Evaluation stub for SSE2 EXPM1MINUS with degree-5 polynomial approximation

PiperOrigin-RevId: 343603082
diff --git a/BUILD.bazel b/BUILD.bazel
index 33bb87d..476ed00 100644
--- a/BUILD.bazel
+++ b/BUILD.bazel
@@ -2135,6 +2135,7 @@
     "src/math/exp-sse2-rr2-lut64-p2.c",
     "src/math/exp-sse2-rr2-p5.c",
     "src/math/expminus-sse2-rr2-p5.c",
+    "src/math/expm1minus-sse2-rr2-p5.c",
     "src/math/expm1minus-sse2-rr2-p6.c",
     "src/math/roundd-sse2-cvt.c",
     "src/math/roundne-sse2-cvt.c",
diff --git a/CMakeLists.txt b/CMakeLists.txt
index d42e49e..1b8bc30 100755
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1569,6 +1569,7 @@
   src/math/exp-sse2-rr2-lut64-p2.c
   src/math/exp-sse2-rr2-p5.c
   src/math/expminus-sse2-rr2-p5.c
+  src/math/expm1minus-sse2-rr2-p5.c
   src/math/expm1minus-sse2-rr2-p6.c
   src/math/roundd-sse2-cvt.c
   src/math/roundne-sse2-cvt.c
diff --git a/eval/f32-expm1minus.cc b/eval/f32-expm1minus.cc
index e69ba8f..7b08824 100644
--- a/eval/f32-expm1minus.cc
+++ b/eval/f32-expm1minus.cc
@@ -53,10 +53,14 @@
 }
 
 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  static void f32_expm1minus__sse2_rr2_p5(benchmark::State& state) {
+    Expm1Error(state, xnn_math_f32_expm1minus__sse2_rr2_p5, 4);
+  }
   static void f32_expm1minus__sse2_rr2_p6(benchmark::State& state) {
     Expm1Error(state, xnn_math_f32_expm1minus__sse2_rr2_p6, 4);
   }
 
+  BENCHMARK(f32_expm1minus__sse2_rr2_p5)->Unit(benchmark::kMillisecond)->Iterations(1);
   BENCHMARK(f32_expm1minus__sse2_rr2_p6)->Unit(benchmark::kMillisecond)->Iterations(1);
 #endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
 
diff --git a/src/math/expm1minus-sse2-rr2-p5.c b/src/math/expm1minus-sse2-rr2-p5.c
new file mode 100644
index 0000000..4a99959
--- /dev/null
+++ b/src/math/expm1minus-sse2-rr2-p5.c
@@ -0,0 +1,90 @@
+// Copyright 2020 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+#include <stddef.h>
+
+#include <emmintrin.h>
+
+#include <xnnpack/math-stubs.h>
+
+
+void xnn_math_f32_expm1minus__sse2_rr2_p5(
+    size_t n,
+    const float* input,
+    float* output)
+{
+  assert(n % (4 * sizeof(float)) == 0);
+
+  // The largest x for which expm1f(x) is saturated at -1.0f.
+  const __m128 vsat_cutoff = _mm_set1_ps(-0x1.154246p+4f);
+  const __m128 vmagic_bias = _mm_set1_ps(0x1.8000FEp23f);
+  const __m128 vlog2e = _mm_set1_ps(0x1.715476p+0f);
+  // Last 7 bits are zeroes
+  const __m128 vminus_ln2_hi = _mm_set1_ps(-0x1.62E400p-1f);
+  const __m128 vminus_ln2_lo = _mm_set1_ps(-0x1.7F7D1Cp-20f);
+
+  const __m128 vc5 = _mm_set1_ps(0x1.113780p-7f);
+  const __m128 vc4 = _mm_set1_ps(0x1.5704DCp-5f);
+  const __m128 vc3 = _mm_set1_ps(0x1.555634p-3f);
+  const __m128 vc2 = _mm_set1_ps(0x1.FFFE70p-2f);
+
+  const __m128 vone = _mm_set1_ps(1.0f);
+
+  for (; n != 0; n -= 4 * sizeof(float)) {
+    __m128 vx = _mm_loadu_ps(input);
+
+    // The function saturates at -1 for large negative inputs: expm1f(x) == -1.0f for x <= sat_cutoff ~= -17.328680.
+    // To guarantee this behaviour, we clip input at sat_cutoff, and leverage the fact that for our implementation
+    // expm1f(sat_cutoff) == -1.0f. The order of operands in the [V]MAXPS instruction matters: it ensures that NaN
+    // inputs are passed unchanged.
+    vx = _mm_max_ps(vsat_cutoff, vx);
+
+    // Compute reduced argument n := round(x / log(2)).
+    // We do it by adding a large number (magic bias), which cause rounding of the result to integer, then subtracing
+    // the large number back. The trick with adding large number is valid only within certain bounds
+    // (|x / log(2)| <= 2**22, i.e. |x| <= 0x1.62E43p+21 = 2907270.0), but that is acceptable, because inputs x are
+    // restricted to [-17.328680, 0].
+    // Note that addition-subtraction of the large number doesn't cause overflow for inputs in this range.
+    __m128 vn = _mm_add_ps(_mm_mul_ps(vx, vlog2e), vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for valid inputs, i.e.
+    // -17.328680 <= x <= 0.0, and -25 <= n <= 0 accordingly.
+    // For NaN inputs, s would have zero mantissa and can have arbitrary sign and exponent, depending on the input
+    // NaN payload. In these cases, n and t are NaNs with the same payload as input while s is non-NaN, and thus
+    // input payload would be propagated in all computations.
+    const __m128 vs = _mm_castsi128_ps(_mm_slli_epi32(_mm_castps_si128(vn), 23));
+
+    // Subtract the large number back to get final n := round(x / log(2)).
+    vn = _mm_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := x - n * log(2).
+    // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
+    __m128 vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_hi), vx);
+    vt = _mm_add_ps(_mm_mul_ps(vn, vminus_ln2_lo), vt);
+
+    // Compute degree-5 polynomial approximation for exp(t) - 1 on [-log(2)/2, log(2)/2].
+    //   P(t) = t * (1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //        = t + t * (t * (c2 + t * (c3 + t * (c4 + t * c5)))) = t + t * p
+    __m128 vp = _mm_add_ps(_mm_mul_ps(vc5, vt), vc4);
+    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc3);
+    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vc2);
+    vp = _mm_mul_ps(vp, vt);
+
+    // Reconstruct the final f value:
+    //   f = s * (1 + t * (1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))) - 1
+    //     = (s - 1) + s * (t + t * p)
+    //     = (s - 1) + ((t * s) + (t * s) * p)
+    vt = _mm_mul_ps(vt, vs);
+    const __m128 vsm1 = _mm_sub_ps(vs, vone);
+    vp = _mm_add_ps(_mm_mul_ps(vp, vt), vt);
+    __m128 vf = _mm_add_ps(vp, vsm1);
+
+    _mm_storeu_ps(output, vf);
+
+    input += 4;
+    output += 4;
+  }
+}
diff --git a/src/xnnpack/math-stubs.h b/src/xnnpack/math-stubs.h
index 2ccf5d4..26a81b9 100644
--- a/src/xnnpack/math-stubs.h
+++ b/src/xnnpack/math-stubs.h
@@ -106,6 +106,7 @@
 DECLARE_F32_UNARY_MATH_FUNCTION(xnn_math_f32_expminus__scalar_rr2_lut64_p2)
 DECLARE_F32_UNARY_MATH_FUNCTION(xnn_math_f32_expminus__scalar_rr2_lut2048_p1)
 
+DECLARE_F32_UNARY_MATH_FUNCTION(xnn_math_f32_expm1minus__sse2_rr2_p5)
 DECLARE_F32_UNARY_MATH_FUNCTION(xnn_math_f32_expm1minus__sse2_rr2_p6)
 
 DECLARE_F32_EXT_UNARY_MATH_FUNCTION(xnn_math_f32_extexp__avx2_p5)