ND elementwise Multiply operator with broadcasting support

PiperOrigin-RevId: 280801113
diff --git a/src/init.c b/src/init.c
index 9ff1fa9..72fecb9 100644
--- a/src/init.c
+++ b/src/init.c
@@ -206,6 +206,12 @@
       .channel_tile = 8,
     };
     xnn_params.f32.vadd = (xnn_vadd_ukernel_function) xnn_f32_vadd_ukernel__neon_x8;
+    xnn_params.f32.vmul = (struct vbinop_parameters) {
+      .op_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmul_ukernel__neon_x8,
+      .opc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__neon_x8,
+      .ropc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__neon_x8,
+      .element_tile = 8,
+    };
     xnn_params.f32.vmulcaddc = (struct vmulcaddc_parameters) {
       .ukernel = (xnn_vmulcaddc_ukernel_function) xnn_f32_vmulcaddc_ukernel_c4__neon_2x,
       .channel_tile = 4,
@@ -463,6 +469,12 @@
       .channel_tile = 8,
     };
     xnn_params.f32.vadd = (xnn_vadd_ukernel_function) xnn_f32_vadd_ukernel__neon_x8;
+    xnn_params.f32.vmul = (struct vbinop_parameters) {
+      .op_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmul_ukernel__neon_x8,
+      .opc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__neon_x8,
+      .ropc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__neon_x8,
+      .element_tile = 8,
+    };
     xnn_params.f32.vmulcaddc = (struct vmulcaddc_parameters) {
       .ukernel = (xnn_vmulcaddc_ukernel_function) xnn_f32_vmulcaddc_ukernel_c4__neonfma_2x,
       .channel_tile = 4,
@@ -674,6 +686,12 @@
       .channel_tile = 8,
     };
     xnn_params.f32.vadd = (xnn_vadd_ukernel_function) xnn_f32_vadd_ukernel__sse_x8;
+    xnn_params.f32.vmul = (struct vbinop_parameters) {
+      .op_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmul_ukernel__sse_x8,
+      .opc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__sse_x8,
+      .ropc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__sse_x8,
+      .element_tile = 8,
+    };
     xnn_params.f32.vmulcaddc = (struct vmulcaddc_parameters) {
       .ukernel = (xnn_vmulcaddc_ukernel_function) xnn_f32_vmulcaddc_ukernel_c4__sse_2x,
       .channel_tile = 4,
@@ -869,6 +887,12 @@
       .channel_tile = 8,
     };
     xnn_params.f32.vadd = (xnn_vadd_ukernel_function) xnn_f32_vadd_ukernel__psimd_x8;
+    xnn_params.f32.vmul = (struct vbinop_parameters) {
+      .op_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmul_ukernel__psimd_x8,
+      .opc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__psimd_x8,
+      .ropc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__psimd_x8,
+      .element_tile = 8,
+    };
     xnn_params.f32.vmulcaddc = (struct vmulcaddc_parameters) {
       .ukernel = (xnn_vmulcaddc_ukernel_function) xnn_f32_vmulcaddc_ukernel_c4__psimd_2x,
       .channel_tile = 4,
@@ -1039,6 +1063,12 @@
       .channel_tile = 4,
     };
     xnn_params.f32.vadd = (xnn_vadd_ukernel_function) xnn_f32_vadd_ukernel__scalar_x4;
+    xnn_params.f32.vmul = (struct vbinop_parameters) {
+      .op_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmul_ukernel__scalar_x4,
+      .opc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__scalar_x4,
+      .ropc_ukernel = (xnn_vbinop_ukernel_function) xnn_f32_vmulc_ukernel__scalar_x4,
+      .element_tile = 8,
+    };
     xnn_params.f32.vmulcaddc = (struct vmulcaddc_parameters) {
       .ukernel = (xnn_vmulcaddc_ukernel_function) xnn_f32_vmulcaddc_ukernel_c1__scalar_2x,
       .channel_tile = 1,
diff --git a/src/multiply.c b/src/multiply.c
new file mode 100644
index 0000000..a49646c
--- /dev/null
+++ b/src/multiply.c
@@ -0,0 +1,241 @@
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+#include <math.h>
+#include <stddef.h>
+#include <stdint.h>
+#include <stdlib.h>
+
+#include <xnnpack.h>
+#include <xnnpack/allocator.h>
+#include <xnnpack/log.h>
+#include <xnnpack/operator.h>
+#include <xnnpack/params-init.h>
+#include <xnnpack/params.h>
+
+
+enum xnn_status xnn_create_multiply_nd_f32(
+    float output_min,
+    float output_max,
+    uint32_t flags,
+    xnn_operator_t* multiply_op_out)
+{
+  xnn_operator_t multiply_op = NULL;
+  enum xnn_status status = xnn_status_uninitialized;
+
+  if (!xnn_params.initialized) {
+    xnn_log_error("failed to create Multiply operator: XNNPACK is not initialized");
+    goto error;
+  }
+
+  status = xnn_status_invalid_parameter;
+
+  if (isnan(output_min)) {
+    xnn_log_error(
+      "failed to create Multiply operator with NaN output lower bound: lower bound must be non-NaN");
+    goto error;
+  }
+
+  if (isnan(output_max)) {
+    xnn_log_error(
+      "failed to create Multiply operator with NaN output upper bound: upper bound must be non-NaN");
+    goto error;
+  }
+
+  if (output_min >= output_max) {
+    xnn_log_error(
+      "failed to create Multiply operator with [%.7g, %.7g] output range: lower bound must be below upper bound",
+      output_min, output_max);
+    goto error;
+  }
+
+  status = xnn_status_out_of_memory;
+
+  multiply_op = xnn_allocate_zero_memory(sizeof(struct xnn_operator));
+  if (multiply_op == NULL) {
+    xnn_log_error("failed to allocate %zu bytes for Multiply operator descriptor", sizeof(struct xnn_operator));
+    goto error;
+  }
+
+  multiply_op->f32_output_params = xnn_init_f32_output_params(output_min, output_max);
+
+  multiply_op->type = xnn_operator_type_multiply_f32;
+  multiply_op->ukernel.type = xnn_ukernel_type_multiply;
+
+  multiply_op->state = xnn_run_state_invalid;
+
+  *multiply_op_out = multiply_op;
+  return xnn_status_success;
+
+error:
+  xnn_delete_operator(multiply_op);
+  return status;
+}
+
+enum xnn_status xnn_setup_multiply_nd_f32(
+    xnn_operator_t multiply_op,
+    size_t num_input1_dims,
+    const size_t* input1_shape,
+    size_t num_input2_dims,
+    const size_t* input2_shape,
+    const float* input1,
+    const float* input2,
+    float* output,
+    pthreadpool_t threadpool)
+{
+  if (multiply_op->type != xnn_operator_type_multiply_f32) {
+    xnn_log_error("failed to setup Multiply (F32) operator: operator type mismatch");
+    return xnn_status_invalid_parameter;
+  }
+  multiply_op->state = xnn_run_state_invalid;
+
+  if (!xnn_params.initialized) {
+    xnn_log_error("failed to setup Multiply operator: XNNPACK is not initialized");
+    return xnn_status_uninitialized;
+  }
+
+  if (max(num_input1_dims, num_input2_dims) > 4) {
+    xnn_log_error(
+      "failed to setup Multiply operator with %zu and %zu dimensions in input shapes: "
+      "the number of input dimensions must not exceed 4",
+      num_input1_dims, num_input2_dims);
+    return xnn_status_unsupported_parameter;
+  }
+
+  for (size_t i = 0; i < num_input1_dims; i++) {
+    if (input1_shape[i] == 0) {
+      xnn_log_error("failed to setup Multiply operator: shape dimension #%zu of input #1 is zero", i);
+      return xnn_status_invalid_parameter;
+    }
+  }
+
+  for (size_t i = 0; i < num_input2_dims; i++) {
+    if (input2_shape[i] == 0) {
+      xnn_log_error("failed to setup Multiply operator: shape dimension #%zu of input #2 is zero", i);
+      return xnn_status_invalid_parameter;
+    }
+  }
+
+  size_t num_compressed_dims = 0;
+  size_t compressed_input1_shape[XNN_MAX_TENSOR_DIMS];
+  size_t compressed_input2_shape[XNN_MAX_TENSOR_DIMS];
+  size_t compressed_output_shape[XNN_MAX_TENSOR_DIMS];
+  for (size_t i = 0; i < XNN_MAX_TENSOR_DIMS; i++) {
+    compressed_input1_shape[i] = 1;
+    compressed_input2_shape[i] = 1;
+    compressed_output_shape[i] = 1;
+  }
+  bool broadcast_input1 = false;
+  bool broadcast_input2 = false;
+  bool first_nonunit = true;
+  const size_t num_common_dims = min(num_input1_dims, num_input2_dims);
+  for (size_t i = 1; i <= num_common_dims; i++) {
+    const size_t input1_dim = input1_shape[num_input1_dims - i];
+    const size_t input2_dim = input2_shape[num_input2_dims - i];
+    if (input1_dim == 1 && input2_dim == 1) {
+      continue;
+    }
+    assert(!broadcast_input1 || !broadcast_input2);
+
+    if (input1_dim == 1) {
+      if (!broadcast_input1) {
+        broadcast_input1 = true;
+        broadcast_input2 = false;
+        num_compressed_dims++;
+      }
+      compressed_input2_shape[num_compressed_dims - 1] *= input2_dim;
+      compressed_output_shape[num_compressed_dims - 1] *= input2_dim;
+    } else if (input2_dim == 1) {
+      if (!broadcast_input2) {
+        broadcast_input1 = false;
+        broadcast_input2 = true;
+        num_compressed_dims++;
+      }
+      compressed_input1_shape[num_compressed_dims - 1] *= input1_dim;
+      compressed_output_shape[num_compressed_dims - 1] *= input1_dim;
+    } else if (input1_dim == input2_dim) {
+      if (broadcast_input1 || broadcast_input2 || first_nonunit) {
+        broadcast_input1 = false;
+        broadcast_input2 = false;
+        num_compressed_dims++;
+      }
+      compressed_input1_shape[num_compressed_dims - 1] *= input1_dim;
+      compressed_input2_shape[num_compressed_dims - 1] *= input1_dim;
+      compressed_output_shape[num_compressed_dims - 1] *= input1_dim;
+    } else {
+      xnn_log_error("failed to setup Multiply operator: "
+        "shape dimension #%zu of input1 (%zu) does not match shape dimension #%zu of input2 (%zu)",
+        num_input1_dims - i, input1_dim, num_input2_dims - i, input2_dim);
+      return xnn_status_invalid_parameter;
+    }
+    first_nonunit = false;
+  }
+  if (num_input1_dims > num_input2_dims) {
+    if (!broadcast_input2) {
+      num_compressed_dims++;
+    }
+    for (size_t i = 0; i < num_input1_dims - num_input2_dims; i++) {
+      const size_t input1_dim = input1_shape[i];
+      compressed_input1_shape[num_compressed_dims - 1] *= input1_dim;
+      compressed_output_shape[num_compressed_dims - 1] *= input1_dim;
+    }
+  } else if (num_input2_dims > num_input1_dims) {
+    if (!broadcast_input1) {
+      num_compressed_dims++;
+    }
+    for (size_t i = 0; i < num_input2_dims - num_input1_dims; i++) {
+      const size_t input2_dim = input2_shape[i];
+      compressed_input2_shape[num_compressed_dims - 1] *= input2_dim;
+      compressed_output_shape[num_compressed_dims - 1] *= input2_dim;
+    }
+  }
+  num_compressed_dims = max(num_compressed_dims, 1);
+
+  multiply_op->context.elementwise_binary = (struct elementwise_binary_context) {
+    .a = input1,
+    .b = input2,
+    .y = output,
+    .elements = compressed_output_shape[0] * sizeof(float),
+    .params.f32 = multiply_op->f32_output_params,
+  };
+  const size_t* compressed_a_shape = compressed_input1_shape;
+  const size_t* compressed_b_shape = compressed_input2_shape;
+  if (compressed_input1_shape[0] == 1) {
+    multiply_op->context.elementwise_binary.ukernel = xnn_params.f32.vmul.ropc_ukernel;
+    multiply_op->context.elementwise_binary.a = input2;
+    multiply_op->context.elementwise_binary.b = input1;
+    compressed_a_shape = compressed_input2_shape;
+    compressed_b_shape = compressed_input1_shape;
+  } else if (compressed_input2_shape[0] == 1) {
+    multiply_op->context.elementwise_binary.ukernel = xnn_params.f32.vmul.opc_ukernel;
+  } else if (compressed_input1_shape[0] == compressed_input2_shape[0]) {
+    multiply_op->context.elementwise_binary.ukernel = xnn_params.f32.vmul.op_ukernel;
+  }
+  size_t a_stride = compressed_a_shape[0], b_stride = compressed_b_shape[0], y_stride = compressed_output_shape[0];
+  for (size_t i = 1; i < num_compressed_dims; i++) {
+    if (compressed_a_shape[i] != 1) {
+      multiply_op->context.elementwise_binary.a_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = a_stride * sizeof(float);
+    }
+    if (compressed_b_shape[i] != 1) {
+      multiply_op->context.elementwise_binary.b_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = b_stride * sizeof(float);
+    }
+    multiply_op->context.elementwise_binary.y_stride[XNN_MAX_TENSOR_DIMS - 1 - i] = y_stride * sizeof(float);
+    a_stride *= compressed_a_shape[i];
+    b_stride *= compressed_b_shape[i];
+    y_stride *= compressed_output_shape[i];
+  }
+
+  multiply_op->compute.type = xnn_parallelization_type_3d_tile_2d;
+  multiply_op->compute.task_3d_tile_2d = (pthreadpool_task_3d_tile_2d_t) xnn_compute_elementwise_binary_3d;
+  multiply_op->compute.range[0] = compressed_output_shape[3];
+  multiply_op->compute.range[1] = compressed_output_shape[2];
+  multiply_op->compute.range[2] = compressed_output_shape[1];
+  multiply_op->compute.tile[0] = 1;
+  multiply_op->compute.tile[1] = 1;
+  multiply_op->state = xnn_run_state_ready;
+
+  return xnn_status_success;
+}
diff --git a/src/operator-run.c b/src/operator-run.c
index 6be0527..b331521 100644
--- a/src/operator-run.c
+++ b/src/operator-run.c
@@ -562,6 +562,23 @@
   context->ukernel(size, a, b, y, &context->params);
 }
 
+void xnn_compute_elementwise_binary_3d(
+    const struct elementwise_binary_context context[restrict static 1],
+    size_t i, size_t j, size_t k,
+    size_t j_range, size_t k_range)
+{
+  assert(j_range == 1);
+  assert(k_range == 1);
+
+  const void* a = (const void*) ((uintptr_t) context->a +
+    i * context->a_stride[0] + j * context->a_stride[1] + k * context->a_stride[2]);
+  const void* b = (const void*) ((uintptr_t) context->b +
+    i * context->b_stride[0] + j * context->b_stride[1] + k * context->b_stride[2]);
+  void* y = (void*) ((uintptr_t) context->y +
+    i * context->y_stride[0] + j * context->y_stride[1] + k * context->y_stride[2]);
+  context->ukernel(context->elements, a, b, y, &context->params);
+}
+
 void xnn_compute_channel_shuffle_fixed(
     const struct channel_shuffle_context context[restrict static 1],
     size_t index)
diff --git a/src/xnnpack/compute.h b/src/xnnpack/compute.h
index 3397153..c87b143 100644
--- a/src/xnnpack/compute.h
+++ b/src/xnnpack/compute.h
@@ -569,6 +569,27 @@
       size_t size);
 #endif
 
+struct elementwise_binary_context {
+  const void* a;
+  size_t a_stride[XNN_MAX_TENSOR_DIMS - 1];
+  const void* b;
+  size_t b_stride[XNN_MAX_TENSOR_DIMS - 1];
+  void* y;
+  size_t y_stride[XNN_MAX_TENSOR_DIMS - 1];
+  size_t elements;
+  union {
+    union xnn_q8_add_params q8;
+    union xnn_f32_output_params f32;
+  } params;
+  xnn_vbinop_ukernel_function ukernel;
+};
+
+#ifndef __cplusplus
+  XNN_PRIVATE void xnn_compute_elementwise_binary_3d(
+      const struct elementwise_binary_context context[restrict static 1],
+      size_t i, size_t j, size_t k, size_t j_range, size_t k_range);
+#endif
+
 struct channel_shuffle_context {
   const void* x;
   size_t x_stride;
diff --git a/src/xnnpack/operator.h b/src/xnnpack/operator.h
index 6f3c6fa..ffe9e3a 100644
--- a/src/xnnpack/operator.h
+++ b/src/xnnpack/operator.h
@@ -32,6 +32,7 @@
   xnn_ukernel_type_igemm,
   xnn_ukernel_type_lut,
   xnn_ukernel_type_max_pooling,
+  xnn_ukernel_type_multiply,
   xnn_ukernel_type_pad,
   xnn_ukernel_type_pixelwise_average_pooling,
   xnn_ukernel_type_prelu,
@@ -69,6 +70,7 @@
   xnn_operator_type_leaky_relu_q8,
   xnn_operator_type_max_pooling_f32,
   xnn_operator_type_max_pooling_u8,
+  xnn_operator_type_multiply_f32,
   xnn_operator_type_prelu_f32,
   xnn_operator_type_resize_bilinear_f32,
   xnn_operator_type_sigmoid_f32,
@@ -256,6 +258,7 @@
     struct dconv2d_context dconv2d;
     struct dwconv2d_context dwconv2d;
     struct dwconv_context dwconv;
+    struct elementwise_binary_context elementwise_binary;
     struct gemm_context gemm;
     struct global_average_pooling_context global_average_pooling;
     struct global_average_pooling_spnchw_context global_average_pooling_spnchw;
diff --git a/src/xnnpack/params.h b/src/xnnpack/params.h
index b40feef..028e3ba 100644
--- a/src/xnnpack/params.h
+++ b/src/xnnpack/params.h
@@ -1187,6 +1187,15 @@
   uint8_t log2_sr;
 };
 
+struct vbinop_parameters {
+  xnn_vbinop_ukernel_function op_ukernel;
+  xnn_vbinop_ukernel_function opc_ukernel;
+  xnn_vbinop_ukernel_function ropc_ukernel;
+  // Number of elements in a tile.
+  // For best efficiency, micro-kernel must process a multiple of this number of elements in each call.
+  uint8_t element_tile;
+};
+
 struct spmm_parameters {
   xnn_spmm_ukernel_function ukernel;
   // Number of M-dimension elements in a tile.
@@ -1345,6 +1354,7 @@
     xnn_univector_ukernel_function sigmoid;
     struct prelu_parameters prelu;
     xnn_vadd_ukernel_function vadd;
+    struct vbinop_parameters vmul;
     struct vmulcaddc_parameters vmulcaddc;
     // Sparse Matrix-Dense Matrix Multiplication (NR=1 block).
     struct spmm_parameters spmm;