blob: e65581bbbcc124e95cbea633dfe534ad60e34822 [file] [log] [blame]
Marat Dukhan8137e4c2020-01-25 12:56:58 -08001// Copyright 2020 Google LLC
2//
3// This source code is licensed under the BSD-style license found in the
4// LICENSE file in the root directory of this source tree.
5
6$assert ELEMENTS_TILE % 4 == 0
7$assert ELEMENTS_TILE >= 4
8$SIMD_TILE = ELEMENTS_TILE // 4
9$ABC = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"
10$VMULADDQ_F32 = "vfmaq_f32" if FMA else "vmlaq_f32"
11#include <assert.h>
12
13#include <arm_neon.h>
14
15#include <xnnpack/common.h>
16#include <xnnpack/raddstoreexpminusmax.h>
17
18
19void xnn_f32_raddstoreexpminusmax_ukernel__${"neonfma" if FMA else "neon"}_p5_x${ELEMENTS_TILE}${"" if ACCUMULATORS == 1 else "_acc%d" % ACCUMULATORS}(
20 size_t elements,
21 const float* input,
22 float* output,
23 float* sum,
Marat Dukhan7be427a2021-12-13 23:38:20 -080024 float max) XNN_OOB_READS
Marat Dukhan8137e4c2020-01-25 12:56:58 -080025{
26 assert(elements % sizeof(float) == 0);
27
28 const float32x4_t vmagic_bias = vmovq_n_f32(0x1.8000FEp23f);
29 // The smallest x for which expf(x) is normalized.
30 const float32x4_t vdenorm_cutoff = vmovq_n_f32(-0x1.5D589Ep6f);
31 const float32x4_t vlog2e = vmovq_n_f32(0x1.715476p+0f);
32 $if FMA:
33 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E43p-1f);
34 const float32x4_t vminus_ln2_lo = vmovq_n_f32(0x1.05C61p-29f);
35 $else:
36 // Last 7 bits are zeroes
37 const float32x4_t vminus_ln2_hi = vmovq_n_f32(-0x1.62E400p-1f);
38 const float32x4_t vminus_ln2_lo = vmovq_n_f32(-0x1.7F7D1Cp-20f);
39
40 const float32x4_t vc1 = vmovq_n_f32(0x1.FFFFF6p-1f);
41 const float32x4_t vc2 = vmovq_n_f32(0x1.FFFDC6p-2f);
42 const float32x4_t vc3 = vmovq_n_f32(0x1.555A80p-3f);
43 const float32x4_t vc4 = vmovq_n_f32(0x1.573A1Ap-5f);
44 const float32x4_t vc5 = vmovq_n_f32(0x1.0F9F9Cp-7f);
45
46 const float32x4_t vi_max = vdupq_n_f32(max);
47
48 $if ELEMENTS_TILE > 4:
49 $for K in range(ACCUMULATORS):
50 float32x4_t vacc${K} = vmovq_n_f32(0.0f);
51 for (; elements >= ${ELEMENTS_TILE} * sizeof(float); elements -= ${ELEMENTS_TILE} * sizeof(float)) {
52 // Load ${ELEMENTS_TILE} (${SIMD_TILE}x4) inputs at a time.
53 $for N in range(0, ELEMENTS_TILE, 4):
54 const float32x4_t vi${ABC[N:N+4]} = vld1q_f32(input); input += 4;
55
56 // Subtract maximum input x := i - i_max. This implies x <= 0.
57 $for N in range(0, ELEMENTS_TILE, 4):
58 const float32x4_t vx${ABC[N:N+4]} = vsubq_f32(vi${ABC[N:N+4]}, vi_max);
59
60 // Compute reduced argument n := round(x / log(2)).
61 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
62 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
Frank Barchard88c2da62021-08-09 12:02:24 -070063 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -080064 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
65 // of the algorithm.
66 $for N in range(0, ELEMENTS_TILE, 4):
67 float32x4_t vn${ABC[N:N+4]} = ${VMULADDQ_F32}(vmagic_bias, vx${ABC[N:N+4]}, vlog2e);
68
69 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
70 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
71 $for N in range(0, ELEMENTS_TILE, 4):
72 const float32x4_t vs${ABC[N:N+4]} = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn${ABC[N:N+4]}), 23));
73
74 // Subtract the large number back to get final n := round(x / log(2)).
75 $for N in range(0, ELEMENTS_TILE, 4):
76 vn${ABC[N:N+4]} = vsubq_f32(vn${ABC[N:N+4]}, vmagic_bias);
77
78 // Compute reduced argument t := z - n * log(2).
79 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
80 $for N in range(0, ELEMENTS_TILE, 4):
81 float32x4_t vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vx${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_hi);
82
83 $for N in range(0, ELEMENTS_TILE, 4):
84 vt${ABC[N:N+4]} = ${VMULADDQ_F32}(vt${ABC[N:N+4]}, vn${ABC[N:N+4]}, vminus_ln2_lo);
85
Marat Dukhan102a7392020-11-20 01:18:10 -080086 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -080087 $for N in range(0, ELEMENTS_TILE, 4):
88 float32x4_t vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc4, vc5, vt${ABC[N:N+4]});
89
90 $for N in range(0, ELEMENTS_TILE, 4):
91 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc3, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
92
93 $for N in range(0, ELEMENTS_TILE, 4):
94 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc2, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
95
96 $for N in range(0, ELEMENTS_TILE, 4):
97 vp${ABC[N:N+4]} = ${VMULADDQ_F32}(vc1, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
98
99 // Reconstruct the final f value:
100 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
101 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
102 // = s + (t * s) * p
103 $for N in range(0, ELEMENTS_TILE, 4):
104 vt${ABC[N:N+4]} = vmulq_f32(vt${ABC[N:N+4]}, vs${ABC[N:N+4]});
105
106 $for N in range(0, ELEMENTS_TILE, 4):
107 float32x4_t vf${ABC[N:N+4]} = ${VMULADDQ_F32}(vs${ABC[N:N+4]}, vp${ABC[N:N+4]}, vt${ABC[N:N+4]});
108
109 // For inputs below denormal cutoff, replace output with +0.0f.
110 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
111 $for N in range(0, ELEMENTS_TILE, 4):
112 vf${ABC[N:N+4]} = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf${ABC[N:N+4]}), vcltq_f32(vx${ABC[N:N+4]}, vdenorm_cutoff)));
113
114 // Store ${ELEMENTS_TILE} (${SIMD_TILE}x4) outputs at a time.
115 $for N in range(0, ELEMENTS_TILE, 4):
116 vst1q_f32(output, vf${ABC[N:N+4]}); output += 4;
117
118 // Accumulate computed exponents.
119 $for N in range(0, ELEMENTS_TILE, 4):
120 vacc${N % ACCUMULATORS} = vaddq_f32(vacc${N % ACCUMULATORS}, vf${ABC[N:N+4]});
121 }
122 $if ACCUMULATORS > 1:
123 // Add up all accumulators to vacc0
124 $ACC_SLICE = 1
125 $while ACC_SLICE < ACCUMULATORS:
126 $for A in range(0, ACCUMULATORS, ACC_SLICE * 2):
127 $if A + ACC_SLICE < ACCUMULATORS:
128 vacc${A} = vaddq_f32(vacc${A}, vacc${A + ACC_SLICE});
129 $ACC_SLICE *= 2
130
131 float32x4_t vacc = vacc0;
132 $else:
133 float32x4_t vacc = vmovq_n_f32(0.0f);
134 for (; elements >= 4 * sizeof(float); elements -= 4 * sizeof(float)) {
135 // Load 4 inputs at a time.
136 const float32x4_t vi = vld1q_f32(input); input += 4;
137
138 // Subtract maximum input x := i - i_max. This implies x <= 0.
139 const float32x4_t vx = vsubq_f32(vi, vi_max);
140
141 // Compute reduced argument n := round(x / log(2)).
142 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
143 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
Frank Barchard88c2da62021-08-09 12:02:24 -0700144 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800145 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
146 // of the algorithm.
147 float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
148
149 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
150 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
151 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
152
153 // Subtract the large number back to get final n := round(x / log(2)).
154 vn = vsubq_f32(vn, vmagic_bias);
155
156 // Compute reduced argument t := z - n * log(2).
157 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
158 float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
159 vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
160
Marat Dukhan102a7392020-11-20 01:18:10 -0800161 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800162 float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
163 vp = ${VMULADDQ_F32}(vc3, vp, vt);
164 vp = ${VMULADDQ_F32}(vc2, vp, vt);
165 vp = ${VMULADDQ_F32}(vc1, vp, vt);
166
167 // Reconstruct the final f value:
168 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
169 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
170 // = s + (t * s) * p
171 vt = vmulq_f32(vt, vs);
172 float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt);
173
174 // For inputs below denormal cutoff, replace output with +0.0f.
175 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
176 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
177
178 // Store 4 outputs at a time.
179 vst1q_f32(output, vf); output += 4;
180
181 // Accumulate computed exponents.
182 vacc = vaddq_f32(vacc, vf);
183 }
184#if XNN_ARCH_ARM64
185 float vacc_lo = vaddvq_f32(vacc);
186#else
187 float32x2_t vacc_lo = vadd_f32(vget_high_f32(vacc), vget_low_f32(vacc));
188#endif
189 if (elements != 0) {
190 assert(elements >= 1 * sizeof(float));
191 assert(elements <= 3 * sizeof(float));
192 // Load 4 inputs at a time.
193 const float32x4_t vi = vld1q_f32(input); input += 4;
194
195 // Subtract maximum input x := i - i_max. This implies x <= 0.
196 const float32x4_t vx = vsubq_f32(vi, vi_max);
197
198 // Compute reduced argument n := round(x / log(2)).
199 // We do it by adding a large number (magic bias), which cause rounding of result to an integer, then subtracing the
200 // large number back. The first addition is combined with multiplication by log2e into a single FMA instruction.
Frank Barchard88c2da62021-08-09 12:02:24 -0700201 // The trick with adding large number is valid only within certain bounds (|x| <= 2**22), but that's ok, because
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800202 // inputs outside of [-87.336540, 0.0] underflow expf(x) anyway. We fixup the result for such inputs at the very end
203 // of the algorithm.
204 float32x4_t vn = ${VMULADDQ_F32}(vmagic_bias, vx, vlog2e);
205
206 // Create a floating-point number s (scale) such that s == 2**n for inputs which don't cause underflow, i.e.
207 // -87.33642 <= x <= 0.0, and -126 <= n <= 0 accordingly.
208 const float32x4_t vs = vreinterpretq_f32_s32(vshlq_n_s32(vreinterpretq_s32_f32(vn), 23));
209
210 // Subtract the large number back to get final n := round(x / log(2)).
211 vn = vsubq_f32(vn, vmagic_bias);
212
213 // Compute reduced argument t := z - n * log(2).
214 // Use Cody-Waite range reduction method (note two constants to represent log(2)) to improve accuracy.
215 float32x4_t vt = ${VMULADDQ_F32}(vx, vn, vminus_ln2_hi);
216 vt = ${VMULADDQ_F32}(vt, vn, vminus_ln2_lo);
217
Marat Dukhan102a7392020-11-20 01:18:10 -0800218 // Compute degree-5 polynomial approximation for exp(t) on [-log(2)/2, log(2)/2].
Marat Dukhan8137e4c2020-01-25 12:56:58 -0800219 float32x4_t vp = ${VMULADDQ_F32}(vc4, vc5, vt);
220 vp = ${VMULADDQ_F32}(vc3, vp, vt);
221 vp = ${VMULADDQ_F32}(vc2, vp, vt);
222 vp = ${VMULADDQ_F32}(vc1, vp, vt);
223
224 // Reconstruct the final f value:
225 // f = s * (1 + t * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5)))))
226 // = s + (t * s) * (c1 + t * (c2 + t * (c3 + t * (c4 + t * c5))))
227 // = s + (t * s) * p
228 vt = vmulq_f32(vt, vs);
229 float32x4_t vf = ${VMULADDQ_F32}(vs, vp, vt);
230
231 // For inputs below denormal cutoff, replace output with +0.0f.
232 // Note that for NaN inputs, comparison result is false, and outputs are left unchanged.
233 vf = vreinterpretq_f32_u32(vbicq_u32(vreinterpretq_u32_f32(vf), vcltq_f32(vx, vdenorm_cutoff)));
234
235 float32x2_t vf_lo = vget_low_f32(vf);
236 if (elements & (2 * sizeof(float))) {
237 // Store 2 outputs at a time.
238 vst1_f32(output, vf_lo); output += 2;
239
240 // Accumulate 2 computed exponents.
241 #if XNN_ARCH_ARM64
242 vacc_lo += vaddv_f32(vf_lo);
243 #else
244 vacc_lo = vadd_f32(vacc_lo, vf_lo);
245 #endif
246
247 vf_lo = vget_high_f32(vf);
248 }
249 if (elements & (1 * sizeof(float))) {
250 // Store 1 output at a time.
251 vst1_lane_f32(output, vf_lo, 0);
252
253 // Accumulate 1 computed exponent.
254 #if XNN_ARCH_ARM64
255 vacc_lo += vget_lane_f32(vf_lo, 0);
256 #else
257 vacc_lo = vadd_f32(vacc_lo, vreinterpret_f32_u64(vshl_n_u64(vreinterpret_u64_f32(vf_lo), 32)));
258 #endif
259 }
260 }
261 // Reduce 4 elements in the SIMD register
262#if XNN_ARCH_ARM64
263 *sum = vacc_lo;
264#else
265 vst1_lane_f32(sum, vpadd_f32(vacc_lo, vacc_lo), 0);
266#endif
267}