Update Average Pooling operator benchmark

- Benchmark F32 operator
- Benchmark TFLite implementation
- Benchmark on the final global average pooling of ImageNet classifiers

PiperOrigin-RevId: 300295930
diff --git a/bench/average-pooling.cc b/bench/average-pooling.cc
index a757890..b1bdc7e 100644
--- a/bench/average-pooling.cc
+++ b/bench/average-pooling.cc
@@ -16,10 +16,18 @@
 #include <xnnpack.h>
 
 #include <benchmark/benchmark.h>
+#ifdef BENCHMARK_TENSORFLOW_LITE
+#include "flatbuffers/include/flatbuffers/flatbuffers.h"
+#include "tensorflow/lite/interpreter.h"
+#include "tensorflow/lite/kernels/register.h"
+#include "tensorflow/lite/model.h"
+#include "tensorflow/lite/schema/schema_generated.h"
+#include "tensorflow/lite/version.h"
+#endif  // BENCHMARK_TENSORFLOW_LITE
 #include "bench/utils.h"
 
 
-static void average_pooling_q8(benchmark::State& state, const char* net) {
+static void xnnpack_average_pooling_q8(benchmark::State& state, const char* net) {
   const size_t batch_size = state.range(0);
   const size_t input_height = state.range(1);
   const size_t input_width = state.range(2);
@@ -94,6 +102,224 @@
     benchmark::Counter::kIsRate);
 }
 
+static void xnnpack_average_pooling_f32(benchmark::State& state, const char* net) {
+  const size_t batch_size = state.range(0);
+  const size_t input_height = state.range(1);
+  const size_t input_width = state.range(2);
+  const size_t pooling_size = state.range(3);
+  const size_t padding_size = state.range(4);
+  const size_t stride = state.range(5);
+  const size_t channels = state.range(6);
+
+  std::random_device random_device;
+  auto rng = std::mt19937(random_device());
+  auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
+
+  const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1;
+  const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1;
+
+  std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float));
+  std::generate(input.begin(), input.end(), std::ref(f32rng));
+  std::vector<float> output(batch_size * output_height * output_width * channels);
+  std::fill(output.begin(), output.end(), std::nanf(""));
+
+  xnn_status status = xnn_initialize(nullptr /* allocator */);
+  if (status != xnn_status_success) {
+    state.SkipWithError("failed to initialize XNNPACK");
+    return;
+  }
+
+  xnn_operator_t pooling_op = nullptr;
+  status = xnn_create_average_pooling2d_nhwc_f32(
+    padding_size, padding_size, padding_size, padding_size,
+    pooling_size, pooling_size,
+    stride, stride,
+    channels, channels /* input pixel stride */, channels /* output pixel stride */,
+    -std::numeric_limits<float>::infinity(), std::numeric_limits<float>::infinity(),
+    0 /* flags */, &pooling_op);
+  if (status != xnn_status_success) {
+    state.SkipWithError("failed to create Average Pooling operator");
+    return;
+  }
+
+  status = xnn_setup_average_pooling2d_nhwc_f32(
+    pooling_op,
+    batch_size, input_height, input_width,
+    input.data(), output.data(),
+    nullptr /* thread pool */);
+  if (status != xnn_status_success) {
+    state.SkipWithError("failed to setup Average Pooling operator");
+    return;
+  }
+
+  for (auto _ : state) {
+    status = xnn_run_operator(pooling_op, nullptr /* thread pool */);
+    if (status != xnn_status_success) {
+      state.SkipWithError("failed to run Average Pooling operator");
+      return;
+    }
+  }
+
+  status = xnn_delete_operator(pooling_op);
+  if (status != xnn_status_success) {
+    state.SkipWithError("failed to delete Average Pooling operator");
+    return;
+  }
+  pooling_op = nullptr;
+
+  state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
+
+  state.counters["bytes"] = benchmark::Counter(
+    uint64_t(state.iterations()) *
+      batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float),
+    benchmark::Counter::kIsRate);
+}
+
+#ifdef BENCHMARK_TENSORFLOW_LITE
+void tflite_average_pooling_f32(benchmark::State& state, const char* net) {
+  const size_t batch_size = state.range(0);
+  const size_t input_height = state.range(1);
+  const size_t input_width = state.range(2);
+  const size_t pooling_size = state.range(3);
+  const size_t padding_size = state.range(4);
+  const size_t stride = state.range(5);
+  const size_t channels = state.range(6);
+
+  std::random_device random_device;
+  auto rng = std::mt19937(random_device());
+  auto f32rng = std::bind(std::uniform_real_distribution<float>(), rng);
+
+  tflite::Padding padding = tflite::Padding_VALID;
+  if (2 * padding_size == (pooling_size - 1)) {
+    padding = tflite::Padding_SAME;
+  } else if (padding_size == 0) {
+    padding = tflite::Padding_VALID;
+  } else {
+    state.SkipWithError("unsupported padding");
+    return;
+  }
+
+  const size_t output_height = (2 * padding_size + input_height - pooling_size) / stride + 1;
+  const size_t output_width = (2 * padding_size + input_width - pooling_size) / stride + 1;
+
+  std::vector<float> input(batch_size * input_height * input_width * channels + XNN_EXTRA_BYTES / sizeof(float));
+  std::generate(input.begin(), input.end(), std::ref(f32rng));
+  std::vector<float> output(batch_size * output_height * output_width * channels);
+  std::fill(output.begin(), output.end(), std::nanf(""));
+
+  flatbuffers::FlatBufferBuilder builder;
+  flatbuffers::Offset<tflite::OperatorCode> operator_code =
+      CreateOperatorCode(builder, tflite::BuiltinOperator_AVERAGE_POOL_2D);
+
+  flatbuffers::Offset<tflite::Pool2DOptions> pool2d_options = CreatePool2DOptions(
+      builder, padding,
+      stride /* stride_w */, stride /* stride_h */,
+      pooling_size /* filter_width */, pooling_size /* filter_height */,
+      tflite::ActivationFunctionType_NONE);
+
+  flatbuffers::Offset<tflite::Buffer> buffers[1] = {
+    tflite::CreateBuffer(builder, builder.CreateVector({})),
+  };
+
+  const int32_t input_shape[4] = {
+    static_cast<int32_t>(batch_size),
+    static_cast<int32_t>(input_height),
+    static_cast<int32_t>(input_width),
+    static_cast<int32_t>(channels)
+  };
+  const int32_t output_shape[4] = {
+    static_cast<int32_t>(batch_size),
+    static_cast<int32_t>(output_height),
+    static_cast<int32_t>(output_width),
+    static_cast<int32_t>(channels)
+  };
+
+  flatbuffers::Offset<tflite::Tensor> tensors[2] = {
+    tflite::CreateTensor(builder,
+                         builder.CreateVector<int32_t>(input_shape, 4),
+                         tflite::TensorType_FLOAT32),
+    tflite::CreateTensor(builder,
+                         builder.CreateVector<int32_t>(output_shape, 4),
+                         tflite::TensorType_FLOAT32),
+  };
+
+  const int32_t op_inputs[1] = { 0 };
+  const int32_t op_outputs[1] = { 1 };
+  flatbuffers::Offset<tflite::Operator> op = CreateOperator(
+      builder,
+      0 /* opcode_index */,
+      builder.CreateVector<int32_t>(op_inputs, 1),
+      builder.CreateVector<int32_t>(op_outputs, 1),
+      tflite::BuiltinOptions_Pool2DOptions,
+      pool2d_options.Union());
+
+  const int32_t graph_inputs[1] = { 0 };
+  const int32_t graph_outputs[1] = { 1 };
+  flatbuffers::Offset<tflite::SubGraph> subgraph = CreateSubGraph(
+      builder,
+      builder.CreateVector(tensors, 2),
+      builder.CreateVector<int32_t>(graph_inputs, 1),
+      builder.CreateVector<int32_t>(graph_outputs, 1),
+      builder.CreateVector(&op, 1));
+
+  flatbuffers::Offset<tflite::Model> model_buffer = tflite::CreateModel(builder,
+      TFLITE_SCHEMA_VERSION,
+      builder.CreateVector(&operator_code, 1),
+      builder.CreateVector(&subgraph, 1),
+      builder.CreateString("AVERAGE_POOL_2D model"),
+      builder.CreateVector(buffers, 1));
+
+  builder.Finish(model_buffer);
+
+  const tflite::Model* model = tflite::GetModel(builder.GetBufferPointer());
+  tflite::ops::builtin::BuiltinOpResolver resolver;
+  tflite::InterpreterBuilder interpreterBuilder(model, resolver);
+  std::unique_ptr<tflite::Interpreter> interpreter;
+  if (interpreterBuilder(&interpreter) != kTfLiteOk) {
+    state.SkipWithError("failed to create TFLite interpreter");
+    return;
+  }
+  if (interpreter == nullptr) {
+    state.SkipWithError("TFLite interpreter is null");
+    return;
+  }
+  interpreter->SetNumThreads(1);
+
+  if (interpreter->AllocateTensors() != kTfLiteOk) {
+    state.SkipWithError("failed to allocate tensors");
+    return;
+  }
+
+  std::generate(
+    interpreter->typed_tensor<float>(0),
+    interpreter->typed_tensor<float>(0) + batch_size * input_height * input_width * channels,
+    std::ref(f32rng));
+
+  for (auto _ : state) {
+    if (interpreter->Invoke() != kTfLiteOk) {
+      state.SkipWithError("failed to invoke TFLite interpreter");
+      return;
+    }
+  }
+
+  state.counters["Freq"] = benchmark::utils::GetCurrentCpuFrequency();
+
+  state.counters["bytes"] = benchmark::Counter(
+    uint64_t(state.iterations()) *
+      batch_size * (input_height * input_width + output_height * output_width) * channels * sizeof(float),
+    benchmark::Counter::kIsRate);
+}
+#endif  // BENCHMARK_TENSORFLOW_LITE
+
+// Final global average pooling in ImageNet classification models.
+static void ImageNet(benchmark::internal::Benchmark* b) {
+  b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
+
+  /*       N   H   W   K  P  S   C */
+  b->Args({1, 13, 13, 13, 0, 1, 1000});
+  b->Args({1,  7,  7,  7, 0, 1, 1000});
+}
+
 // ShuffleNet v1 with 1 group.
 static void ShuffleNetV1G1(benchmark::internal::Benchmark* b) {
   b->ArgNames({"N", "H", "W", "K", "P", "S", "C"});
@@ -149,11 +375,28 @@
   b->Args({1,  7,  7, 3, 1, 2, 1536});
 }
 
-BENCHMARK_CAPTURE(average_pooling_q8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime();
-BENCHMARK_CAPTURE(average_pooling_q8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime();
-BENCHMARK_CAPTURE(average_pooling_q8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime();
-BENCHMARK_CAPTURE(average_pooling_q8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime();
-BENCHMARK_CAPTURE(average_pooling_q8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime();
+
+#ifdef BENCHMARK_TENSORFLOW_LITE
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime();
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime();
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime();
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime();
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime();
+BENCHMARK_CAPTURE(tflite_average_pooling_f32, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime();
+#endif  // BENCHMARK_TENSORFLOW_LITE
+
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, imagenet, "ImageNet")->Apply(ImageNet)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, shufflenet_v1_g1, "ShuffleNet v1 (1 group)")->Apply(ShuffleNetV1G1)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, shufflenet_v1_g2, "ShuffleNet v1 (2 groups)")->Apply(ShuffleNetV1G2)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, shufflenet_v1_g3, "ShuffleNet v1 (3 groups)")->Apply(ShuffleNetV1G3)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, shufflenet_v1_g4, "ShuffleNet v1 (4 groups)")->Apply(ShuffleNetV1G4)->UseRealTime();
+BENCHMARK_CAPTURE(xnnpack_average_pooling_q8, shufflenet_v1_g8, "ShuffleNet v1 (8 groups)")->Apply(ShuffleNetV1G8)->UseRealTime();
 
 #ifndef XNNPACK_BENCHMARK_NO_MAIN
 BENCHMARK_MAIN();