F32 Sigmoid micro-kernels in AVX2 implementation

PiperOrigin-RevId: 288397166
diff --git a/BUILD.bazel b/BUILD.bazel
index eebf5cc..5d2c30b 100644
--- a/BUILD.bazel
+++ b/BUILD.bazel
@@ -1076,6 +1076,36 @@
     "src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc2.c",
     "src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc3.c",
     "src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc6.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c",
+    "src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c",
     "src/f32-vscaleexpminusmax/gen/avx2-p5-x8.c",
     "src/f32-vscaleexpminusmax/gen/avx2-p5-x16.c",
     "src/f32-vscaleexpminusmax/gen/avx2-p5-x24.c",
diff --git a/CMakeLists.txt b/CMakeLists.txt
index c39a2b2..944f4a6 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1068,6 +1068,36 @@
   src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc2.c
   src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc3.c
   src/f32-raddstoreexpminusmax/gen/avx2-p5-x96-acc6.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c
+  src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c
   src/f32-vscaleexpminusmax/gen/avx2-p5-x8.c
   src/f32-vscaleexpminusmax/gen/avx2-p5-x16.c
   src/f32-vscaleexpminusmax/gen/avx2-p5-x24.c
diff --git a/bench/f32-sigmoid.cc b/bench/f32-sigmoid.cc
index e712ee3..56def38 100644
--- a/bench/f32-sigmoid.cc
+++ b/bench/f32-sigmoid.cc
@@ -432,6 +432,129 @@
 #endif  // XNN_ARCH_ARM || XNN_ARCH_ARM64
 
 #if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x8, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x16, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x24, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x32, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x40, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x48, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x56, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x64, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x72, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_div_x80, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x8, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x16, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x24, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x32, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x40, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x48, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x56, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x64, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x72, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr1fma_x80, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x8, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x16, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x24, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x32, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x40, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x48, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x56, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x64, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x72, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+  BENCHMARK_CAPTURE(f32_sigmoid, avx2_p5_nr2fma_x80, xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80)
+    ->RangeMultiplier(10)
+    ->Range(1000, 1000000)
+    ->UseRealTime();
+
   BENCHMARK_CAPTURE(f32_sigmoid, sse2_p5_div_x8, xnn_f32_sigmoid_ukernel__sse2_p5_div_x8)
     ->RangeMultiplier(10)
     ->Range(1000, 1000000)
diff --git a/scripts/generate-f32-sigmoid.sh b/scripts/generate-f32-sigmoid.sh
index 433a1b2..26e4df5 100755
--- a/scripts/generate-f32-sigmoid.sh
+++ b/scripts/generate-f32-sigmoid.sh
@@ -127,6 +127,40 @@
 tools/xngen src/f32-sigmoid/sse-p5-div.c.in -D BATCH_TILE=20 -D BLEND=1 -o src/f32-sigmoid/gen/sse41-p5-div-x20.c
 tools/xngen src/f32-sigmoid/sse-p5-div.c.in -D BATCH_TILE=24 -D BLEND=1 -o src/f32-sigmoid/gen/sse41-p5-div-x24.c
 
+################################### x86 AVX ###################################
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=8  -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=16 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=24 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=32 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=40 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=48 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=56 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=64 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=72 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=80 -D RR_STEPS=1 -D DIV_ALGO=div -o src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c
+
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=8  -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=16 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=24 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=32 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=40 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=48 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=56 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=64 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=72 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=80 -D RR_STEPS=1 -D DIV_ALGO=nr1fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c
+
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=8  -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=16 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=24 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=32 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=40 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=48 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=56 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=64 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=72 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c
+tools/xngen src/f32-sigmoid/avx2-p5.c.in -D BATCH_TILE=80 -D RR_STEPS=1 -D DIV_ALGO=nr2fma -o src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c
+
 #################################### PSIMD ####################################
 tools/xngen src/f32-sigmoid/psimd-p5-div.c.in -D BATCH_TILE=4 -D BLEND=0 -o src/f32-sigmoid/gen/psimd-p5-div-x4.c
 tools/xngen src/f32-sigmoid/psimd-p5-div.c.in -D BATCH_TILE=8 -D BLEND=0 -o src/f32-sigmoid/gen/psimd-p5-div-x8.c
diff --git a/src/f32-sigmoid/avx2-p5.c.in b/src/f32-sigmoid/avx2-p5.c.in
new file mode 100644
index 0000000..2ebfe87
--- /dev/null
+++ b/src/f32-sigmoid/avx2-p5.c.in
@@ -0,0 +1,315 @@
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+$assert BATCH_TILE % 8 == 0
+$assert BATCH_TILE >= 8
+$assert RR_STEPS in [1, 2]
+$assert DIV_ALGO in ["div", "nr1fma", "nr2fma"]
+$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
+$SIMD_TILE = BATCH_TILE // 8
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr${RR_STEPS}_p5_${DIV_ALGO}_x${BATCH_TILE}(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  $if RR_STEPS == 1:
+    const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  $else:
+    const __m256 vminus_ln2_hi = _mm256_set1_ps(-0x1.62E43p-1f);
+    const __m256 vminus_ln2_lo = _mm256_set1_ps(0x1.05C61p-29f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  $if BATCH_TILE > 8:
+    for (; n >= ${BATCH_TILE} * sizeof(float); n -= ${BATCH_TILE} * sizeof(float)) {
+      const __m256 vx${ABC[0]} = _mm256_loadu_ps(x);
+      $for N in range(1, SIMD_TILE):
+        const __m256 vx${ABC[N]} = _mm256_loadu_ps(x + ${N * 8});
+      x += ${BATCH_TILE};
+
+      // General structure of the algorithm:
+      //           / exp(x) / (1 + exp(x)) if x <= 0
+      //   f[x] := 
+      //           \ 1 - f[-x] if x >= 0
+      //
+      // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+      // then replace result with 1 - f[z] if x >= 0.
+      $for N in range(SIMD_TILE):
+        const __m256 vz${ABC[N]} = _mm256_or_ps(vx${ABC[N]}, vsign_mask);
+
+      // Compute reduced argument n := round(z / log(2)).
+      // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+      // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+      // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+      // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+      // the algorithm.
+      $for N in range(SIMD_TILE):
+        __m256 vn${ABC[N]} = _mm256_fmadd_ps(vz${ABC[N]}, vlog2e, vmagic_bias);
+
+      // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+      // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+      $for N in range(SIMD_TILE):
+        const __m256 vs${ABC[N]} = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn${ABC[N]}), 23));
+
+      // Subtract the large number back to get final n := round(z / log(2)).
+      $for N in range(SIMD_TILE):
+        vn${ABC[N]} = _mm256_sub_ps(vn${ABC[N]}, vmagic_bias);
+
+      // Compute reduced argument t := z - n * log(2).
+      $if RR_STEPS == 1:
+        $for N in range(SIMD_TILE):
+          __m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2, vz${ABC[N]});
+      $else:
+        // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
+        $for N in range(SIMD_TILE):
+          __m256 vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2_hi, vz${ABC[N]});
+
+        $for N in range(SIMD_TILE):
+          vt${ABC[N]} = _mm256_fmadd_ps(vn${ABC[N]}, vminus_ln2_lo, vt${ABC[N]});
+
+      // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+      $for N in range(SIMD_TILE):
+        __m256 vp${ABC[N]} = _mm256_fmadd_ps(vc5, vt${ABC[N]}, vc4);
+
+      $for N in range(SIMD_TILE):
+        vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc3);
+
+      $for N in range(SIMD_TILE):
+        vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc2);
+
+      $for N in range(SIMD_TILE):
+        vp${ABC[N]} = _mm256_fmadd_ps(vp${ABC[N]}, vt${ABC[N]}, vc1);
+
+      // Reconstruct the exp(z) value:
+      //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+      //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+      //     = s + (t * s) * p
+      $for N in range(SIMD_TILE):
+        vt${ABC[N]} = _mm256_mul_ps(vt${ABC[N]}, vs${ABC[N]});
+
+      $for N in range(SIMD_TILE):
+        const __m256 ve${ABC[N]} = _mm256_fmadd_ps(vt${ABC[N]}, vp${ABC[N]}, vs${ABC[N]});
+
+      // Denominator of the sigmoid fraction: 1.0 + exp(z)
+      $for N in range(SIMD_TILE):
+        const __m256 vd${ABC[N]} = _mm256_add_ps(ve${ABC[N]}, vone);
+
+      $if DIV_ALGO == "div":
+        // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+        $for N in range(SIMD_TILE):
+          __m256 vf${ABC[N]} = _mm256_div_ps(ve${ABC[N]}, vd${ABC[N]});
+      $else:
+        // Use Newton-Raphson method to compute reciprocal of denominator.
+        // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+        // Thus the reciprocal of the denominator never overflows.
+        $for N in range(SIMD_TILE):
+          __m256 vr${ABC[N]} = _mm256_rcp_ps(vd${ABC[N]});
+
+        $for N in range(SIMD_TILE):
+          vr${ABC[N]} = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr${ABC[N]}, vd${ABC[N]}, vone), vr${ABC[N]}, vr${ABC[N]});
+
+        $if DIV_ALGO == "nr2fma":
+          $for N in range(SIMD_TILE):
+            vr${ABC[N]} = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr${ABC[N]}, vd${ABC[N]}, vone), vr${ABC[N]}, vr${ABC[N]});
+
+        // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+        $for N in range(SIMD_TILE):
+          __m256 vf${ABC[N]} = _mm256_mul_ps(ve${ABC[N]}, vr${ABC[N]});
+
+      // For inputs below denormal cutoff, replace output with +0.0f.
+      // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+      $for N in range(SIMD_TILE):
+        vf${ABC[N]} = _mm256_andnot_ps(_mm256_cmp_ps(vz${ABC[N]}, vdenorm_cutoff, _CMP_LT_OS), vf${ABC[N]});
+
+      // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+      $for N in range(SIMD_TILE):
+        vf${ABC[N]} = _mm256_blendv_ps(_mm256_sub_ps(vone, vf${ABC[N]}), vf${ABC[N]}, vx${ABC[N]});
+
+      _mm256_storeu_ps(y, vf${ABC[0]});
+      $for N in range(1, SIMD_TILE):
+        _mm256_storeu_ps(y + ${N * 8}, vf${ABC[N]});
+      y += ${BATCH_TILE};
+    }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    $if RR_STEPS == 1:
+      __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+    $else:
+      // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
+      __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz);
+      vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    $if DIV_ALGO == "div":
+      // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+      __m256 vf = _mm256_div_ps(ve, vd);
+    $else:
+      // Use Newton-Raphson method to compute reciprocal of denominator.
+      // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+      // Thus the reciprocal of the denominator never overflows.
+      __m256 vr = _mm256_rcp_ps(vd);
+      vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+      $if DIV_ALGO == "nr2fma":
+        vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+      // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+      __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    $if RR_STEPS == 1:
+      __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+    $else:
+      // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
+      __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2_hi, vz);
+      vt = _mm256_fmadd_ps(vn, vminus_ln2_lo, vt);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    $if DIV_ALGO == "div":
+      // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+      __m256 vf = _mm256_div_ps(ve, vd);
+    $else:
+      // Use Newton-Raphson method to compute reciprocal of denominator.
+      // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+      // Thus the reciprocal of the denominator never overflows.
+      __m256 vr = _mm256_rcp_ps(vd);
+      vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+      $if DIV_ALGO == "nr2fma":
+        vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+      // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+      __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c
new file mode 100644
index 0000000..e10049c
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x16.c
@@ -0,0 +1,246 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    x += 16;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    y += 16;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c
new file mode 100644
index 0000000..c588f32
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x24.c
@@ -0,0 +1,263 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    x += 24;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    y += 24;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c
new file mode 100644
index 0000000..a461b4a
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x32.c
@@ -0,0 +1,280 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 32 * sizeof(float); n -= 32 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    x += 32;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    y += 32;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c
new file mode 100644
index 0000000..ffb8371
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x40.c
@@ -0,0 +1,297 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 40 * sizeof(float); n -= 40 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    x += 40;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    y += 40;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c
new file mode 100644
index 0000000..25e4d0c
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x48.c
@@ -0,0 +1,314 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 48 * sizeof(float); n -= 48 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    x += 48;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+    __m256 vf5 = _mm256_div_ps(ve5, vd5);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    y += 48;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c
new file mode 100644
index 0000000..68957bd
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x56.c
@@ -0,0 +1,331 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 56 * sizeof(float); n -= 56 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    x += 56;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+    __m256 vf5 = _mm256_div_ps(ve5, vd5);
+    __m256 vf6 = _mm256_div_ps(ve6, vd6);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    y += 56;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c
new file mode 100644
index 0000000..907cf4b
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x64.c
@@ -0,0 +1,348 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 64 * sizeof(float); n -= 64 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    x += 64;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+    __m256 vf5 = _mm256_div_ps(ve5, vd5);
+    __m256 vf6 = _mm256_div_ps(ve6, vd6);
+    __m256 vf7 = _mm256_div_ps(ve7, vd7);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    y += 64;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c
new file mode 100644
index 0000000..ce7795d
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x72.c
@@ -0,0 +1,365 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 72 * sizeof(float); n -= 72 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    x += 72;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+    __m256 vf5 = _mm256_div_ps(ve5, vd5);
+    __m256 vf6 = _mm256_div_ps(ve6, vd6);
+    __m256 vf7 = _mm256_div_ps(ve7, vd7);
+    __m256 vf8 = _mm256_div_ps(ve8, vd8);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    y += 72;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c
new file mode 100644
index 0000000..fee99ca
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x8.c
@@ -0,0 +1,165 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c
new file mode 100644
index 0000000..76f1104
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-div-x80.c
@@ -0,0 +1,382 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 80 * sizeof(float); n -= 80 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    const __m256 vx9 = _mm256_loadu_ps(x + 72);
+    x += 80;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+    const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+    __m256 vn9 = _mm256_fmadd_ps(vz9, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+    const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+    vn9 = _mm256_sub_ps(vn9, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+    __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vz9);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+    __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+    vt9 = _mm256_mul_ps(vt9, vs9);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+    const __m256 ve9 = _mm256_fmadd_ps(vt9, vp9, vs9);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+    const __m256 vd9 = _mm256_add_ps(ve9, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf0 = _mm256_div_ps(ve0, vd0);
+    __m256 vf1 = _mm256_div_ps(ve1, vd1);
+    __m256 vf2 = _mm256_div_ps(ve2, vd2);
+    __m256 vf3 = _mm256_div_ps(ve3, vd3);
+    __m256 vf4 = _mm256_div_ps(ve4, vd4);
+    __m256 vf5 = _mm256_div_ps(ve5, vd5);
+    __m256 vf6 = _mm256_div_ps(ve6, vd6);
+    __m256 vf7 = _mm256_div_ps(ve7, vd7);
+    __m256 vf8 = _mm256_div_ps(ve8, vd8);
+    __m256 vf9 = _mm256_div_ps(ve9, vd9);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+    vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+    vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    _mm256_storeu_ps(y + 72, vf9);
+    y += 80;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Reconstruct sigmoid(z) = exp(z) / (1.0 + exp(z))
+    __m256 vf = _mm256_div_ps(ve, vd);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c
new file mode 100644
index 0000000..559ccb2
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x16.c
@@ -0,0 +1,268 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    x += 16;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    y += 16;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c
new file mode 100644
index 0000000..7472015
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x24.c
@@ -0,0 +1,287 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    x += 24;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    y += 24;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c
new file mode 100644
index 0000000..b02763e
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x32.c
@@ -0,0 +1,306 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 32 * sizeof(float); n -= 32 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    x += 32;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    y += 32;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c
new file mode 100644
index 0000000..40b4a69
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x40.c
@@ -0,0 +1,325 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 40 * sizeof(float); n -= 40 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    x += 40;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    y += 40;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c
new file mode 100644
index 0000000..d226873
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x48.c
@@ -0,0 +1,344 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 48 * sizeof(float); n -= 48 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    x += 48;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    y += 48;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c
new file mode 100644
index 0000000..50f3d32
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x56.c
@@ -0,0 +1,363 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 56 * sizeof(float); n -= 56 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    x += 56;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    y += 56;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c
new file mode 100644
index 0000000..22d9817
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x64.c
@@ -0,0 +1,382 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 64 * sizeof(float); n -= 64 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    x += 64;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    y += 64;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c
new file mode 100644
index 0000000..3c8b19a
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x72.c
@@ -0,0 +1,401 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 72 * sizeof(float); n -= 72 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    x += 72;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+    __m256 vr8 = _mm256_rcp_ps(vd8);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+    __m256 vf8 = _mm256_mul_ps(ve8, vr8);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    y += 72;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c
new file mode 100644
index 0000000..594dc8f
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x8.c
@@ -0,0 +1,177 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c
new file mode 100644
index 0000000..5e29a80
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr1fma-x80.c
@@ -0,0 +1,420 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 80 * sizeof(float); n -= 80 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    const __m256 vx9 = _mm256_loadu_ps(x + 72);
+    x += 80;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+    const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+    __m256 vn9 = _mm256_fmadd_ps(vz9, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+    const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+    vn9 = _mm256_sub_ps(vn9, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+    __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vz9);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+    __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+    vt9 = _mm256_mul_ps(vt9, vs9);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+    const __m256 ve9 = _mm256_fmadd_ps(vt9, vp9, vs9);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+    const __m256 vd9 = _mm256_add_ps(ve9, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+    __m256 vr8 = _mm256_rcp_ps(vd8);
+    __m256 vr9 = _mm256_rcp_ps(vd9);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+    vr9 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr9, vd9, vone), vr9, vr9);
+
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+    __m256 vf8 = _mm256_mul_ps(ve8, vr8);
+    __m256 vf9 = _mm256_mul_ps(ve9, vr9);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+    vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+    vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    _mm256_storeu_ps(y + 72, vf9);
+    y += 80;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c
new file mode 100644
index 0000000..dde224c
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x16.c
@@ -0,0 +1,272 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 16 * sizeof(float); n -= 16 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    x += 16;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    y += 16;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c
new file mode 100644
index 0000000..f60515e
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x24.c
@@ -0,0 +1,292 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 24 * sizeof(float); n -= 24 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    x += 24;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    y += 24;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c
new file mode 100644
index 0000000..58f8b0c
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x32.c
@@ -0,0 +1,312 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 32 * sizeof(float); n -= 32 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    x += 32;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    y += 32;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c
new file mode 100644
index 0000000..8c66197
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x40.c
@@ -0,0 +1,332 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 40 * sizeof(float); n -= 40 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    x += 40;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    y += 40;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c
new file mode 100644
index 0000000..744d77d
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x48.c
@@ -0,0 +1,352 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 48 * sizeof(float); n -= 48 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    x += 48;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    y += 48;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c
new file mode 100644
index 0000000..b61b3c5
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x56.c
@@ -0,0 +1,372 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 56 * sizeof(float); n -= 56 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    x += 56;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    y += 56;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c
new file mode 100644
index 0000000..72ee291
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x64.c
@@ -0,0 +1,392 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 64 * sizeof(float); n -= 64 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    x += 64;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    y += 64;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c
new file mode 100644
index 0000000..edc2949
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x72.c
@@ -0,0 +1,412 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 72 * sizeof(float); n -= 72 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    x += 72;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+    __m256 vr8 = _mm256_rcp_ps(vd8);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+    __m256 vf8 = _mm256_mul_ps(ve8, vr8);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    y += 72;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c
new file mode 100644
index 0000000..467036a
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x8.c
@@ -0,0 +1,179 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c
new file mode 100644
index 0000000..c95f664
--- /dev/null
+++ b/src/f32-sigmoid/gen/avx2-rr1-p5-nr2fma-x80.c
@@ -0,0 +1,432 @@
+// Auto-generated file. Do not edit!
+//   Template: src/f32-sigmoid/avx2-p5.c.in
+//   Generator: tools/xngen
+//
+// Copyright 2019 Google LLC
+//
+// This source code is licensed under the BSD-style license found in the
+// LICENSE file in the root directory of this source tree.
+
+#include <assert.h>
+
+#include <immintrin.h>
+
+#include <xnnpack/common.h>
+#include <xnnpack/vunary.h>
+
+
+static const int32_t mask_table[14] = {-1, -1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 0, 0};
+
+void xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80(
+    size_t n,
+    const float* x,
+    float* y,
+    const void* params)
+{
+  assert(n % sizeof(float) == 0);
+
+  const __m256 vmagic_bias = _mm256_set1_ps(0x1.8000FEp23f);
+  // The smallest x for which sigmoidf(x) is normalized.
+  // This number is also the smallest x for which expf(x) is normalized.
+  const __m256 vdenorm_cutoff = _mm256_set1_ps(-0x1.5D589Ep+6f);
+  const __m256 vlog2e = _mm256_set1_ps(0x1.715476p+0f);
+  const __m256 vminus_ln2 = _mm256_set1_ps(-0x1.62E43p-1f);
+  const __m256 vone = _mm256_set1_ps(1.0f);
+  const __m256 vsign_mask = _mm256_set1_ps(-0.0f);
+
+  const __m256 vc1 = _mm256_set1_ps(0x1.FFFFF6p-1f);
+  const __m256 vc2 = _mm256_set1_ps(0x1.FFFDC6p-2f);
+  const __m256 vc3 = _mm256_set1_ps(0x1.555A80p-3f);
+  const __m256 vc4 = _mm256_set1_ps(0x1.573A1Ap-5f);
+  const __m256 vc5 = _mm256_set1_ps(0x1.0F9F9Cp-7f);
+
+  for (; n >= 80 * sizeof(float); n -= 80 * sizeof(float)) {
+    const __m256 vx0 = _mm256_loadu_ps(x);
+    const __m256 vx1 = _mm256_loadu_ps(x + 8);
+    const __m256 vx2 = _mm256_loadu_ps(x + 16);
+    const __m256 vx3 = _mm256_loadu_ps(x + 24);
+    const __m256 vx4 = _mm256_loadu_ps(x + 32);
+    const __m256 vx5 = _mm256_loadu_ps(x + 40);
+    const __m256 vx6 = _mm256_loadu_ps(x + 48);
+    const __m256 vx7 = _mm256_loadu_ps(x + 56);
+    const __m256 vx8 = _mm256_loadu_ps(x + 64);
+    const __m256 vx9 = _mm256_loadu_ps(x + 72);
+    x += 80;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz0 = _mm256_or_ps(vx0, vsign_mask);
+    const __m256 vz1 = _mm256_or_ps(vx1, vsign_mask);
+    const __m256 vz2 = _mm256_or_ps(vx2, vsign_mask);
+    const __m256 vz3 = _mm256_or_ps(vx3, vsign_mask);
+    const __m256 vz4 = _mm256_or_ps(vx4, vsign_mask);
+    const __m256 vz5 = _mm256_or_ps(vx5, vsign_mask);
+    const __m256 vz6 = _mm256_or_ps(vx6, vsign_mask);
+    const __m256 vz7 = _mm256_or_ps(vx7, vsign_mask);
+    const __m256 vz8 = _mm256_or_ps(vx8, vsign_mask);
+    const __m256 vz9 = _mm256_or_ps(vx9, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn0 = _mm256_fmadd_ps(vz0, vlog2e, vmagic_bias);
+    __m256 vn1 = _mm256_fmadd_ps(vz1, vlog2e, vmagic_bias);
+    __m256 vn2 = _mm256_fmadd_ps(vz2, vlog2e, vmagic_bias);
+    __m256 vn3 = _mm256_fmadd_ps(vz3, vlog2e, vmagic_bias);
+    __m256 vn4 = _mm256_fmadd_ps(vz4, vlog2e, vmagic_bias);
+    __m256 vn5 = _mm256_fmadd_ps(vz5, vlog2e, vmagic_bias);
+    __m256 vn6 = _mm256_fmadd_ps(vz6, vlog2e, vmagic_bias);
+    __m256 vn7 = _mm256_fmadd_ps(vz7, vlog2e, vmagic_bias);
+    __m256 vn8 = _mm256_fmadd_ps(vz8, vlog2e, vmagic_bias);
+    __m256 vn9 = _mm256_fmadd_ps(vz9, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs0 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn0), 23));
+    const __m256 vs1 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn1), 23));
+    const __m256 vs2 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn2), 23));
+    const __m256 vs3 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn3), 23));
+    const __m256 vs4 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn4), 23));
+    const __m256 vs5 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn5), 23));
+    const __m256 vs6 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn6), 23));
+    const __m256 vs7 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn7), 23));
+    const __m256 vs8 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn8), 23));
+    const __m256 vs9 = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn9), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn0 = _mm256_sub_ps(vn0, vmagic_bias);
+    vn1 = _mm256_sub_ps(vn1, vmagic_bias);
+    vn2 = _mm256_sub_ps(vn2, vmagic_bias);
+    vn3 = _mm256_sub_ps(vn3, vmagic_bias);
+    vn4 = _mm256_sub_ps(vn4, vmagic_bias);
+    vn5 = _mm256_sub_ps(vn5, vmagic_bias);
+    vn6 = _mm256_sub_ps(vn6, vmagic_bias);
+    vn7 = _mm256_sub_ps(vn7, vmagic_bias);
+    vn8 = _mm256_sub_ps(vn8, vmagic_bias);
+    vn9 = _mm256_sub_ps(vn9, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt0 = _mm256_fmadd_ps(vn0, vminus_ln2, vz0);
+    __m256 vt1 = _mm256_fmadd_ps(vn1, vminus_ln2, vz1);
+    __m256 vt2 = _mm256_fmadd_ps(vn2, vminus_ln2, vz2);
+    __m256 vt3 = _mm256_fmadd_ps(vn3, vminus_ln2, vz3);
+    __m256 vt4 = _mm256_fmadd_ps(vn4, vminus_ln2, vz4);
+    __m256 vt5 = _mm256_fmadd_ps(vn5, vminus_ln2, vz5);
+    __m256 vt6 = _mm256_fmadd_ps(vn6, vminus_ln2, vz6);
+    __m256 vt7 = _mm256_fmadd_ps(vn7, vminus_ln2, vz7);
+    __m256 vt8 = _mm256_fmadd_ps(vn8, vminus_ln2, vz8);
+    __m256 vt9 = _mm256_fmadd_ps(vn9, vminus_ln2, vz9);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp0 = _mm256_fmadd_ps(vc5, vt0, vc4);
+    __m256 vp1 = _mm256_fmadd_ps(vc5, vt1, vc4);
+    __m256 vp2 = _mm256_fmadd_ps(vc5, vt2, vc4);
+    __m256 vp3 = _mm256_fmadd_ps(vc5, vt3, vc4);
+    __m256 vp4 = _mm256_fmadd_ps(vc5, vt4, vc4);
+    __m256 vp5 = _mm256_fmadd_ps(vc5, vt5, vc4);
+    __m256 vp6 = _mm256_fmadd_ps(vc5, vt6, vc4);
+    __m256 vp7 = _mm256_fmadd_ps(vc5, vt7, vc4);
+    __m256 vp8 = _mm256_fmadd_ps(vc5, vt8, vc4);
+    __m256 vp9 = _mm256_fmadd_ps(vc5, vt9, vc4);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc3);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc3);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc3);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc3);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc3);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc3);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc3);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc3);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc3);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc3);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc2);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc2);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc2);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc2);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc2);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc2);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc2);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc2);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc2);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc2);
+
+    vp0 = _mm256_fmadd_ps(vp0, vt0, vc1);
+    vp1 = _mm256_fmadd_ps(vp1, vt1, vc1);
+    vp2 = _mm256_fmadd_ps(vp2, vt2, vc1);
+    vp3 = _mm256_fmadd_ps(vp3, vt3, vc1);
+    vp4 = _mm256_fmadd_ps(vp4, vt4, vc1);
+    vp5 = _mm256_fmadd_ps(vp5, vt5, vc1);
+    vp6 = _mm256_fmadd_ps(vp6, vt6, vc1);
+    vp7 = _mm256_fmadd_ps(vp7, vt7, vc1);
+    vp8 = _mm256_fmadd_ps(vp8, vt8, vc1);
+    vp9 = _mm256_fmadd_ps(vp9, vt9, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt0 = _mm256_mul_ps(vt0, vs0);
+    vt1 = _mm256_mul_ps(vt1, vs1);
+    vt2 = _mm256_mul_ps(vt2, vs2);
+    vt3 = _mm256_mul_ps(vt3, vs3);
+    vt4 = _mm256_mul_ps(vt4, vs4);
+    vt5 = _mm256_mul_ps(vt5, vs5);
+    vt6 = _mm256_mul_ps(vt6, vs6);
+    vt7 = _mm256_mul_ps(vt7, vs7);
+    vt8 = _mm256_mul_ps(vt8, vs8);
+    vt9 = _mm256_mul_ps(vt9, vs9);
+
+    const __m256 ve0 = _mm256_fmadd_ps(vt0, vp0, vs0);
+    const __m256 ve1 = _mm256_fmadd_ps(vt1, vp1, vs1);
+    const __m256 ve2 = _mm256_fmadd_ps(vt2, vp2, vs2);
+    const __m256 ve3 = _mm256_fmadd_ps(vt3, vp3, vs3);
+    const __m256 ve4 = _mm256_fmadd_ps(vt4, vp4, vs4);
+    const __m256 ve5 = _mm256_fmadd_ps(vt5, vp5, vs5);
+    const __m256 ve6 = _mm256_fmadd_ps(vt6, vp6, vs6);
+    const __m256 ve7 = _mm256_fmadd_ps(vt7, vp7, vs7);
+    const __m256 ve8 = _mm256_fmadd_ps(vt8, vp8, vs8);
+    const __m256 ve9 = _mm256_fmadd_ps(vt9, vp9, vs9);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd0 = _mm256_add_ps(ve0, vone);
+    const __m256 vd1 = _mm256_add_ps(ve1, vone);
+    const __m256 vd2 = _mm256_add_ps(ve2, vone);
+    const __m256 vd3 = _mm256_add_ps(ve3, vone);
+    const __m256 vd4 = _mm256_add_ps(ve4, vone);
+    const __m256 vd5 = _mm256_add_ps(ve5, vone);
+    const __m256 vd6 = _mm256_add_ps(ve6, vone);
+    const __m256 vd7 = _mm256_add_ps(ve7, vone);
+    const __m256 vd8 = _mm256_add_ps(ve8, vone);
+    const __m256 vd9 = _mm256_add_ps(ve9, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr0 = _mm256_rcp_ps(vd0);
+    __m256 vr1 = _mm256_rcp_ps(vd1);
+    __m256 vr2 = _mm256_rcp_ps(vd2);
+    __m256 vr3 = _mm256_rcp_ps(vd3);
+    __m256 vr4 = _mm256_rcp_ps(vd4);
+    __m256 vr5 = _mm256_rcp_ps(vd5);
+    __m256 vr6 = _mm256_rcp_ps(vd6);
+    __m256 vr7 = _mm256_rcp_ps(vd7);
+    __m256 vr8 = _mm256_rcp_ps(vd8);
+    __m256 vr9 = _mm256_rcp_ps(vd9);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+    vr9 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr9, vd9, vone), vr9, vr9);
+
+    vr0 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr0, vd0, vone), vr0, vr0);
+    vr1 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr1, vd1, vone), vr1, vr1);
+    vr2 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr2, vd2, vone), vr2, vr2);
+    vr3 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr3, vd3, vone), vr3, vr3);
+    vr4 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr4, vd4, vone), vr4, vr4);
+    vr5 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr5, vd5, vone), vr5, vr5);
+    vr6 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr6, vd6, vone), vr6, vr6);
+    vr7 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr7, vd7, vone), vr7, vr7);
+    vr8 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr8, vd8, vone), vr8, vr8);
+    vr9 = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr9, vd9, vone), vr9, vr9);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf0 = _mm256_mul_ps(ve0, vr0);
+    __m256 vf1 = _mm256_mul_ps(ve1, vr1);
+    __m256 vf2 = _mm256_mul_ps(ve2, vr2);
+    __m256 vf3 = _mm256_mul_ps(ve3, vr3);
+    __m256 vf4 = _mm256_mul_ps(ve4, vr4);
+    __m256 vf5 = _mm256_mul_ps(ve5, vr5);
+    __m256 vf6 = _mm256_mul_ps(ve6, vr6);
+    __m256 vf7 = _mm256_mul_ps(ve7, vr7);
+    __m256 vf8 = _mm256_mul_ps(ve8, vr8);
+    __m256 vf9 = _mm256_mul_ps(ve9, vr9);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf0 = _mm256_andnot_ps(_mm256_cmp_ps(vz0, vdenorm_cutoff, _CMP_LT_OS), vf0);
+    vf1 = _mm256_andnot_ps(_mm256_cmp_ps(vz1, vdenorm_cutoff, _CMP_LT_OS), vf1);
+    vf2 = _mm256_andnot_ps(_mm256_cmp_ps(vz2, vdenorm_cutoff, _CMP_LT_OS), vf2);
+    vf3 = _mm256_andnot_ps(_mm256_cmp_ps(vz3, vdenorm_cutoff, _CMP_LT_OS), vf3);
+    vf4 = _mm256_andnot_ps(_mm256_cmp_ps(vz4, vdenorm_cutoff, _CMP_LT_OS), vf4);
+    vf5 = _mm256_andnot_ps(_mm256_cmp_ps(vz5, vdenorm_cutoff, _CMP_LT_OS), vf5);
+    vf6 = _mm256_andnot_ps(_mm256_cmp_ps(vz6, vdenorm_cutoff, _CMP_LT_OS), vf6);
+    vf7 = _mm256_andnot_ps(_mm256_cmp_ps(vz7, vdenorm_cutoff, _CMP_LT_OS), vf7);
+    vf8 = _mm256_andnot_ps(_mm256_cmp_ps(vz8, vdenorm_cutoff, _CMP_LT_OS), vf8);
+    vf9 = _mm256_andnot_ps(_mm256_cmp_ps(vz9, vdenorm_cutoff, _CMP_LT_OS), vf9);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf0 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf0), vf0, vx0);
+    vf1 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf1), vf1, vx1);
+    vf2 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf2), vf2, vx2);
+    vf3 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf3), vf3, vx3);
+    vf4 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf4), vf4, vx4);
+    vf5 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf5), vf5, vx5);
+    vf6 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf6), vf6, vx6);
+    vf7 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf7), vf7, vx7);
+    vf8 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf8), vf8, vx8);
+    vf9 = _mm256_blendv_ps(_mm256_sub_ps(vone, vf9), vf9, vx9);
+
+    _mm256_storeu_ps(y, vf0);
+    _mm256_storeu_ps(y + 8, vf1);
+    _mm256_storeu_ps(y + 16, vf2);
+    _mm256_storeu_ps(y + 24, vf3);
+    _mm256_storeu_ps(y + 32, vf4);
+    _mm256_storeu_ps(y + 40, vf5);
+    _mm256_storeu_ps(y + 48, vf6);
+    _mm256_storeu_ps(y + 56, vf7);
+    _mm256_storeu_ps(y + 64, vf8);
+    _mm256_storeu_ps(y + 72, vf9);
+    y += 80;
+  }
+  for (; n >= 8 * sizeof(float); n -= 8 * sizeof(float)) {
+    const __m256 vx = _mm256_loadu_ps(x);
+    x += 8;
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_storeu_ps(y, vf);
+    y += 8;
+  }
+  if XNN_UNLIKELY(n != 0) {
+    assert(n >= 1 * sizeof(float));
+    assert(n <= 7 * sizeof(float));
+    __m256i vmask = _mm256_loadu_si256((const __m256i*) ((uintptr_t) &mask_table[7] - n));
+
+    const __m256 vx = _mm256_maskload_ps(x, vmask);
+
+    // General structure of the algorithm:
+    //           / exp(x) / (1 + exp(x)) if x <= 0
+    //   f[x] := 
+    //           \ 1 - f[-x] if x >= 0
+    //
+    // First we compute f[z] := exp(z) / (1 + exp(z)) where z = -abs(x),
+    // then replace result with 1 - f[z] if x >= 0.
+    const __m256 vz = _mm256_or_ps(vx, vsign_mask);
+
+    // Compute reduced argument n := round(z / log(2)).
+    // We do it by adding a large number (magic bias) to the product z * (1/log(2)), which cause rounding of the result
+    // to an integer, then subtracing the large number back. The trick with adding large number is valid only within
+    // certain bounds (|x| <= 2**22), but thats ok, because inputs x outside of [-87.336544, 17.328678] (i.e. z outsize
+    // [0, 87.336544]) underflow or saturate sigmoidf(x) anyway. We fixup the result for such inputs at the very end of
+    // the algorithm.
+    __m256 vn = _mm256_fmadd_ps(vz, vlog2e, vmagic_bias);
+
+    // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
+    // -87.33642 <= z <= 0.0, and -126 <= n <= 0 accordingly.
+    const __m256 vs = _mm256_castsi256_ps(_mm256_slli_epi32(_mm256_castps_si256(vn), 23));
+
+    // Subtract the large number back to get final n := round(z / log(2)).
+    vn = _mm256_sub_ps(vn, vmagic_bias);
+
+    // Compute reduced argument t := z - n * log(2).
+    __m256 vt = _mm256_fmadd_ps(vn, vminus_ln2, vz);
+
+    // Compute degree-5 polynomial approxiatmion for exp(t) on [-log(2)/2, log(2)/2].
+    __m256 vp = _mm256_fmadd_ps(vc5, vt, vc4);
+    vp = _mm256_fmadd_ps(vp, vt, vc3);
+    vp = _mm256_fmadd_ps(vp, vt, vc2);
+    vp = _mm256_fmadd_ps(vp, vt, vc1);
+
+    // Reconstruct the exp(z) value:
+    //   e = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
+    //     = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
+    //     = s + (t * s) * p
+    vt = _mm256_mul_ps(vt, vs);
+    const __m256 ve = _mm256_fmadd_ps(vt, vp, vs);
+
+    // Denominator of the sigmoid fraction: 1.0 + exp(z)
+    const __m256 vd = _mm256_add_ps(ve, vone);
+
+    // Use Newton-Raphson method to compute reciprocal of denominator.
+    // Note: 1 < d <= 2, because z >= 0.0 and 0 < exp(-z) <= 1.0.
+    // Thus the reciprocal of the denominator never overflows.
+    __m256 vr = _mm256_rcp_ps(vd);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+    vr = _mm256_fmadd_ps(_mm256_fnmadd_ps(vr, vd, vone), vr, vr);
+
+    // Reconstruct sigmoid(z) = exp(z) * recip(1.0 + exp(z))
+    __m256 vf = _mm256_mul_ps(ve, vr);
+
+    // For inputs below denormal cutoff, replace output with +0.0f.
+    // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
+    vf = _mm256_andnot_ps(_mm256_cmp_ps(vz, vdenorm_cutoff, _CMP_LT_OS), vf);
+
+    // Reconstruct sigmoid(x) = x < 0 ? sigmoid(z) : 1.0 - sigmoid(z)
+    vf = _mm256_blendv_ps(_mm256_sub_ps(vone, vf), vf, vx);
+
+    _mm256_maskstore_ps(y, vmask, vf);
+  }
+}
diff --git a/src/init.c b/src/init.c
index f0bf70f..2f9c728 100644
--- a/src/init.c
+++ b/src/init.c
@@ -901,7 +901,11 @@
     } else {
       xnn_params.f32.hswish = (xnn_univector_ukernel_function) xnn_f32_hswish_ukernel__sse_x8;
     }
-    xnn_params.f32.sigmoid = (xnn_univector_ukernel_function) xnn_f32_sigmoid_ukernel__sse2_p5_div_x16;
+    if (!XNN_PLATFORM_MOBILE && cpuinfo_has_x86_avx2()) {
+      xnn_params.f32.sigmoid = (xnn_univector_ukernel_function) xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40;
+    } else {
+      xnn_params.f32.sigmoid = (xnn_univector_ukernel_function) xnn_f32_sigmoid_ukernel__sse2_p5_div_x16;
+    }
     xnn_params.f32.prelu = (struct prelu_parameters) {
       .ukernel = (xnn_prelu_ukernel_function) xnn_f32_prelu_ukernel__sse2_2x8,
       .row_tile = 2,
diff --git a/src/xnnpack/vunary.h b/src/xnnpack/vunary.h
index ddbfb6a..78f1997 100644
--- a/src/xnnpack/vunary.h
+++ b/src/xnnpack/vunary.h
@@ -144,6 +144,39 @@
 DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__sse41_p5_div_x20)
 DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__sse41_p5_div_x24)
 
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80)
+
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80)
+
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72)
+DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80)
+
 DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__psimd_p5_div_x4)
 DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__psimd_p5_div_x8)
 DECLARE_F32_VUNARY_UKERNEL_FUNCTION(xnn_f32_sigmoid_ukernel__psimd_p5_div_x12)
diff --git a/test/f32-sigmoid.cc b/test/f32-sigmoid.cc
index 7fd3d2d..0c28e40 100644
--- a/test/f32-sigmoid.cc
+++ b/test/f32-sigmoid.cc
@@ -4858,6 +4858,1416 @@
 #endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
 
 
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X8, batch_eq_8) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(8)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X8, batch_div_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 16; batch_size < 80; batch_size += 8) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X8, batch_lt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 8; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X8, batch_gt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 9; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X8, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 40; batch_size += 7) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X16, batch_eq_16) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(16)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X16, batch_div_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 32; batch_size < 160; batch_size += 16) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X16, batch_lt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X16, batch_gt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 17; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X16, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 80; batch_size += 15) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X24, batch_eq_24) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(24)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X24, batch_div_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 48; batch_size < 240; batch_size += 24) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X24, batch_lt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 24; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X24, batch_gt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 25; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X24, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 120; batch_size += 23) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X32, batch_eq_32) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(32)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X32, batch_div_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 64; batch_size < 320; batch_size += 32) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X32, batch_lt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X32, batch_gt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 33; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X32, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 160; batch_size += 31) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X40, batch_eq_40) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(40)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X40, batch_div_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 80; batch_size < 400; batch_size += 40) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X40, batch_lt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 40; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X40, batch_gt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 41; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X40, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 200; batch_size += 39) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X48, batch_eq_48) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(48)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X48, batch_div_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 96; batch_size < 480; batch_size += 48) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X48, batch_lt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X48, batch_gt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 49; batch_size < 96; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X48, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 240; batch_size += 47) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X56, batch_eq_56) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(56)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X56, batch_div_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 112; batch_size < 560; batch_size += 56) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X56, batch_lt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 56; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X56, batch_gt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 57; batch_size < 112; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X56, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 280; batch_size += 55) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X64, batch_eq_64) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(64)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X64, batch_div_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 128; batch_size < 640; batch_size += 64) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X64, batch_lt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X64, batch_gt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 65; batch_size < 128; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X64, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 320; batch_size += 63) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X72, batch_eq_72) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(72)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X72, batch_div_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 144; batch_size < 720; batch_size += 72) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X72, batch_lt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 72; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X72, batch_gt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 73; batch_size < 144; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X72, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 360; batch_size += 71) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X80, batch_eq_80) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(80)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X80, batch_div_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 160; batch_size < 800; batch_size += 80) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X80, batch_lt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X80, batch_gt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 81; batch_size < 160; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_DIV_X80, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 400; batch_size += 79) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X8, batch_eq_8) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(8)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X8, batch_div_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 16; batch_size < 80; batch_size += 8) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X8, batch_lt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 8; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X8, batch_gt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 9; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X8, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 40; batch_size += 7) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X16, batch_eq_16) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(16)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X16, batch_div_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 32; batch_size < 160; batch_size += 16) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X16, batch_lt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X16, batch_gt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 17; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X16, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 80; batch_size += 15) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X24, batch_eq_24) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(24)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X24, batch_div_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 48; batch_size < 240; batch_size += 24) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X24, batch_lt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 24; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X24, batch_gt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 25; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X24, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 120; batch_size += 23) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X32, batch_eq_32) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(32)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X32, batch_div_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 64; batch_size < 320; batch_size += 32) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X32, batch_lt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X32, batch_gt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 33; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X32, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 160; batch_size += 31) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X40, batch_eq_40) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(40)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X40, batch_div_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 80; batch_size < 400; batch_size += 40) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X40, batch_lt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 40; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X40, batch_gt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 41; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X40, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 200; batch_size += 39) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X48, batch_eq_48) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(48)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X48, batch_div_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 96; batch_size < 480; batch_size += 48) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X48, batch_lt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X48, batch_gt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 49; batch_size < 96; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X48, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 240; batch_size += 47) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X56, batch_eq_56) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(56)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X56, batch_div_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 112; batch_size < 560; batch_size += 56) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X56, batch_lt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 56; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X56, batch_gt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 57; batch_size < 112; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X56, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 280; batch_size += 55) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X64, batch_eq_64) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(64)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X64, batch_div_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 128; batch_size < 640; batch_size += 64) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X64, batch_lt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X64, batch_gt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 65; batch_size < 128; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X64, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 320; batch_size += 63) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X72, batch_eq_72) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(72)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X72, batch_div_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 144; batch_size < 720; batch_size += 72) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X72, batch_lt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 72; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X72, batch_gt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 73; batch_size < 144; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X72, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 360; batch_size += 71) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X80, batch_eq_80) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(80)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X80, batch_div_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 160; batch_size < 800; batch_size += 80) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X80, batch_lt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X80, batch_gt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 81; batch_size < 160; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR1FMA_X80, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 400; batch_size += 79) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X8, batch_eq_8) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(8)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X8, batch_div_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 16; batch_size < 80; batch_size += 8) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X8, batch_lt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 8; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X8, batch_gt_8) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 9; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X8, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 40; batch_size += 7) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X16, batch_eq_16) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(16)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X16, batch_div_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 32; batch_size < 160; batch_size += 16) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X16, batch_lt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 16; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X16, batch_gt_16) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 17; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X16, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 80; batch_size += 15) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X24, batch_eq_24) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(24)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X24, batch_div_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 48; batch_size < 240; batch_size += 24) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X24, batch_lt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 24; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X24, batch_gt_24) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 25; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X24, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 120; batch_size += 23) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X32, batch_eq_32) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(32)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X32, batch_div_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 64; batch_size < 320; batch_size += 32) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X32, batch_lt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 32; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X32, batch_gt_32) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 33; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X32, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 160; batch_size += 31) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X40, batch_eq_40) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(40)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X40, batch_div_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 80; batch_size < 400; batch_size += 40) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X40, batch_lt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 40; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X40, batch_gt_40) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 41; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X40, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 200; batch_size += 39) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X48, batch_eq_48) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(48)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X48, batch_div_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 96; batch_size < 480; batch_size += 48) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X48, batch_lt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 48; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X48, batch_gt_48) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 49; batch_size < 96; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X48, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 240; batch_size += 47) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X56, batch_eq_56) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(56)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X56, batch_div_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 112; batch_size < 560; batch_size += 56) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X56, batch_lt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 56; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X56, batch_gt_56) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 57; batch_size < 112; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X56, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 280; batch_size += 55) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X64, batch_eq_64) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(64)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X64, batch_div_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 128; batch_size < 640; batch_size += 64) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X64, batch_lt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 64; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X64, batch_gt_64) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 65; batch_size < 128; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X64, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 320; batch_size += 63) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X72, batch_eq_72) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(72)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X72, batch_div_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 144; batch_size < 720; batch_size += 72) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X72, batch_lt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 72; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X72, batch_gt_72) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 73; batch_size < 144; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X72, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 360; batch_size += 71) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
+#if XNN_ARCH_X86 || XNN_ARCH_X86_64
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X80, batch_eq_80) {
+    TEST_REQUIRES_X86_AVX2;
+    VUnOpMicrokernelTester()
+      .batch_size(80)
+      .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X80, batch_div_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 160; batch_size < 800; batch_size += 80) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X80, batch_lt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size < 80; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X80, batch_gt_80) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 81; batch_size < 160; batch_size++) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+
+  TEST(F32_SIGMOID__AVX2_RR1_P5_NR2FMA_X80, inplace) {
+    TEST_REQUIRES_X86_AVX2;
+    for (size_t batch_size = 1; batch_size <= 400; batch_size += 79) {
+      VUnOpMicrokernelTester()
+        .batch_size(batch_size)
+        .inplace(true)
+        .Test(xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80, VUnOpMicrokernelTester::OpType::Sigmoid);
+    }
+  }
+#endif  // XNN_ARCH_X86 || XNN_ARCH_X86_64
+
+
 #if !XNN_ARCH_ASMJS && !XNN_ARCH_WASM
   TEST(F32_SIGMOID__PSIMD_P5_DIV_X4, batch_eq_4) {
     TEST_REQUIRES_PSIMD;
diff --git a/test/f32-sigmoid.yaml b/test/f32-sigmoid.yaml
index 0776e7f..f7cfd7c 100644
--- a/test/f32-sigmoid.yaml
+++ b/test/f32-sigmoid.yaml
@@ -141,6 +141,36 @@
 - name: xnn_f32_sigmoid_ukernel__sse41_p5_div_x16
 - name: xnn_f32_sigmoid_ukernel__sse41_p5_div_x20
 - name: xnn_f32_sigmoid_ukernel__sse41_p5_div_x24
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x8
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x16
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x24
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x32
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x40
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x48
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x56
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x64
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x72
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_div_x80
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x8
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x16
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x24
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x32
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x40
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x48
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x56
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x64
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x72
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr1fma_x80
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x8
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x16
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x24
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x32
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x40
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x48
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x56
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x64
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x72
+- name: xnn_f32_sigmoid_ukernel__avx2_rr1_p5_nr2fma_x80
 - name: xnn_f32_sigmoid_ukernel__psimd_p5_div_x4
 - name: xnn_f32_sigmoid_ukernel__psimd_p5_div_x8
 - name: xnn_f32_sigmoid_ukernel__psimd_p5_div_x12