blob: cbb9ff2ca0e7218891fba0b9bd9b669989f5e81b [file] [log] [blame]
// Copyright 2019 Google LLC
//
// This source code is licensed under the BSD-style license found in the
// LICENSE file in the root directory of this source tree.
#include <assert.h>
#include <stddef.h>
#include <xnnpack/common.h>
#include <xnnpack/math-stubs.h>
#include <fp16/bitcasts.h>
// Table of exp2(k / 2048) values decremented (as integer) by (k << 12), k = 0..2048
extern XNN_INTERNAL const uint32_t xnn_table_exp2minus_k_over_2048[2048];
void xnn_math_f32_expminus__scalar_rr2_lut2048_p1(
size_t n,
const float* input,
float* output)
{
assert(n % sizeof(float) == 0);
// Large number such that ulp(magic bias) == exp2(-11)
const float vmagic_bias = 0x1.800000p12f;
const float vlog2e = 0x1.715476p0f;
// Mask for the lowest 11 bits
const uint32_t vindex_mask = UINT32_C(0x7FF);
// Last 18 bits are zeroes
const float vminus_ln2_hi = -0x1.600000p-1f;
const float vminus_ln2_lo = -0x1.7217F8p-8f;
// Coefficient of polynomial approximation
// exp(t) ~ 1 + t * c1
// on [-log(2)/2048, log(2)/2048]
const float vc1 = 0x1.FFFFFEp-1f;
// The smallest x for which expf(x) is normalized.
const float vdenorm_cutoff = -0x1.5D589Ep6f;
for (; n != 0; n -= sizeof(float)) {
const float vx = *input++;
// Compute reduced argument n := round(x / log(2), 11).
// We do it by adding a large number (magic bias), which cause rounding of the result to 11 fractional bits, then
// subtracing the large number back. The trick with adding large number is valid only within certain bounds
// (|x / log(2)| <= 2**11, i.e. |x| <= 0x1.62E43p+10 = 1419.5654296875), but that is acceptable, because inputs x
// outside of [-87.336544, 0] underflow expf(x). We fixup the result for such inputs at the very end of the
// algorithm.
float vn = vx * vlog2e + vmagic_bias;
// Create a floating-point number s (scale) such that s := 2**n for such inputs that expf(x) is normalized, i.e.
// -87.336544 <= x <= 0. As n has 11 fractional bits, we split s == 2**n = 2**int(n) * 2**frac(n). We create s in
// two steps:
// 1. Fetch 2**frac(n) from the table using the 11 low bits of n, as integer. Note that the fetched values are in
// the [1.0, 2.0) range, i.e. their floating-point exponent is 0.
// 2. Adjust fecthed value by addition of int(n) to its floating-point exponent. The result is always a normalized
// number, because for -87.33642 <= x <= 0 (inputs for which expf(x) is normalized) we have -126 <= int(n) <= 0,
// and thus the adjusted exponent is not lower than -126.
//
// Shift bits 11:19 into 23:31 (position of floating-point exponent).
const uint32_t ve = fp32_to_bits(vn) << 12;
// Use bits 0:11 of n, as integer, as an index for table lookup of l := 2**frac(n).
const uint32_t vidx = fp32_to_bits(vn) & vindex_mask;
// Adjust exponent of the value l fetched from the table to get the final s value.
const float vs = fp32_from_bits(xnn_table_exp2minus_k_over_2048[vidx] + ve);
// Subtract the large number back to get final n := round(x / log(2), 11) as a floating-point number.
vn -= vmagic_bias;
// Compute reduced argument t := x - n * log(2)
// Use Cody-Waite range reduction method (note the two constants representing log(2)) to improve accuracy.
float vt = vn * vminus_ln2_hi + vx;
vt = vn * vminus_ln2_lo + vt;
// Compute degree-1 polynomial approximation for exp(t) on [-log(2)/2048, log(2)/2048].
// P(t) = 1 + t * c1 = 1 + t * c1 = 1 + p
const float vp = vt * vc1;
// Reconstruct the exp(x) value:
// exp(x) = s * (1 + t * c1)
// = s * (1 + p)
// = s + s * p
float vf = vp * vs + vs;
// For inputs below denormal cutoff, replace output with +0.0f.
// Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
if XNN_UNPREDICTABLE(vx < vdenorm_cutoff) {
vf = 0.0f;
}
*output++ = vf;
}
}