Initial open-source release

PiperOrigin-RevId: 271685289
diff --git a/test/fully-connected-operator-tester.h b/test/fully-connected-operator-tester.h
new file mode 100644
index 0000000..b6eddf4
--- /dev/null
+++ b/test/fully-connected-operator-tester.h
@@ -0,0 +1,308 @@
+// Copyright (c) Facebook, Inc. and its affiliates.
+// All rights reserved.
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#pragma once
+
+#include <gtest/gtest.h>
+
+#include <cstddef>
+#include <cstdlib>
+#include <algorithm>
+#include <cmath>
+#include <functional>
+#include <random>
+#include <vector>
+
+#include <xnnpack.h>
+
+
+class FullyConnectedOperatorTester {
+ public:
+  inline FullyConnectedOperatorTester& input_channels(size_t input_channels) {
+    assert(input_channels >= 1);
+    this->input_channels_ = input_channels;
+    return *this;
+  }
+
+  inline size_t input_channels() const {
+    return this->input_channels_;
+  }
+
+  inline FullyConnectedOperatorTester& output_channels(size_t output_channels) {
+    assert(output_channels >= 1);
+    this->output_channels_ = output_channels;
+    return *this;
+  }
+
+  inline size_t output_channels() const {
+    return this->output_channels_;
+  }
+
+  inline FullyConnectedOperatorTester& batch_size(size_t batch_size) {
+    assert(batch_size >= 1);
+    this->batch_size_ = batch_size;
+    return *this;
+  }
+
+  inline size_t batch_size() const {
+    return this->batch_size_;
+  }
+
+  inline FullyConnectedOperatorTester& input_stride(size_t input_stride) {
+    assert(input_stride >= 1);
+    this->input_stride_ = input_stride;
+    return *this;
+  }
+
+  inline size_t input_stride() const {
+    if (this->input_stride_ == 0) {
+      return input_channels();
+    } else {
+      assert(this->input_stride_ >= input_channels());
+      return this->input_stride_;
+    }
+  }
+
+  inline FullyConnectedOperatorTester& output_stride(size_t output_stride) {
+    assert(output_stride >= 1);
+    this->output_stride_ = output_stride;
+    return *this;
+  }
+
+  inline size_t output_stride() const {
+    if (this->output_stride_ == 0) {
+      return output_channels();
+    } else {
+      assert(this->output_stride_ >= output_channels());
+      return this->output_stride_;
+    }
+  }
+
+  inline FullyConnectedOperatorTester& qmin(uint8_t qmin) {
+    this->qmin_ = qmin;
+    return *this;
+  }
+
+  inline uint8_t qmin() const {
+    return this->qmin_;
+  }
+
+  inline FullyConnectedOperatorTester& qmax(uint8_t qmax) {
+    this->qmax_ = qmax;
+    return *this;
+  }
+
+  inline uint8_t qmax() const {
+    return this->qmax_;
+  }
+
+  inline FullyConnectedOperatorTester& iterations(size_t iterations) {
+    this->iterations_ = iterations;
+    return *this;
+  }
+
+  inline size_t iterations() const {
+    return this->iterations_;
+  }
+
+  void TestQ8() const {
+    std::random_device random_device;
+    auto rng = std::mt19937(random_device());
+    auto s32rng = std::bind(std::uniform_int_distribution<int32_t>(-10000, 10000), rng);
+    auto u8rng = std::bind(std::uniform_int_distribution<uint8_t>(), rng);
+
+    std::vector<uint8_t> input(XNN_EXTRA_BYTES / sizeof(uint8_t) +
+      (batch_size() - 1) * input_stride() + input_channels());
+    std::vector<uint8_t> kernel(output_channels() * input_channels());
+    std::vector<int32_t> bias(output_channels());
+    std::vector<uint8_t> output((batch_size() - 1) * output_stride() + output_channels());
+    std::vector<int32_t> accumulators(batch_size() * output_channels());
+    std::vector<double> output_ref(batch_size() * output_channels());
+
+    const uint8_t input_zero_point = 127;
+    const uint8_t kernel_zero_point = 127;
+
+    for (size_t iteration = 0; iteration < iterations(); iteration++) {
+      std::generate(input.begin(), input.end(), std::ref(u8rng));
+      std::generate(kernel.begin(), kernel.end(), std::ref(u8rng));
+      std::generate(bias.begin(), bias.end(), std::ref(s32rng));
+      std::fill(output.begin(), output.end(), 0xA5);
+      std::fill(accumulators.begin(), accumulators.end(), 0);
+
+      // Compute reference results, without renormalization.
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t oc = 0; oc < output_channels(); oc++) {
+          accumulators[i * output_channels() + oc] = bias[oc];
+        }
+      }
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t oc = 0; oc < output_channels(); oc++) {
+          for (size_t ic = 0; ic < input_channels(); ic++) {
+            accumulators[i * output_channels() + oc] +=
+              (int32_t(input[i * input_stride() + ic]) - int32_t(input_zero_point)) *
+              (int32_t(kernel[oc * input_channels() + ic]) - int32_t(kernel_zero_point));
+          }
+        }
+      }
+
+      // Compute renormalization parameters.
+      const int32_t accumulated_min = *std::min_element(accumulators.cbegin(), accumulators.cend());
+      const int32_t accumulated_max = *std::max_element(accumulators.cbegin(), accumulators.cend());
+
+      const double output_scale = double(uint32_t(accumulated_max - accumulated_min)) / 255.0;
+      const uint8_t output_zero_point = uint8_t(std::max(std::min(
+        lrint(127.5 - 0.5 * double(accumulated_min + accumulated_max) / output_scale),
+        long(std::numeric_limits<uint8_t>::max())), long(std::numeric_limits<uint8_t>::min())));
+
+      // Renormalize reference results.
+      std::transform(accumulators.cbegin(), accumulators.cend(), output_ref.begin(),
+        [this, output_scale, output_zero_point](int32_t x) -> double {
+          return std::max<double>(std::min<double>(double(x) / output_scale, double(qmax()) - output_zero_point), double(qmin()) - output_zero_point);
+        });
+
+      // Create, setup, run, and destroy Fully Connected operator.
+      ASSERT_EQ(xnn_status_success, xnn_initialize());
+      xnn_operator_t fully_connected_op = nullptr;
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_create_fully_connected_nc_q8(
+          input_channels(), output_channels(),
+          input_stride(), output_stride(),
+          input_zero_point, 1.0f /* input scale */,
+          kernel_zero_point, 1.0f /* kernel scale */,
+          kernel.data(), bias.data(),
+          output_zero_point, output_scale, qmin(), qmax(),
+          0, &fully_connected_op));
+
+      // Smart pointer to automatically delete fully_connected_op.
+      std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_setup_fully_connected_nc_q8(
+          fully_connected_op,
+          batch_size(),
+          input.data(), output.data(),
+          nullptr /* thread pool */));
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
+
+      // Verify results.
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t c = 0; c < output_channels(); c++) {
+          ASSERT_LE(int32_t(output[i * output_stride() + c]), int32_t(qmax()))
+            << "batch index = " << i << ", channel = " << c;
+          ASSERT_GE(int32_t(output[i * output_stride() + c]), int32_t(qmin()))
+            << "batch index = " << i << ", channel = " << c;
+          ASSERT_NEAR(
+              output_ref[i * output_channels() + c],
+              double(output[i * output_stride() + c]) - double(output_zero_point),
+              0.9)
+            << "batch index = " << i << ", channel = " << c;
+        }
+      }
+    }
+  }
+
+  void TestF32() const {
+    std::random_device random_device;
+    auto rng = std::mt19937(random_device());
+    auto f32rng = std::bind(std::uniform_real_distribution<float>(0.1f, 1.0f), rng);
+
+    std::vector<float> input(XNN_EXTRA_BYTES / sizeof(float) +
+      (batch_size() - 1) * input_stride() + input_channels());
+    std::vector<float> kernel(output_channels() * input_channels());
+    std::vector<float> bias(output_channels());
+    std::vector<float> output((batch_size() - 1) * output_stride() + output_channels());
+    std::vector<float> output_ref(batch_size() * output_channels());
+
+    for (size_t iteration = 0; iteration < iterations(); iteration++) {
+      std::generate(input.begin(), input.end(), std::ref(f32rng));
+      std::generate(kernel.begin(), kernel.end(), std::ref(f32rng));
+      std::generate(bias.begin(), bias.end(), std::ref(f32rng));
+      std::fill(output.begin(), output.end(), nanf(""));
+
+      // Compute reference results, without renormalization.
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t oc = 0; oc < output_channels(); oc++) {
+          output_ref[i * output_channels() + oc] = bias[oc];
+        }
+      }
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t oc = 0; oc < output_channels(); oc++) {
+          for (size_t ic = 0; ic < input_channels(); ic++) {
+            output_ref[i * output_channels() + oc] +=
+              input[i * input_stride() + ic] * kernel[oc * input_channels() + ic];
+          }
+        }
+      }
+
+      // Compute clamping parameters.
+      const int32_t accumulated_min = *std::min_element(output_ref.cbegin(), output_ref.cend());
+      const int32_t accumulated_max = *std::max_element(output_ref.cbegin(), output_ref.cend());
+
+      const float output_min = accumulated_min + (accumulated_max - accumulated_min) / 255.0f * float(qmin());
+      const float output_max = accumulated_max - (accumulated_max - accumulated_min) / 255.0f * float(255 - qmax());
+
+      // Clamp reference results.
+      for (float& value : output_ref) {
+        value = std::max(std::min(value, output_max), output_min);
+      }
+
+      // Create, setup, run, and destroy Fully Connected operator.
+      ASSERT_EQ(xnn_status_success, xnn_initialize());
+      xnn_operator_t fully_connected_op = nullptr;
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_create_fully_connected_nc_f32(
+          input_channels(), output_channels(),
+          input_stride(), output_stride(),
+          kernel.data(), bias.data(),
+          output_min, output_max,
+          0, &fully_connected_op));
+
+      // Smart pointer to automatically delete fully_connected_op.
+      std::unique_ptr<xnn_operator, decltype(&xnn_delete_operator)> auto_fully_connected_op(fully_connected_op, xnn_delete_operator);
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_setup_fully_connected_nc_f32(
+          fully_connected_op,
+          batch_size(),
+          input.data(), output.data(),
+          nullptr /* thread pool */));
+
+      ASSERT_EQ(xnn_status_success,
+        xnn_run_operator(fully_connected_op, nullptr /* thread pool */));
+
+      // Verify results.
+      for (size_t i = 0; i < batch_size(); i++) {
+        for (size_t c = 0; c < output_channels(); c++) {
+          ASSERT_LE(output[i * output_stride() + c], output_max)
+            << "batch index = " << i << ", channel = " << c;
+          ASSERT_GE(output[i * output_stride() + c], output_min)
+            << "batch index = " << i << ", channel = " << c;
+          ASSERT_NEAR(
+              output_ref[i * output_channels() + c],
+              output[i * output_stride() + c],
+              1.0e-4 * std::abs(output_ref[i * output_channels() + c]))
+            << "batch index = " << i << ", channel = " << c;
+        }
+      }
+    }
+  }
+
+ private:
+  size_t input_channels_{1};
+  size_t input_stride_{0};
+  size_t output_channels_{1};
+  size_t output_stride_{0};
+  size_t batch_size_{1};
+  uint8_t qmin_{0};
+  uint8_t qmax_{255};
+  size_t iterations_{1};
+};