram,derivative); |
| 1583 | DerivativeHistogram(derivative,second_derivative); |
| 1584 | ZeroCrossHistogram(second_derivative,smooth_threshold, |
| 1585 | zero_crossing[i].crossings); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1586 | number_crossings=(size_t) i; |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1587 | derivative=(MagickRealType *) RelinquishMagickMemory(derivative); |
| 1588 | second_derivative=(MagickRealType *) |
| 1589 | RelinquishMagickMemory(second_derivative); |
| 1590 | /* |
| 1591 | Ensure the scale-space fingerprints form lines in scale-space, not loops. |
| 1592 | */ |
| 1593 | ConsolidateCrossings(zero_crossing,number_crossings); |
| 1594 | /* |
| 1595 | Force endpoints to be included in the interval. |
| 1596 | */ |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1597 | for (i=0; i <= (ssize_t) number_crossings; i++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1598 | { |
| 1599 | for (j=0; j < 255; j++) |
| 1600 | if (zero_crossing[i].crossings[j] != 0) |
| 1601 | break; |
| 1602 | zero_crossing[i].crossings[0]=(-zero_crossing[i].crossings[j]); |
| 1603 | for (j=255; j > 0; j--) |
| 1604 | if (zero_crossing[i].crossings[j] != 0) |
| 1605 | break; |
| 1606 | zero_crossing[i].crossings[255]=(-zero_crossing[i].crossings[j]); |
| 1607 | } |
| 1608 | /* |
| 1609 | Initialize interval tree. |
| 1610 | */ |
| 1611 | root=InitializeIntervalTree(zero_crossing,number_crossings); |
| 1612 | if (root == (IntervalTree *) NULL) |
| 1613 | return(0.0); |
| 1614 | /* |
| 1615 | Find active nodes: stability is greater (or equal) to the mean stability of |
| 1616 | its children. |
| 1617 | */ |
| 1618 | number_nodes=0; |
| 1619 | ActiveNodes(list,&number_nodes,root->child); |
| 1620 | /* |
| 1621 | Initialize extrema. |
| 1622 | */ |
| 1623 | for (i=0; i <= 255; i++) |
| 1624 | extrema[i]=0; |
| 1625 | for (i=0; i < number_nodes; i++) |
| 1626 | { |
| 1627 | /* |
| 1628 | Find this tau in zero crossings list. |
| 1629 | */ |
| 1630 | k=0; |
| 1631 | node=list[i]; |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1632 | for (j=0; j <= (ssize_t) number_crossings; j++) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1633 | if (zero_crossing[j].tau == node->tau) |
| 1634 | k=j; |
| 1635 | /* |
| 1636 | Find the value of the peak. |
| 1637 | */ |
| 1638 | peak=zero_crossing[k].crossings[node->right] == -1 ? MagickTrue : |
| 1639 | MagickFalse; |
| 1640 | index=node->left; |
| 1641 | value=zero_crossing[k].histogram[index]; |
| 1642 | for (x=node->left; x <= node->right; x++) |
| 1643 | { |
| 1644 | if (peak != MagickFalse) |
| 1645 | { |
| 1646 | if (zero_crossing[k].histogram[x] > value) |
| 1647 | { |
| 1648 | value=zero_crossing[k].histogram[x]; |
| 1649 | index=x; |
| 1650 | } |
| 1651 | } |
| 1652 | else |
| 1653 | if (zero_crossing[k].histogram[x] < value) |
| 1654 | { |
| 1655 | value=zero_crossing[k].histogram[x]; |
| 1656 | index=x; |
| 1657 | } |
| 1658 | } |
| 1659 | for (x=node->left; x <= node->right; x++) |
| 1660 | { |
| 1661 | if (index == 0) |
| 1662 | index=256; |
| 1663 | if (peak != MagickFalse) |
| 1664 | extrema[x]=(short) index; |
| 1665 | else |
| 1666 | extrema[x]=(short) (-index); |
| 1667 | } |
| 1668 | } |
| 1669 | /* |
| 1670 | Determine the average tau. |
| 1671 | */ |
| 1672 | average_tau=0.0; |
| 1673 | for (i=0; i < number_nodes; i++) |
| 1674 | average_tau+=list[i]->tau; |
| 1675 | average_tau/=(MagickRealType) number_nodes; |
| 1676 | /* |
| 1677 | Relinquish resources. |
| 1678 | */ |
| 1679 | FreeNodes(root); |
| 1680 | zero_crossing=(ZeroCrossing *) RelinquishMagickMemory(zero_crossing); |
| 1681 | list=(IntervalTree **) RelinquishMagickMemory(list); |
| 1682 | return(average_tau); |
| 1683 | } |
| 1684 | |
| 1685 | /* |
| 1686 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1687 | % % |
| 1688 | % % |
| 1689 | % % |
| 1690 | + S c a l e S p a c e % |
| 1691 | % % |
| 1692 | % % |
| 1693 | % % |
| 1694 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1695 | % |
| 1696 | % ScaleSpace() performs a scale-space filter on the 1D histogram. |
| 1697 | % |
| 1698 | % The format of the ScaleSpace method is: |
| 1699 | % |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1700 | % ScaleSpace(const ssize_t *histogram,const MagickRealType tau, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1701 | % MagickRealType *scale_histogram) |
| 1702 | % |
| 1703 | % A description of each parameter follows. |
| 1704 | % |
| 1705 | % o histogram: Specifies an array of MagickRealTypes representing the number |
| 1706 | % of pixels for each intensity of a particular color component. |
| 1707 | % |
| 1708 | */ |
| 1709 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1710 | static void ScaleSpace(const ssize_t *histogram,const MagickRealType tau, |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1711 | MagickRealType *scale_histogram) |
| 1712 | { |
| 1713 | MagickRealType |
| 1714 | alpha, |
| 1715 | beta, |
| 1716 | *gamma, |
| 1717 | sum; |
| 1718 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1719 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1720 | u, |
| 1721 | x; |
| 1722 | |
| 1723 | gamma=(MagickRealType *) AcquireQuantumMemory(256,sizeof(*gamma)); |
| 1724 | if (gamma == (MagickRealType *) NULL) |
| 1725 | ThrowFatalException(ResourceLimitFatalError, |
| 1726 | "UnableToAllocateGammaMap"); |
| 1727 | alpha=1.0/(tau*sqrt(2.0*MagickPI)); |
| 1728 | beta=(-1.0/(2.0*tau*tau)); |
| 1729 | for (x=0; x <= 255; x++) |
| 1730 | gamma[x]=0.0; |
| 1731 | for (x=0; x <= 255; x++) |
| 1732 | { |
| 1733 | gamma[x]=exp((double) beta*x*x); |
| 1734 | if (gamma[x] < MagickEpsilon) |
| 1735 | break; |
| 1736 | } |
| 1737 | for (x=0; x <= 255; x++) |
| 1738 | { |
| 1739 | sum=0.0; |
| 1740 | for (u=0; u <= 255; u++) |
| 1741 | sum+=(MagickRealType) histogram[u]*gamma[MagickAbsoluteValue(x-u)]; |
| 1742 | scale_histogram[x]=alpha*sum; |
| 1743 | } |
| 1744 | gamma=(MagickRealType *) RelinquishMagickMemory(gamma); |
| 1745 | } |
| 1746 | |
| 1747 | /* |
| 1748 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1749 | % % |
| 1750 | % % |
| 1751 | % % |
| 1752 | % S e g m e n t I m a g e % |
| 1753 | % % |
| 1754 | % % |
| 1755 | % % |
| 1756 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1757 | % |
| 1758 | % SegmentImage() segment an image by analyzing the histograms of the color |
| 1759 | % components and identifying units that are homogeneous with the fuzzy |
| 1760 | % C-means technique. |
| 1761 | % |
| 1762 | % The format of the SegmentImage method is: |
| 1763 | % |
| 1764 | % MagickBooleanType SegmentImage(Image *image, |
| 1765 | % const ColorspaceType colorspace,const MagickBooleanType verbose, |
| 1766 | % const double cluster_threshold,const double smooth_threshold) |
| 1767 | % |
| 1768 | % A description of each parameter follows. |
| 1769 | % |
| 1770 | % o image: the image. |
| 1771 | % |
| 1772 | % o colorspace: Indicate the colorspace. |
| 1773 | % |
| 1774 | % o verbose: Set to MagickTrue to print detailed information about the |
| 1775 | % identified classes. |
| 1776 | % |
| 1777 | % o cluster_threshold: This represents the minimum number of pixels |
| 1778 | % contained in a hexahedra before it can be considered valid (expressed |
| 1779 | % as a percentage). |
| 1780 | % |
| 1781 | % o smooth_threshold: the smoothing threshold eliminates noise in the second |
| 1782 | % derivative of the histogram. As the value is increased, you can expect a |
| 1783 | % smoother second derivative. |
| 1784 | % |
| 1785 | */ |
| 1786 | MagickExport MagickBooleanType SegmentImage(Image *image, |
| 1787 | const ColorspaceType colorspace,const MagickBooleanType verbose, |
| 1788 | const double cluster_threshold,const double smooth_threshold) |
| 1789 | { |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1790 | MagickBooleanType |
| 1791 | status; |
| 1792 | |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1793 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1794 | i; |
| 1795 | |
| 1796 | short |
| 1797 | *extrema[MaxDimension]; |
| 1798 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1799 | ssize_t |
| 1800 | *histogram[MaxDimension]; |
| 1801 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1802 | /* |
| 1803 | Allocate histogram and extrema. |
| 1804 | */ |
| 1805 | assert(image != (Image *) NULL); |
| 1806 | assert(image->signature == MagickSignature); |
| 1807 | if (image->debug != MagickFalse) |
| 1808 | (void) LogMagickEvent(TraceEvent,GetMagickModule(),"%s",image->filename); |
| 1809 | for (i=0; i < MaxDimension; i++) |
| 1810 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1811 | histogram[i]=(ssize_t *) AcquireQuantumMemory(256,sizeof(**histogram)); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1812 | extrema[i]=(short *) AcquireQuantumMemory(256,sizeof(**extrema)); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1813 | if ((histogram[i] == (ssize_t *) NULL) || (extrema[i] == (short *) NULL)) |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1814 | { |
| 1815 | for (i-- ; i >= 0; i--) |
| 1816 | { |
| 1817 | extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1818 | histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1819 | } |
| 1820 | ThrowBinaryException(ResourceLimitError,"MemoryAllocationFailed", |
| 1821 | image->filename) |
| 1822 | } |
| 1823 | } |
| 1824 | if (colorspace != RGBColorspace) |
| 1825 | (void) TransformImageColorspace(image,colorspace); |
| 1826 | /* |
| 1827 | Initialize histogram. |
| 1828 | */ |
| 1829 | InitializeHistogram(image,histogram,&image->exception); |
| 1830 | (void) OptimalTau(histogram[Red],Tau,0.2,DeltaTau, |
| 1831 | smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Red]); |
| 1832 | (void) OptimalTau(histogram[Green],Tau,0.2,DeltaTau, |
| 1833 | smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Green]); |
| 1834 | (void) OptimalTau(histogram[Blue],Tau,0.2,DeltaTau, |
| 1835 | smooth_threshold == 0.0 ? 1.0 : smooth_threshold,extrema[Blue]); |
| 1836 | /* |
| 1837 | Classify using the fuzzy c-Means technique. |
| 1838 | */ |
| 1839 | status=Classify(image,extrema,cluster_threshold,WeightingExponent,verbose); |
| 1840 | if (colorspace != RGBColorspace) |
| 1841 | (void) TransformImageColorspace(image,colorspace); |
| 1842 | /* |
| 1843 | Relinquish resources. |
| 1844 | */ |
| 1845 | for (i=0; i < MaxDimension; i++) |
| 1846 | { |
| 1847 | extrema[i]=(short *) RelinquishMagickMemory(extrema[i]); |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1848 | histogram[i]=(ssize_t *) RelinquishMagickMemory(histogram[i]); |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1849 | } |
| 1850 | return(status); |
| 1851 | } |
| 1852 | |
| 1853 | /* |
| 1854 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1855 | % % |
| 1856 | % % |
| 1857 | % % |
| 1858 | + Z e r o C r o s s H i s t o g r a m % |
| 1859 | % % |
| 1860 | % % |
| 1861 | % % |
| 1862 | %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% |
| 1863 | % |
| 1864 | % ZeroCrossHistogram() find the zero crossings in a histogram and marks |
| 1865 | % directions as: 1 is negative to positive; 0 is zero crossing; and -1 |
| 1866 | % is positive to negative. |
| 1867 | % |
| 1868 | % The format of the ZeroCrossHistogram method is: |
| 1869 | % |
| 1870 | % ZeroCrossHistogram(MagickRealType *second_derivative, |
| 1871 | % const MagickRealType smooth_threshold,short *crossings) |
| 1872 | % |
| 1873 | % A description of each parameter follows. |
| 1874 | % |
| 1875 | % o second_derivative: Specifies an array of MagickRealTypes representing the |
| 1876 | % second derivative of the histogram of a particular color component. |
| 1877 | % |
| 1878 | % o crossings: This array of integers is initialized with |
| 1879 | % -1, 0, or 1 representing the slope of the first derivative of the |
| 1880 | % of a particular color component. |
| 1881 | % |
| 1882 | */ |
| 1883 | static void ZeroCrossHistogram(MagickRealType *second_derivative, |
| 1884 | const MagickRealType smooth_threshold,short *crossings) |
| 1885 | { |
cristy | bb50337 | 2010-05-27 20:51:26 +0000 | [diff] [blame] | 1886 | register ssize_t |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1887 | i; |
| 1888 | |
cristy | 9d314ff | 2011-03-09 01:30:28 +0000 | [diff] [blame] | 1889 | ssize_t |
| 1890 | parity; |
| 1891 | |
cristy | 3ed852e | 2009-09-05 21:47:34 +0000 | [diff] [blame] | 1892 | /* |
| 1893 | Merge low numbers to zero to help prevent noise. |
| 1894 | */ |
| 1895 | for (i=0; i <= 255; i++) |
| 1896 | if ((second_derivative[i] < smooth_threshold) && |
| 1897 | (second_derivative[i] >= -smooth_threshold)) |
| 1898 | second_derivative[i]=0.0; |
| 1899 | /* |
| 1900 | Mark zero crossings. |
| 1901 | */ |
| 1902 | parity=0; |
| 1903 | for (i=0; i <= 255; i++) |
| 1904 | { |
| 1905 | crossings[i]=0; |
| 1906 | if (second_derivative[i] < 0.0) |
| 1907 | { |
| 1908 | if (parity > 0) |
| 1909 | crossings[i]=(-1); |
| 1910 | parity=1; |
| 1911 | } |
| 1912 | else |
| 1913 | if (second_derivative[i] > 0.0) |
| 1914 | { |
| 1915 | if (parity < 0) |
| 1916 | crossings[i]=1; |
| 1917 | parity=(-1); |
| 1918 | } |
| 1919 | } |
| 1920 | } |